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Primary Questions:

» How unusual was this event?

» What is a X-year precipitation event?

» Have SC precipitation extremes changed through time?
Secondary Questions:
» How does a spatial extremes model compare to the NOAA
Atlas?

» Can we use a gridded data product instead of station data?
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2. Estimating Return Levels

» Bayesian Hierarchical Model
» Carolina Analysis

» Comparison to NOAA Atlas
3. Gridded Data Products

» NARR and PERSIANN-CDR
4. Conclusion



» Hurricane Joaquin stalls off coast

» Systems from North and South funnel moisture to SC

Satellite image courtesy of NOAA



Radar-Estimated Storm Total Rainfall

Friday 7pm to Sunday 7pm
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Image courtesy of NOAA



Statewide Precipitation Ranks
September-November 2015
Period: 1895-2015
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Image courtesy of NOAA
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» Wikipedia: “Rainfall across parts of South Carolina reached

500-year event levels, with areas near Columbia experiencing a
1-in-1000 year event”

» SC Governer: “We haven't seen this level of rain in the
lowcountry in 1,000 years.”

Image courtesy South Carolina National Guard
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» EVT offers methods to address this question

> In extremes we only use “extreme” observations

‘Ordinary’ Statistics

Extremes




» Precipitation Return Level: The rainfall amount that is
exceeded by the annual maximum in any particular year with
probability p

» Return period is 1/p

> Interpretations:

» Average waiting time until next event exceeding this amount is
1/p

» Average number of events exceeding this amount occurring
within return period is one
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For iid sample Xi,...
{an > 0} and {b,} such that

, Xn, if there exist sequences of constants

families:

P((Max({Xi}iz1...n) — bn)/an < 2) % G(2)

» (Reverse) Weibull
» Gumbel, or

for non-degenerate G, then G belongs to one of the following
> Fréchet



» Generalized extreme value (GEV) distribution encompasses
Weibull, Gumbel, and Fréchet
» GEV - three parameter family: © € R,0 > 0,¢ € R (location,
scale, shape)
» & < 0= Weibull — bounded tail
» & =0 = Gumbel - light tail
» & > 0 = Fréchet — heavy tail
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Block Maxima Approach:

» Assume data made of large independent ‘blocks’ (often years)

> If blocks are large enough, block maxima could be considered
GEV realizations

» Use sample of block maxima to estimate GEV parameters
» Estimate return level via function of GEV parameters

RL, = {“ —¢(1—{~log(1 — p)} ) for £ #0
P - olog{—log(1— p)} for £ =0
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GEV parameter estimates
Charleston
» =329 6=1.09,¢=.22
Columbia

> 0 =267,0
Greenville

63, ¢

27

» A =271,6=.63 =14




Charleston

» 100-yr RL: 11.9
Columbia

» 100-yr RL: 8.4
Greenville

> 100-yr RL: 6.8




» Estimates precip return levels

» Not available in all locations

» Pac NW and Texas current documents created in 1960s, 70s,
and 80s

Image courtesy of NOAA
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100-year 24-hour precip RLs (NOAA Atlas 14 Volume 2 Version 3)
» Charleston

» 100-yr RL: 10.1
> Columbia

» 100-yr RL: 8.4
> Greenville

» 100-yr RL: 9.23




» Estimate GEV parameters at several locations
» Spatial dependence in GEV parameters

» Estimate RLs at each location
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> Idea: let parameters of GEV vary through space and time,
similar to Apputhurai and Stephenson (2013)
> At time t and location s, assume

Ys,tlﬂs,t, Os t, gs,t ~ GEV(,U/s,t; Os,t; fs,t)

» Build models for fis ¢, 05 +,&s,+ based on functions of t and
Xs,1, Xs,o Xs,¢ (vectors of spatial covariates at s)

> s =%, B+ £u(t) + Wo(s)
> log(os,) = xs7,—0'130’ + fo(t) + Wo(s)
> &5 = %] Be + We(s)
» 3. — vectors of regression coefficients
» f. — temporal functions

