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Goal

With climate, in situ experimentations are
impossible. Climate models are therefore the only
tools for providing quantitative predictions of the
coming climate.

The goal of the talk is to present a spatio-temporal statistical model
especially suited for extreme precipitation simulated by a climate model.
More specifically, the statistical model takes into account

non-stationarity in transient time series;
large spatial simulation domain;
spatial dependence among grid points.
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Data

The dataset consists in the daily precipitation outputs from a run of the
Canadian Regional Climate Model (CRCM). The data were simulated
and provided by

12,570 land grid points;
Daily precipitation series for the
period [1961, 2100] at every grid
point.

Let Yik` be the precipitation depth
(mm) of day ` of year k at grid point i ,
where

1 ≤ i ≤ 12, 570;
1 ≤ k ≤ 140;
1 ≤ ` ≤ 365.

Simulation domain
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Non-Stationarity
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Non-stationarity in the maxima series

Let Mik be the annual maximum of year
k at grid point i :

Mik = max
1≤`≤365

Yik`.

Let Mi be the annual maxima series at
grid point i :

Mi = (Mik : 1 ≤ k ≤ 140) .

For 2/3 of the grid points, the series of
maxima Mi exhibits temporal
non-stationarity (the grid points in red
in the following figure).
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Maxima series - Montreal
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Daily series - Montreal
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Exceedances - Montreal
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Preprocessing approach

Suppose that there exist sequences of constants νik and τik such that(
M ′ik = Mik − νik

τik
: 1 ≤ k ≤ 140

)
; (1)

can be assumed identically distributed along index k for each grid point i .
Therefore, the distribution of a given transformed maximum can be
approximated by

M ′ik
L
≈ GEV (µi , σi , ξi ) . (2)

The trend in the tail should be isolated from the trend in the bulk of the
distribution.
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Preprocessing approach

Let Zik be the vector of precipitation exceedences over the threshold ui of
year k at grid point i :

Zik = (Yikl : Yikl > ui , 1 ≤ l ≤ 140) ;

and let

νik = E(Zik) and τ 2
ik = Var(Zik).
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The threshold has to be chosen in order that the transformation:

M ′ik = Mik − νik
τik

; (3)

removes the trend in the maxima series M ′i . Its definition does not rely
on asymptotic convergence requirements as in the Peaks-Over-Threshold
model.
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Preprocessed maxima series - Montreal
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Preprocessed maxima series - Montreal
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Threshold choice

We chose the 80th empirical quantiles
at each grid point as the thresholds.

Then, the stationarity hypothesis of the
preprocessed maxima series was rejected
for only 1.5% of the grid points (the grid
points in red in the following figure).

Pointwise Mann-Kendall stationarity
test (α = 5%) for the preprocessed

maxima series
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Preprocessing approach

Benefits of the proposed preprocessing approach are:
if there exist constants aik > 0 and bik such that

Mik − bik
aik

L→ GEV (0, 1, ξi );

then there exists constants a′ik > 0 and b′ik such that

M ′ik − b′ik
a′ik

L→ GEV (0, 1, ξi ).

The model for the untransformed maxima is tractable:

Mik
L
≈ GEV (τikµi + νik , τikσi , ξi ) . (4)
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Spatial modeling
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Spatial dependence structure

Following the idea of Cooley & Sain (2010) and Reich & Shaby (2012),
the spatial dependence is taken into account by modeling spatial
variation in the GEV parameters mainly for two reasons:

such a latent variable approach is very flexible;
the local properties of extremal distributions (such as return levels)
are well reproduced (Davison et al., 2012; Sebille et al., 2016).

However such an approach can neither model nor predict an event
occurring simultaneously at several grid points.
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Spatial latent model

Local estimates of the GEV location parameter.

Local parameter
estimates could

definitely benefit from
neighboring site

values.
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Spatial latent model

Local estimates of the GEV shape parameter.

Local parameter
estimates could

definitely benefit from
neighboring site

values.
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Spatial latent model

Because the random variables lie on a regular
lattice, Gaussian Markov random fields are well
appropriate.

Such a field inherits the Markov property. For the
GEV location parameter, we have:

f[µi |µ−i =µ−i ](µi ) = f[µi |µδi =µδi ](µi );

where δi is the set of neighbors of grid point i .

µi

The precision matrix Q of the joint distribution of µ is sparse because of
the important following simplification:

µi ⊥ µj | µ−i,−j ⇔ qij = 0; (5)

where qij is the element (i , j) of the precision matrix Q.
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Intrinsic Gaussian Markov random fields

A Gaussian Markov Random field is a multivariate normal vector
µ = (µi , i = 1, . . . , n)> where the precision matrix Q fulfills the following
property:

qij = 0 if µi ⊥ µj | µ−i,−j .

The marginal pairwise correlation that can be modeled by Gaussian
Markov random fields is limited to 0.8 (Besag & Kooperberg, 1995).

An option is to use intrinsic Gaussian Markov random fields, where the
precision matrix is not of full rank.

The rank deficiency controls the smoothness of the field. First-order
iGMRFs better capture small-scale variations whereas second-order
iGMRFs better model large-scale ones.
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Intrinsic Gaussian Markov random fields

The most popular iGMRFs are defined with a scaled precision matrix:

Q = κW ;

where 0 < κ <∞ is a precision parameter that controls the smoothness
of the field and W is a structure matrix known from the grid.

