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Spatial extremes

I EVA can benefit greatly from spatial methods

I Spatial methods can map risk and borrow strength over
space to estimate rare-event probabilities

I Accounting for spatial dependence is necessary for valid
inference

I Methods and software in this area are developing rapidly to
meet a growing demand
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Gaussian data: Geostatistical v areal models

I Geostats: we sample n of an uncountable number of
potential spatial locations

I Example: precipitation monitors

I Common methods: Matern correlation, Kriging, etc.

I Areal: the entire domain is partitioned into n regions

I Example: county-level disease rates

I Common methods: Conditionally autoregressive (CAR)
model
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Gaussian data: Geostatistical v areal models

I Compared to geostat models, CAR models have
computational advantages because they are defined locally

I In extremes, max-stable processes are the analogy of
geostat models

I Max-stable processes are far more complex (conceptually
and computationally) than Geostat models

I Climate data are often areal

I To our knowledge there is currently no analogy of CAR
models for extremes
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Example 1 – Forest fires in GA
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Example 2 – Climate model precip output
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Areal data model - Marginal distributions

I Yit is the annual maximum in region i and year t

I The marginals are GEV with spatiotemporal parameters

I Location: µit =
∑L

l=1 Xltβil , where

I Xlt are known B-spline basis functions of time

I βil are unknown basis coefficients

I Scale: log(σit ) = βi0

I Shape: ξit = ξ
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Areal data model - Marginal distributions

I GEV parameters βi = (βi0, βi1, ..., βiL)T have MCAR prior

I βi |βj , j 6= i ∼ Normal
(
γ + ρ(β̄i − γ), 1

mi
Σ
)

I γ = (γ0, γ1, ..., γL)T is the mean vector

I β̄i is the mean of region i ’s neighbors

I ρ ∈ (0,1) controls the strength of spatial dependence

I Σ is an L + 1× L + 1 covariance matrix
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Residual dependence

I To produce reliable Bayesian inference we must account
for residual dependence

I Let Zit = [1 + ξ(Yit − µit )/σi ]
1/ξ

I The residuals have unit Frechet distribution

Zit ∼ GEV (1,1,1)

I We will specify a spatial Markov model for Zit as a function
of neighboring Zjt
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Residual dependence

I For notational simplicity, we temporarily omit the
temporal subscript, Zit → Zi .

I Spatial dependence is introduced via a random partition of
the n regions

I The adjacency structure of the regions determines the
partition probabilities

I The random partition model captures spatial clusters of
extreme events

I Within these clusters, we assume a multivariate GEV
(MGEV) distribution to model extremal dependence
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Residual dependence

I Assume the regions are partitioned into K clusters

I gi = k indicates that region i is allocated to cluster k

I Observations in different clusters are independent

I Observations within a cluster follow an exchangeable
MGEV distribution

I We use the symmetric logistic extremal measure with
dependence parameter α ∈ (0,1)

I Small α gives dependence, α = 1 gives independence
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Residual dependence

I The cluster labels follow the spatial Potts model

p(g1, ...,gn|φ) ∝ exp

∑
i∼j

φI(gi = gj)


I φ > 0 determines the strength of spatial dependence

I This leads to a Markov model for the labels

Prob(gi = k |gj , j 6= i) ∝ exp

φ∑
j∼i

I(gj = k)


I The log odds of label k increases by φ for each neighbor in

cluster k
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Realizations

I The following slides show realizations of the process with
µi = 0, σi = 1 and ξi = 0.1

I We plot both the labels, gi , and the responses, Yi

I The spatial dependence parameter φ ranges from small to
large

I The MGEV parameter α ranges from small (dependence)
to large (independence)
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Small φ, small α
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Small φ, small α
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Medium φ, small α
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Medium φ, small α
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Large φ, small α
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Large φ, small α
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Large φ, large α
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Large φ, large α
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Asymptotic properties

I Asymptotic dependence is often measured by

χij = lim
z→∞

Prob
(
Zi > z|Zj > z

)
I Zi and Zj are asymptotically independent if χij = 0

I For the Potts/MGEV model,

χij = πij(φ)(2− 2α)

I πij(φ) = Prob(gi = gj) ∈ (1/K ,1) from the Potts model
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Asymptotic properties

I The following slides plot χij for a linear one-dimensional
grid of n = 50 locations with first-order neighbors

