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Modeling spatial extremes: asymptotic

dependence and independence
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Spatial modeling

I Two spatial aspects: marginal distributions vary spatially (climate)

and there is spatial dependence in the ‘residuals’ (weather).

I In this talk we focus on the residual dependence.
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Spatial modeling

I Two spatial aspects: marginal distributions vary spatially (climate)

and there is spatial dependence in the ‘residuals’ (weather).

I In this talk we focus on the residual dependence.
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Spatial EVT

I Extreme value theory (EVT) motivates asymptotic models:

- renormalized pointwise block maxima of spatial processes

converge to max-stable processes (de Haan, 1984);

- threshold exceedances of spatial processes ‘converge’ to Pareto

processes (threshold stable; Ferreira & de Haan, 2014).

I Marginal distributions are ‘easy’ (parametric forms) but extremal

dependence is complex (spectral measure). We have parametric

models (Brown–Resnick, extremal-t) but inference is difficult.

I Do we really need asymptotic models?

- for the marginals? It depends... (Morris et al.,2016)

- for the dependence? There is at least one case you don’t want to

use the asymptotic model...
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Asymptotic independence

I For (Y1, Y2) a random vector with marginal distributions F1, F2, define

χ = lim
u→1

Pr{F1(Y1) > u | F2(Y2) > u}.

We say (Y1, Y2) are asymptotically independent (AI) if χ = 0, and

asymptotically dependent (AD) otherwise.

I Gaussian vectors with ρ < 1 are AI.

I For AI processes, max-stable and Pareto limits are ‘white-noise’... but

dependence may be present at sub-asymptotic levels.

⇒ Asymptotic models are useless for AI processes.

I Many environmental data seem to be AI (or at least the ‘observed

extremes’ are not stable).
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How to decide between AI and AD models?

I In practice we estimate

χ(u) ≈ Pr{F1(Y1) > u | F2(Y2) > u}, u ≈ 1.

I Large variability! In spatial problems, can we borrow strength across

locations to decide on AI/AD? Yes but we need flexible spatial models

that can cover AI and AD cases.
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These graphs show χ(u) for an AI and an AD process.
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Copula

I In this talk we focus on the residual dependence. We use a copula

framework to separate marginal and dependence modeling:

By Sklar’s theorem, any continuous joint distribution G(x), x ∈ RD,

with univariate margins G1, . . . , GD may be uniquely represented as

G(x) = C{G1(x1), . . . , GD(xD)}, x ∈ RD,

where

C(u) = G{G−11 (u1), . . . , G
−1
D (uD)}, u ∈ (0, 1)D,

is the copula associated to G.

I Copula = multivariate distribution with Unif(0, 1) marginals.
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Gaussian scale mixtures
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Gaussian scale mixtures

I Gaussian scale mixtures = Gaussian processes with random variances:

Definition:

X(s) = RW (s), s ∈ S ⊂ R2,

where W = {W (s)}s is a standard Gaussian process and R ∼ F (r) is a

positive random variable independent of W .

I Conditional on R, X is Gaussian with variance R2.

I If R = r0 a.s., X is Gaussian.

I We will use the copula associated to X to model dependence in high

threshold exceedances.

I EVT: looks a bit like a Pareto process...
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First properties

I Finite dimensional distributions are ‘easy’: let X = RW ∈ RD where

R ∼ F (r) has a density f(r), and W ∼ ND(0,Σ). The distribution G and

the density g of X:

G(x) =

∫ ∞
0

ΦD(x/r; Σ)f(r)dr, g(x) =

∫ ∞
0

φD(x/r; Σ)r−Df(r)dr.

Marginal distributions Gk and their corresponding densities gk:

Gk(xk) =

∫ ∞
0

Φ(xk/r)f(r)dr, gk(xk) =

∫ ∞
0

φ(xk/r)r
−1f(r)dr.

Partial derivatives of G:

GI(x) =

∫ ∞
0

Φ|Ic|
{

(xIc −ΣIc;IΣ
−1
I;IxI)/r; ΣIc|I

}
φ|I|(xI/r; ΣI;I)r

−|I|f(r)dr.

I Numerical methods can be used to estimate the previous expressions.

I X is an elliptical process.

I We derived an algorithm for conditional simulation.
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Asymptotic properties of Gaussian scale mixtures

I We characterize the bivariate joint tail decay of Gaussian scale mixtures

with the coefficients χ and χ (Coles et al., 1999) defined as

χ := limu→1 χ(u) and χ := limu→1 χ(u), where

χ(u) = 2− logC(u, u)

log(u)
, χ(u) =

2 log(1− u)

logC(u, u)
− 1,

and C(u1, u2) is the copula associated to (X1, X2)T and

C(u1, u2) = 1− u1 − u2 + C(u1, u2).