Let k be the rank deficiency of the precision matrix Q. The improper
joint distribution is proportional to

fµ(µ) ∝ κ
n−k

2 exp
{
−κ2µ

>W µ
}
.

Under the Bayesian paradigm, iGMRFs generally yield proper posterior
distributions when used as prior.
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First-order intrinsic Gaussian Markov random fields

Let ni = Card(δi ), be the number of neighbors of
grid point i .

f[µi |µδi =µδi ](µi ) = N

µi

∣∣∣∣∣∣ 1ni

∑
j∈δi

µj ,
1
κni

 ;

where κ > 0 is the precision parameter.

µi

This model approximates a two-dimensional Brownian motion.
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Second-order intrinsic Gaussian Markov random fields

E(Xi |X−i = x−i ) =

1
20

8

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ⊗ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2

◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ⊗ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1

◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ⊗ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦


Prec(Xi |X−i = x−i ) = 20κ.

This model is an approximation to the thin plate
spline, the two-dimensional extension of cubic
splines.

µi
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Complete spatial model

The model is therefore:

f[M′ik |(µi ,φi ,ξi )](mik) L
≈ GEV {m′ik |µi , exp (φi ) , ξi} ;

f(µ,φ,ξ)(µ, φ, ξ) ∝

(κµκφκξ)
n−k

2 exp
{
−κµ2 µ

>Wµ− κφ
2 φ
>Wφ− κξ

2 ξ
>W ξ

}
;

Three independent intrinsic Gaussian Markov random fields for the
GEV parameter prior.
Vague gamma hyperpriors for the precision parameters.

Also, iGMRFs are semi-informative:
marginally non-informative, for example E(µi ) is undefined and
Var(µi ) =∞;
spatially informative.
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Results
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Homogeneous regions
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Chosen model

Spatial estimates of the GEV location parameter.

According to the
deviance information
criterion, the model
with the second-order
iGMRF prior is better.

Jalbert et al. A spatio-temporal model for extreme precipitation simulated by a climate model 2016/10/25 26 / 30



Introduction Non-Stationarity Spatial modeling Results Conclusion

Chosen model

Spatial estimates of the GEV scale parameter.

According to the
deviance information
criterion, the model
with the second-order
iGMRF prior is better.
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Chosen model

Spatial estimates of the GEV shape parameter.

According to the
deviance information
criterion, the model
with the second-order
iGMRF prior is better.
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Model fit
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Application - Projected return level

Observed annual precipitation maxima
[1943, 1994] at Montreal Trudeau airport.
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Conclusion
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Conclusion

The statistical model developed was well suited for climate model
outputs, specifically for:

transient time series;
data that lie on a regular grid but could also be adapted to irregular
locations (Lindgren et al., 2011, Paciorek, 2013).

The model’s simplicity, intuitive interpretation and uncertainty
description along with its fast adjustment make it very appealing.

Nevertheless, the model could be enhanced
by integrating several climate simulations for a better description of
future climate uncertainty;

We are also investigating the application of max-stable hierarchical
models (Shaby & Reich, 2012).
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Appendix

Gaussian Markov random fields

For a stationary field in space, the conditional distributions have to take
the following form:

f[µi |µδi =µδi ](µi ) = N

µi

∣∣∣∣∣∣ηi + ρ
∑
j∈δi

(µj − ηj), ζ2

 ; (6)

where 0 ≤ ρ ≤ 1 and ζ2 > 0.

It can be shown that marginal bivariate correlation coefficients between
neighbors are necessarily less than 0.8: (Besag & Kooperberg, 1995)

Cor(µi ,µj) ≤ 0.8, for j ∈ δi . (7)

The spatial correlation that can be modeled is therefore limited.
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Appendix

Model fit

A chain of length 6000 was generated where the first 1000 iterations were
discarded as the burn-in period. It took less than 40 minutes of
computation time on a 2.53 GHz processor.

algorithms for sparse matrix;
parallel MCMC.
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Appendix

Modeling the dependence between the GEV paremeters

We could consider a multivariate intrinsic Gaussian Markov random field
as follows:

f(µ,φ,ξ)(µ, φ, ξ) ∝ |Γ|∗ exp

(µ>, φ>, ξ>)× Γ×

µφ
ξ

 ,

Under a separability assumption, Benerjee et al. (2004) proposed to
model the precision matrix Γ as follows:

Γ =

 κµ γµφ γµξ
γµφ κφ γφξ
γµξ γφξ κξ

⊗W ,

To ensure parameter identifiability, Cooley & Sain (2010) and Economou
et al. (2014) fixed the precision of the Gaussian Markov fields modeling
the spatial dependence between each GEV parameters.
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Appendix

Application - Postprocessing

Postprocessing of the annual maxima series at the grid point containing
Montreal Trudeau airport.

1960 1965 1970 1975 1980 1985 1990 1995

Year

20

30

40

50

60

70

80

90

100

110

A
n

n
u

a
l 
m

a
x
im

a
 (

m
m

)

Simulated

Postprocessed

Jalbert et al. A spatio-temporal model for extreme precipitation simulated by a climate model 2016/10/25 35 / 30


	Appendix