I The plots give π25,k (φ) = Prob(g25 = gk ) and extremal
dependence measure χ25,k

I The Potts probabilities do not have a closed form

I We use Monte Carlo simulation
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Asymptotic properties - π25,k
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Asymptotic properties - χ25,k
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Computation - overview

I We primarily use MCMC

I The Potts parameter is hard to estimate

I After a reparameterization, the likelihood factors across
sites

I All MCMC updates are local and fast
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Computation - Estimating the Potts parameter

I Updating φ is difficult because the Potts distribution has an
intractible normalizing constant

I We use a plug-in estimator

I Recall χij = πij(φ)[2− 2α]

I We fix φ at the value that maximizes correlation between
πij(φ) and empirical estimates of χij
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Simulation study
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Computation - random effects

I The MGEV distribution with symmetric logistic
dependence has a mixture representation

I Let Ak ∼ generalized inverse gamma be a random effect
for cluster k

I Then for sites in cluster k ,

Zi |gi = k ∼ GEV(Aαk , αAαk , α)

independent over i

I The likelihood now factors across all sites
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Computation - sketch of MCMC

I βi : independence sampler from prior

I gkt : Gibbs

I Akt : Gibbs/Metropolis

I The rest is straightforward Gibbs
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CLIMDEX data

I The CLIMDEX/GHCNDEX data repository contains a
suite of gridded climate indices

I Each index is calculated annually over the period from
1950–2015

I Data are provided on the 2.5 x 2.5 degree grid of n = 509
locations

I We study eight indices
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CLIMDEX data

Abbreviation Description
TXx Annual maximum of daily max temp (C)
TNx Annual maximum of daily min temp (C)
TXn Annual minimum of daily max temp (C)
TNn Annual minimum of daily min temp (C)
Rx1day Annual maximum of daily precip (mm)
Rx5day Annual maximum of 5-day average precip
CDD Maximum length of dry spell
CWD Maximum length of wet spell
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CLIMDEX data - number of indicies per site
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CLIMDEX data - Settings

I We take K = n possible clusters

I All other priors are uninformative

I We compare L = 4,6,8 temporal basis functions using CV
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Cross validation MAD (of standardized data)

L TXx TNx TXn TN
4 0.081 0.083 0.030 0.033
6 0.080 0.081 0.029 0.033
8 0.079 0.081 0.028 0.032

L Rx1day Rx5day CDD CWD
4 0.259 0.281 0.272 0.414
6 0.257 0.281 0.271 0.413
8 0.259 0.280 0.270 0.408
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Coverage of 80% intervals

L TXx TNx TXn TNn
4 82.7 82.0 87.3 86.1
6 81.6 81.4 87.1 87.1
8 81.6 81.3 86.6 86.7

L Rx1day Rx5day CDD CWD
4 81.3 81.1 79.9 79.8
6 80.9 81.2 80.0 79.6
8 81.0 81.1 79.5 79.6
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Coverage of 90% intervals

L TXx TNx TXn TNn
4 91.7 91.1 95.1 94.3
6 91.3 91.5 94.9 94.4
8 91.4 91.0 94.5 94.7

L Rx1day Rx5day CDD CWD
4 91.0 91.4 90.2 89.7
6 90.4 91.4 90.2 89.3
8 90.8 91.2 90.3 89.3
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Coverage of 95% intervals

L TXx TNx TXn TNn
4 96.0 96.0 97.8 97.5
6 95.8 95.9 97.7 97.7
8 95.8 95.7 97.7 97.8

L Rx1day Rx5day CDD CWD
4 95.2 95.7 95.1 94.5
6 95.1 95.9 94.9 94.6
8 95.2 95.7 95.2 94.5
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CLIMDEX data - Reliability plot with L = 4
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CLIMDEX data - Reliability plot with L = 6
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CLIMDEX data

I We summarize the results using the posterior
distribution of the decadal average change

I We map posterior means and posterior probability the
change is positive

I We also plot the data versus fitted values for several pixels
of interest

I These plots illustrate the non-linear fit of the GEV location
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CDD - mean change
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CDD - prob change>0
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Time series plots
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Time series plots
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Time series plots
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Time series plots
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Time series plots
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Time series plots
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Summary

I We have proposed a Markov model for extremes

I Can we find a max-stable Markov model?

I We’d like to be able to compute the full posterior of φ

I Points over a threshold extension should be easy

I Support: NSF, DOI, EPA

I Thanks!
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