» W. — spatially correlated, mean zero Gaussian random effects




» Simplifying assumptions

» Exponential covariance functions

Cov(W.(s), W.(s")) = a.. exp(—\.d(s,s))

» No temporal component for o

f>(t)=0
» Linear temporal trend for u

fu(t) = put
» No spatial covariates for £

Xs, e = 1
» Analysis indicates p, =0
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data process prior

» Data Level: Likelihood characterizing distribution of data
given value of parameters at process level — GEV

> Process Level: Latent processes modeling 1, o, and £ — GP
» Prior Level: Prior distributions for parameters

> Regression Parameters — MV Normal
» Sill - Inverse Gamma
» Range — Gamma




» Typical spatial covariates
» Latitude
Longitude
Elevation
Annual average precipitation
Distance to coast

vV vy vVvyy

» Several covariates correlated
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> Three parallel chains

» 25,000 iterations after burn-in for each model

» Best model (highest order term)
» Location — dist?
» Scale — dist?

» Shape — constant

» Draws used to perform pointwise spatial interpolation



Estimated 100-yr One-day RLs




Image courtesy of NOAA
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Estimated 100-yr One-day RLs




Observed Precip Values:

u]

o)
I
i

it



- 1.000

- 0998

I 0996

[ 0994

- 0992

- 0.990

- 1200

I 1000

DA



1. Introduction
» Oct 2015 Precip Event
» Background
» Exploratory Analysis
2. Estimating Return Levels

» Bayesian Hierarchical Model
» Carolina Analysis

» Comparison to NOAA Atlas
3. Gridded Data Products

» NARR and PERSIANN-CDR
4. Conclusion



Station Data:
» + No averaging, should pick up extreme observations
» — Can be “messy” (missing observations, etc.)

» — Limited data in some regions

Gridded Data:

» + No missing observations

v

+ Good spatial coverage

v

— Shorter data record

» — Average over space/time, could miss extreme events
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NARR
> North American Regional Reanalysis
» Extension of the NCEP Global Reanalysis run over NA
» 3-hour data 1979-present, approximately .3° (32km) resolution
» Incorporates data from many sources
PERSIANN-CDR

» Precipitation Estimation from Remote Sensing Information
using Artificial Neural Networks

» Daily data 1983-present, .25° global resolution (60°S — 60°N)
» Basic process
» Uses artificial neural networks to convert GridSat-B1 IR
satellite data to rain rate

» Bias corrected with monthly GPCP (Global Precipitation
Climatology Project) data




How well do gridded products capture extremes?
» NARR — known to underestimate extreme precipitation

» PERSIANN-CDR — Performance varies by location and

season, “slightly underestimates the values of extreme heavy
precipitation” Miao et al. (2015)
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Precipitation on 10/04/2015: NARR (L) and PERSIANN-CDR (R)
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100-year RLs: NARR (L) and PERSIANN-CDR (R)

Potential Solutions:

» Downscaling

» Mannshardt-Shamseldin et al. (2010) — regression relationship



Primary Questions:

» How unusual was this event?

Very unusual in much of SC, extremely unusual in Columbia area
» What is a X-year precipitation event?

Average waiting time until next event exceeding this amount is X

Secondary Questions:

» Have SC precipitation extremes changed through time?
No evidence of change — need more data to address this question...

» How does a spatial extremes model compare to the NOAA
Atlas?
They give similar answers for the state of SC

» Can we use a gridded data product instead of station data?
The two we looked at underestimate precip extremes
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» Cooley et al. (2007) — Threshold exceedance approach

» Apputhurai and Stephenson (2013) — Spatiotemporal model
for GEV parameters

» Dyrrdal et al. (2015) — Spatially model GEV parameters
incorporating BMA

» Schliep et al. (2010) — Look at extreme precip from RCMs

» Davison et al. (2012) — Good spatial extremes overview
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