I AD ⇒ χ > 0 and χ = 1.

I AI ⇒ χ ∈ [−1, 1] and χ = 0.

I To understand the asymptotic dependence of Gaussian scale mixtures we

study the asymptotic properties of R(W1,W2)T , where the Gaussian vector

(W1,W2)T has correlation ρ ∈ (−1, 1). AI/AD depends on the tail of R...
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AI for Gaussian scale mixtures

Suppose that R is a Weibull-type distribution, i.e.,

Pr(R ≥ r) = 1− F (r) ∼ αrγ exp(−δrβ), r →∞, (1)

for some constants α > 0, β > 0, γ ∈ R and δ > 0. Then χ = 0 and

χ = 2 {(1 + ρ)/2}β/(β+2) − 1.

The joint tail can be written as

C{1− 1/x, 1− 1/x} = L(x)x−1/η, x→∞, (2)

where η = (1 + χ)/2 is the coefficient of tail dependence (Ledford & Tawn,

1996), L(x) ∼ K log(x)
(1−1/η) 2γ+β

2β
+1/(2η)−1 is a slowly varying function as

x→∞ and K is a positive constant depending on α, β, γ and δ.

I Note: The case where R is deterministic or upper-bounded a.s. can be

interpreted as a limit of (1) as β →∞ (and in this case χ = ρ).
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AD for Gaussian scale mixtures

Suppose that R is a Pareto-type distribution, i.e., R is regularly varying at

infinity,
Pr(R ≥ tr)
Pr(R ≥ t) =

1− F (tr)

1− F (t)
= r−γ , r > 0, t→∞, (3)

for some γ > 0. Then χ = 1 and

χ = 2
[
1− T

{
(1 + γ)1/2(1− ρ)(1− ρ2)−1/2; γ + 1

}]
, (4)

where T (·; Df) is the univariate Student-t distribution with Df > 0 degrees of

freedom. The joint tail can be written as

C(1− 1/x, 1− 1/x) ∼ χ× Pr {G1(X1) > 1− 1/x} ∼ χ/x, x→∞. (5)

I Intuition: AD is obtained when the tail of R dominates the tail of X1.

I EVT: ‘close’ to an elliptical Pareto process (Thibaud & Opitz, 2015).
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EVT: limits for Gaussian scale mixtures

I AD case: extremal-t process (Opitz, 2013) and elliptical Pareto

process (Thibaud & Opitz, 2015).

I AI case: ‘white-noise’. (But a Brown–Resnick process limit for block

maxima can be obtained using triangular arrays of Gaussian scale

mixtures with increasing correlation.)

STATMOS Workshop, Oct 25, 2016 Slide 14



Bridging asymptotic independence and dependence

We propose for R a two-parameter distribution with support [1,∞):

F (r) =

1− exp
{
−γ(rβ − 1)/β

}
, β > 0,

1− r−γ , β = 0,
r ≥ 1.

for β ≥ 0, γ > 0.

I This distribution forms a continuous parametric family in β.

I AI/AD is determined by the value of β:

β > 0⇒ AI

β = 0⇒ AD.

I The Dirac mass at 1, and thus the standard Gaussian process, is

obtained as β →∞ or as γ →∞.
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A flexible model for extremal dependence
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and for the Gaussian copula matching at u = 0.95 (dashed red). Parameter
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Thin to thick curves correspond to increasing ρ = 0, 0.3, 0.6, 0.9 for our model.

STATMOS Workshop, Oct 25, 2016 Slide 16



Inference for threshold exceedances
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Fit our copula model to extremes

I We want to use our copula model for threshold exceedances.

I Multivariate threshold exceedances: there is no unique definition. Here

we define exceedances of the threshold v ∈ RD as observations

xi ∈ RD for which at least one component xij exceed vj .

I We assume that in the joint tail region corresponding to large

observed values, the multivariate distribution of our data is well

described by a continuous joint distribution H with margins

H1, . . . ,HD and copula C stemming from a Gaussian scale mixture.

I We will use a two-step approach to deal with the marginals and

dependence separately:

(1) transform marginals to Unif(0, 1), and

(2) fit our copula model using a censored likelihood approach.
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Step 1: marginal transformations

I Let yi, . . . ,yn ∈ RD denote our observations.

