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Modeling spatial extremes: asymptotic

dependence and independence
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Spatial modeling

» Two spatial aspects: marginal distributions vary spatially (climate)

and there is spatial dependence in the ‘residuals’ (weather).

» In this talk we focus on the residual dependence.
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Spatial modeling

» Two spatial aspects: marginal distributions vary spatially (climate)

and there is spatial dependence in the ‘residuals’ (weather).

» In this talk we focus on the residual dependence.

1976 1994 2003

Annual maximum temperatures over Europe: Gumbel marginals

STATMOS Workshop, Oct 25, 2016 Slide 3



Spatial EVT

» Extreme value theory (EVT) motivates asymptotic models:

- renormalized pointwise block maxima of spatial processes
converge to max-stable processes (de Haan, 1984);

- threshold exceedances of spatial processes ‘converge’ to Pareto
processes (threshold stable; Ferreira & de Haan, 2014).

» Marginal distributions are ‘easy’ (parametric forms) but extremal
dependence is complex (spectral measure). We have parametric
models (Brown—Resnick, extremal-t) but inference is difficult.

» Do we really need asymptotic models?

- for the marginals? It depends... (Morris et al.,2016)
- for the dependence? There is at least one case you don't want to
use the asymptotic model...
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Asymptotic independence

» For (Y1,Y2) a random vector with marginal distributions F}, F, define

X = 11_)H11 PI’{Fl(Yl) >u | FQ(YQ) > u}

We say (Y7, Y2) are asymptotically independent (Al) if x =0, and
asymptotically dependent (AD) otherwise.

» Gaussian vectors with p < 1 are Al.

» For Al processes, max-stable and Pareto limits are ‘white-noise’... but

dependence may be present at sub-asymptotic levels.
= Asymptotic models are useless for Al processes.

» Many environmental data seem to be Al (or at least the ‘observed
extremes’ are not stable).
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How to decide between Al and AD models?

» In practice we estimate

» Large variability! In spatial problems, can we borrow strength across

x(u) =~ Pr{F (Y1) > u | F5(Ys) > u}, u=1.

locations to decide on Al/AD? Yes but we need flexible spatial models

that can cover Al and AD cases.
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Copula

» In this talk we focus on the residual dependence. We use a copula

framework to separate marginal and dependence modeling:

By Sklar's theorem, any continuous joint distribution G(z), = € RP,
with univariate margins G1, ..., Gp may be uniquely represented as

G(IB):C{Gl(xl),...7GD(.’1?D)}, IBERD,

where

C(u) = G{Gfl(ul), e GBl(uD)}, u € (0, l)D,

is the copula associated to G.

» Copula = multivariate distribution with Unif(0, 1) marginals.
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Gaussian scale mixtures
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Gaussian scale mixtures

» Gaussian scale mixtures = Gaussian processes with random variances:

Definition:
X(s) = RW(s), s€ScCR?

where W = {W(s)}s is a standard Gaussian process and R ~ F(r) is a
positive random variable independent of W.

» Conditional on R, X is Gaussian with variance R2.
» If R =1y a.s., X is Gaussian.

» We will use the copula associated to X to model dependence in high
threshold exceedances.

» EVT: looks a bit like a Pareto process...

STATMOS Workshop, Oct 25, 2016 Slide 9



First properties

» Finite dimensional distributions are ‘easy’: let X = RW & RP where
R ~ F(r) has a density f(r), and W ~ Np(0,3X). The distribution G and
the density g of X:

G@)= [~ wola/mDfmn @)= [ on@/rE)r o)
Marginal distributions G, and their corresponding densities gi:
Gulon) = [ @@n/nfdn g = [ sl far
Partial derivatives of G:

Gi(x) = /000 ey {(w1e — E[C;Izi}mj)/r;zjclj} o1)(xr /75 Sr)r HE(r)dr.

» Numerical methods can be used to estimate the previous expressions.
» X is an elliptical process.

» We derived an algorithm for conditional simulation.
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Asymptotic properties of Gaussian scale mixtures

» We characterize the bivariate joint tail decay of Gaussian scale mixtures
with the coefficients x and X (Coles et al., 1999) defined as

X := limy—1 x(u) and X := limy,—1 X(u), where

_ log C(u,u)
log(u)

’ Y(U):M—L

x(w) =2 log C'(u, u)

and C(u1,u2) is the copula associated to (X1,X2)T and
6(711,U2) =1—uy —us+ C(U1,’U,2).

