What can we learn about temperature extremes from millennial-scale equilibrium climate simulations?

Whitney Huang¹ Joint work Michael Stein², Elisabeth Moyer², Shanshan Sun², and David McInerney³

Purdue University¹, University of Chicago², University of Adelaide³

Oct 24, 2016, State College, PA

Overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Our millennial-scale CCSM3 runs

- Fully equilibrated pre-industrial and future (700 ppm CO₂) climate simulations
- ▶ 1000-year daily output ($\mathsf{T}_{\mathsf{max}}, \mathsf{T}_{\mathsf{min}}$) 🙂
- ▶ T31 spatial resolution (3.75° × 3.75° grid) 😟

(日) (四) (日) (日)

Part 1: Changes in temperature extremes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extremes may shift differently than means

▲□▶ ▲課▶ ★注▶ ★注▶ 注目 - のへぐ

Extremes may shift differently than means

996

Э

Generalized extreme value (GEV) distribution for sample maxima/minima

If Y_1, Y_2, \cdots, Y_n is a random sample, then

 $\max_{1 \le i \le n} Y_i \approx \mathsf{GEV}(\mu_{(n)}, \sigma_{(n)}, \xi)$

- Location (µ_(n)): the "center" of extremes
- Scale (σ_(n)): the "spread" of extremes
- Shape (ξ): the tail
 "heaviness" of extremes

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Model annual extremes as GEV distributions

Example: annual maxima at Texas grid cell

・ロト ・聞ト ・ヨト ・ヨト

Э

Fit a $GEV(\mu, \sigma, \xi)$ distribution to annual max/min

Fit GEV to annual max

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ()~

Compute the r-year return level for 289 ppm climate

California

$$\hat{RL}_{20} = \hat{\mu}_0 - \frac{\hat{\sigma}_0}{\hat{\xi}_0} \left\{ 1 - \left(-\log\left(1 - 0.05\right) \right)^{-\hat{\xi}_0} \right\}$$

Compute the r-year return level for 700 ppm climate

California

$$\hat{RL}_{20} = \hat{\mu}_1 - \frac{\hat{\sigma}_1}{\hat{\xi}_1} \left\{ 1 - \left(-\log\left(1 - 0.05\right) \right)^{-\hat{\xi}_1} \right\}$$

Compute the difference in r-year return level

California

$$\Delta$$
20-yr RL = $\hat{RL}_{20} - \hat{RL}_{20}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Warm extremes shift with summer means

California

 $(\Delta\hat{\mu}, \Delta\hat{\sigma}, \Delta\hat{\xi}) = (2.9 * *, 0.02, 0.01)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

Fit GEV to annual min

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Texas

Cold extremes shift more than winter means

 $(\Delta \hat{\mu}, \Delta \hat{\sigma}, \Delta \hat{\xi}) = (4.8 * *, -1.1 * *, 0.05)$

Э

Fit GEV to annual min

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idaho

Cold extremes shift more than winter means

 $(\Delta \hat{\mu}, \Delta \hat{\sigma}, \Delta \hat{\xi}) = (11.0 * *, 0.7 * *, 0.03)$

ж

Part II: Data length on return level estimation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What if we have shorter runs or data?

Idaho

To assess the sampling error due to short runs

- divide the time series into segments
- refit GEV to each segment, compute the changes in return levels

Sampling error is large for short runs

Estimates of change in 50-year RL

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣��

Sampling error: μ

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Sampling error: $\log(\sigma)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Sampling error: ξ

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Part III: Is annual block size long enough?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Extremal Types Theorem: $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} F$, then $\frac{\max_{i=1}^n X_i - b_n}{a_n} \stackrel{n \to \infty}{\longrightarrow} G$

In practice: we assume annual extremes follow a GEV i.e. max³⁶⁵_{t=1} Y_t ~ GEV(μ₁, σ₁, ξ₁)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Question: Is annual block size long enough?

• Extremal Types Theorem: $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} F$, then

$$rac{\max_{i=1}^n X_i - b_n}{a_n} \stackrel{n o \infty}{ o} G$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

In practice: we assume annual extremes follow a GEV i.e. max³⁶⁵_{t=1} Y_t ~ GEV(μ₁, σ₁, ξ₁)

Question: Is annual block size long enough?

• Extremal Types Theorem: $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} F$, then

$$rac{\max_{i=1}^n X_i - b_n}{a_n} \stackrel{n o \infty}{ o} G$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

In practice: we assume annual extremes follow a GEV i.e. max³⁶⁵_{t=1} Y_t ~ GEV(μ₁, σ₁, ξ₁)

Question: Is annual block size long enough?

• Extremal Types Theorem: $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} F$, then

$$rac{\max_{i=1}^n X_i - b_n}{a_n} \stackrel{n o \infty}{ o} G$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- In practice: we assume annual extremes follow a GEV i.e. max³⁶⁵_{t=1} Y_t ~ GEV(μ₁, σ₁, ξ₁)
- Question: Is annual block size long enough?

Max-stability of GEV

• GEV is max-stable i.e.

$$G^k(a_kx+b_k)=G(x), \qquad \forall k\in\mathbb{N}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

for some $a_k > 0$ and b_k

Fit GEV to annual extremes and decadal extremes and compare their $\hat{\xi}$'s

Max-stability of GEV

• GEV is max-stable i.e.

$$G^k(a_kx+b_k)=G(x), \qquad \forall k\in\mathbb{N}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

for some $a_k > 0$ and b_k

Fit GEV to annual extremes and decadal extremes and compare their $\hat{\xi}$'s

Max-stability of GEV

GEV is max-stable i.e.

$$G^k(a_kx+b_k)=G(x), \qquad \forall k\in\mathbb{N}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some $a_k > 0$ and b_k

 Fit GEV to annual extremes and decadal extremes and compare their ξ̂'s

Idaho, we have a problem

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Summary

Changes in temperature extremes (in our model runs)

- Warm extremes: mainly due to the summer mean shifts
- Cold extremes: shifts larger than the winter mean shifts, with some changes in spread/skewness

Data length on return level estimation

 Sampling error is large for studying extremes in short datasets

Acknowledgments

 RDCEP: Center for Robust Decision Making on Climate and Energy Policy

 STATMOS: Research Network for Statistical Methods for Atmospheric and Oceanic Sciences

 Published in Advances in Statistical Climatology, Meteorology and Oceanography (ASCMO)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●