I We estimate marginal distributions H1, . . . ,HD using empirical

distribution functions. Defining Ĥk(y) = (n+ 1)−1
∑n
i=1 I(yki ≤ y)

we transform the data to a pseudo-uniform scale as

uki = Ĥk(yki) =
rank(yki)

n+ 1
, k = 1, . . . , D, i = 1, . . . , n,

where rank(yki) is the rank of yki among yk1, . . . , ykn.

I Since Ĥk is a consistent estimator of Hk as n→∞, {uki} form an

approximate Unif(0, 1) sample for large n.
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Step 2: censored likelihood for the copula

I We fit our copula model C(·;ψ) to the sample u1, . . . ,un.

I We don’t want non-extreme values to influence the fit.

I Let v = (v1, . . . , vD) denote a high threshold (typically vi = .95) and

u?i = max(ui, vi) the censored observations.

I We then use the likelihood for the censored data u?i . Three distinct

scenarios can occur:
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Likelihood contributions depend on the number of components of ui exceeding v.

STATMOS Workshop, Oct 25, 2016 Slide 20



Properties of the pseudo-MLE

I The censored log likelihood is the sum of all individual contributions:

L(ψ) =

n∑
i=1

L(u?i ;ψ).

I ψ̂ = argmaxL(ψ) is a full likelihood estimator for the censored

observations u?i : if the marginal estimation performed in Step 1 is

perfect ψ̂ obeys classical likelihood theory (under std. reg. cond.).

I Two subtilities with our model and the two-step approach:

(1) The case β = 0 is nonstandard (boundary of parameter space).

(2) The nonparametric rank transformation results in a slight bias for

finite n (asymptotically unbiased). Genest et al. (1995) show that

under mild conditions, the pseudo-MLE has similar asymptotic

properties to the MLE, although with a slight loss in efficiency.
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Simulation study I

I We test our two-step pseudo-likelihood estimation procedure:

(1) generate data from the RW model, (2) use ranks to transform to

approx Unif(0, 1), and (3) fit the copula model.
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Boxplots of estimated parameters for our model with correlation function

ρ(s1, s2) = exp{−(‖s1 − s2‖/λ)ν} and parameters λ = ν = β = γ = 1. Simulations

are based on n = 1000 independent replicates observed at D = 5, 10, 15 uniform

locations in [0, 1]2. Estimation uses the threshold v = (.95, . . . , .95).
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Simulation study II

I Misspecified model: generate data from a Student t process.

I Conclusion: Our model provides a good approximation to the tail.
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Boxplots of estimated parameters for our model when data are generated from a

Student t process with correlation function ρ(s1, s2) = exp{−(‖s1 − s2‖/λ)ν} and

parameters λ = 0.5, ν = 1, and Df = 1, 2, 5, 10. Simulations are based on n = 1000

independent replicates observed at D = 15 uniform locations in [0, 1]2. Estimation

uses the threshold v = (.95, . . . , .95).
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Application to hourly wind speed in the Pacific

Northwest
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Data

I Fit hourly wind speed extremes recorded at 12 sites during 2012–2014.

I Temporal nonstationarity: we focus on winter months (DJF).

I About 6504 hourly observations at each site (≈ 8% of values missing).

I Anisotropy: wind patterns are mainly characterized by easterly and

westerly winds.
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Results

I We ignore temporal dependence in the estimation but account for it

when calculating standard errors (block bootstrap).

I We compare different copula models. Isotropic and anisotropic.

Gaussian, t, and our new model.
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Gaussian scale mixture. Right: Fitted conditional exceedance probabilities.

STATMOS Workshop, Oct 25, 2016 Slide 26



Conclusion
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Conclusion

I Summary:

- Sub-asymptotic models for extremes.

- We have a flexible copula model that can link AI and AD.

- The censored likelihood approach is appropriate for extremes.

I Extensions/limitations:

- Computation is slow.

- Bayesian?

Reference: Huser, Opitz & Thibaud (2016) Bridging Asymptotic Independence and

Dependence in Spatial Extremes Using Gaussian Scale Mixtures. arXiv:1610.04536.

Thanks for your attention!
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- We have a flexible copula model that can link AI and AD.

- The censored likelihood approach is appropriate for extremes.

I Extensions/limitations:

- Computation is slow.

- Bayesian?

Reference: Huser, Opitz & Thibaud (2016) Bridging Asymptotic Independence and

Dependence in Spatial Extremes Using Gaussian Scale Mixtures. arXiv:1610.04536.
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