» AD= x>0and x =1.
» Al=x€[-1,1] and x = 0.

» To understand the asymptotic dependence of Gaussian scale mixtures we
study the asymptotic properties of R(W1, Wa)”, where the Gaussian vector
(W1, W2)T has correlation p € (—1,1). Al/AD depends on the tail of R...

STATMOS Workshop, Oct 25, 2016 Slide 11



Al for Gaussian scale mixtures

Suppose that R is a Weibull-type distribution, i.e.,
Pr(R>r) =1— F(r) ~ ar” exp(—6r"), r — 00, (D)
for some constants & >0, >0, v € Rand § > 0. Then x =0 and
X =2{(1 + p)/2}*/ D 1.
The joint tail can be written as
C{1—1/z,1—1/z} = L(x)z~ ", z— oo, (2)

where n = (1 +%)/2 is the coefficient of tail dependence (Ledford & Tawn,
29+
1996), L£(z) ~ K log(z)* /™ S5 /@01 s 5 slowly varying function as

x — oo and K is a positive constant depending on «, 3, v and §.

» Note: The case where R is deterministic or upper-bounded a.s. can be
interpreted as a limit of (1) as 8 — oo (and in this case X = p).
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AD for Gaussian scale mixtures

Suppose that R is a Pareto-type distribution, i.e., R is regularly varying at
infinity,
Pr(R>tr) 1— F(tr)

— oV
Pr(RZt)_l—F(t)_r , r>0, t— o0, 3)
for some v > 0. Then X =1 and
x=2[1-T{@+1"*0-p) -7 +1]], (4)

where T'(+; Df) is the univariate Student-¢ distribution with Df > 0 degrees of
freedom. The joint tail can be written as

Cl—-1/z,1—1/z) ~x xPr{Gi1(X1) >1—-1/a} ~x/z, x—o00. (5)

» Intuition: AD is obtained when the tail of R dominates the tail of X;.

» EVT: ‘close’ to an elliptical Pareto process (Thibaud & Opitz, 2015).
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EVT: limits for Gaussian scale mixtures

» AD case: extremal-t process (Opitz, 2013) and elliptical Pareto
process (Thibaud & Opitz, 2015).

» Al case: '‘white-noise’. (But a Brown—Resnick process limit for block
maxima can be obtained using triangular arrays of Gaussian scale
mixtures with increasing correlation.)
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Bridging asymptotic independence and dependence

We propose for R a two-parameter distribution with support [1, c0):
Fry= ! —exp{—(rf =1)/B}, B>0,
1- r—’Y’ /8 = 07

for 6> 0,7 > 0.

» This distribution forms a continuous parametric family in 3.

» Al/AD is determined by the value of f:

8>0=Al
8 =0= AD.

» The Dirac mass at 1, and thus the standard Gaussian process, is
obtained as § — oo or as v — 0.
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A flexible model for extremal dependence
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Coefficients x(u) (top) and X(u) (bottom), u € [0.9, 1], for our model (solid black)

and for the Gaussian copula matching at u = 0.95 (dashed red). Parameter

configurations are 3 =0,v =1 (left), 8 = 1,7 =1 (middle), 8 = 5,7 = 1 (right).

Thin to thick curves correspond to increasing p = 0,0.3,0.6,0.9 for our model.
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Inference for threshold exceedances
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Fit our copula model to extremes

» We want to use our copula model for threshold exceedances.

» Multivariate threshold exceedances: there is no unique definition. Here
we define exceedances of the threshold v € RP as observations

x; € RP for which at least one component z;; exceed v;.

» We assume that in the joint tail region corresponding to large
observed values, the multivariate distribution of our data is well
described by a continuous joint distribution H with margins

Hy,...,Hp and copula C stemming from a Gaussian scale mixture.
» We will use a two-step approach to deal with the marginals and
dependence separately:

(1) transform marginals to Unif(0,1), and
(2) fit our copula model using a censored likelihood approach.
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Step 1: marginal transformations

» Let y,,...,y, € RP denote our observations.

