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Our millennial-scale CCSM3 runs
I Fully equilibrated pre-industrial and future (700 ppm CO2)

climate simulations
I 1000-year daily output (Tmax, Tmin) ,
I T31 spatial resolution (3.75◦× 3.75◦ grid) /
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Part 1: Changes in temperature
extremes



Extremes may shift differently than means
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Extremes may shift differently than means
Idaho
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Generalized extreme value (GEV) distribution for sample
maxima/minima
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If Y1,Y2, · · · ,Yn is a random
sample, then

max
1≤i≤n

Yi ≈ GEV(µ(n), σ(n), ξ)

I Location (µ(n)): the
“center” of extremes

I Scale (σ(n)): the “spread”
of extremes

I Shape (ξ): the tail
“heaviness” of extremes



Model annual extremes as GEV distributions

I Example: annual maxima at Texas grid cell
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I Fit a GEV(µ, σ, ξ) distribution to annual max/min



Fit GEV to annual max
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Compute the r-year return level for 289 ppm climate
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Compute the r-year return level for 700 ppm climate
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Compute the difference in r-year return level
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Warm extremes shift with summer means
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Fit GEV to annual min

Annual minima (°C)
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Cold extremes shift more than winter means
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Fit GEV to annual min
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Cold extremes shift more than winter means

Annual minima (°C)
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Part II: Data length on return level
estimation



What if we have shorter runs or data?
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To assess the sampling error due to short runs
I divide the time series into segments
I refit GEV to each segment, compute the changes in return

levels



Sampling error is large for short runs
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Sampling error: µ



Sampling error: log(σ)



Sampling error: ξ



Part III: Is annual block size long
enough?



GEV approximation to annual extremes

I Extremal Types Theorem: X1, · · · ,Xn
iid∼ F , then

maxni=1 Xi − bn
an

n→∞−→ G

I In practice: we assume annual extremes follow a GEV i.e.
max365

t=1 Yt ∼ GEV(µ1, σ1, ξ1)

I Question: Is annual block size long enough?
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Max-stability of GEV

I GEV is max-stable i.e.

G k(akx + bk) = G (x), ∀k ∈ N

for some ak > 0 and bk

I Fit GEV to annual extremes and decadal extremes and
compare their ξ̂’s
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Idaho, we have a problem
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Summary

Changes in temperature extremes (in our model runs)

I Warm extremes: mainly due to the summer mean shifts

I Cold extremes: shifts larger than the winter mean shifts, with
some changes in spread/skewness

Data length on return level estimation

I Sampling error is large for studying extremes
in short datasets
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