» We estimate marginal distributions Hy, ..., Hp using empirical
distribution functions. Defining Hy(y) = (n+ 1)~ 3" | I(yxi < y)
we transform the data to a pseudo-uniform scale as

~ rank (yg; .
Uki:Hk(yki):#, k=1,...,D, i=1,...,n,
where rank(yy;) is the rank of yi; among yr1,. - ., Ykn-

» Since H,, is a consistent estimator of Hj, as n — 00, {uy;} form an
approximate Unif(0, 1) sample for large n.
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Step 2: censored likelihood for the copula

» We fit our copula model C(+;4) to the sample uy, ..., u,.
» We don’t want non-extreme values to influence the fit.

» Let v = (vy,...,vp) denote a high threshold (typically v; = .95) and
u? = max(u;, v;) the censored observations.

» We then use the likelihood for the censored data w}. Three distinct

scenarios can occur:
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Likelihood contributions depend on the number of components of u; exceeding v.
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Properties of the pseudo-MLE

» The censored log likelihood is the sum of all individual contributions:
L(y) =) L(uf:9).
i=1

> 12 = argmax L(1p) is a full likelihood estimator for the censored
observations u}: if the marginal estimation performed in Step 1 is
perfect 121\ obeys classical likelihood theory (under std. reg. cond.).
» Two subtilities with our model and the two-step approach:
(1) The case 8 =0 is nonstandard (boundary of parameter space).
(2) The nonparametric rank transformation results in a slight bias for
finite n (asymptotically unbiased). Genest et al. (1995) show that
under mild conditions, the pseudo-MLE has similar asymptotic
properties to the MLE, although with a slight loss in efficiency.
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Simulation study |

» We test our two-step pseudo-likelihood estimation procedure:
(1) generate data from the RW model, (2) use ranks to transform to
approx Unif(0, 1), and (3) fit the copula model.
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Boxplots of estimated parameters for our model with correlation function
p(s1,82) = exp{—(||s1 — s2||/\)”} and parameters A\ = v = 3 = v = 1. Simulations
are based on n = 1000 independent replicates observed at D = 5,10, 15 uniform

locations in [0, 1]2. Estimation uses the threshold v = (.95,...,.95).
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Simulation study Il

» Misspecified model: generate data from a Student ¢ process.

» Conclusion: Our model provides a good approximation to the tail.
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Boxplots of estimated parameters for our model when data are generated from a
Student ¢ process with correlation function p(s1, s2) = exp{—(||s1 — s2||/A\)”} and
parameters A = 0.5, v = 1, and Df = 1,2,5,10. Simulations are based on n = 1000
independent replicates observed at D = 15 uniform locations in [0, 1]2. Estimation

uses the threshold v = (.95,...,.95).
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Application to hourly wind speed in the Pacific
Northwest
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Data

» Fit hourly wind speed extremes recorded at 12 sites during 2012-2014.
» Temporal nonstationarity: we focus on winter months (DJF).
» About 6504 hourly observations at each site (= 8% of values missing).

» Anisotropy: wind patterns are mainly characterized by easterly and
westerly winds.
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Results

» We ignore temporal dependence in the estimation but account for it

when calculating standard errors (block bootstrap).

» We compare different copula models. Isotropic and anisotropic.

Gaussian, ¢, and our new model.
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Left: Log-likelihood differences for isotropic and anisotropic models; baseline is our

Gaussian scale mixture. Right: Fitted conditional exceedance probabilities.
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Conclusion
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Conclusion

» Summary:

- Sub-asymptotic models for extremes.
- We have a flexible copula model that can link Al and AD.
- The censored likelihood approach is appropriate for extremes.

» Extensions/limitations:

- Computation is slow.
- Bayesian?

Reference: Huser, Opitz & Thibaud (2016) Bridging Asymptotic Independence and

Dependence in Spatial Extremes Using Gaussian Scale Mixtures. arXiv:1610.04536.
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Conclusion

» Summary:

- Sub-asymptotic models for extremes.
- We have a flexible copula model that can link Al and AD.
- The censored likelihood approach is appropriate for extremes.

» Extensions/limitations:

- Computation is slow.
- Bayesian?

Reference: Huser, Opitz & Thibaud (2016) Bridging Asymptotic Independence and
Dependence in Spatial Extremes Using Gaussian Scale Mixtures. arXiv:1610.04536.

Thanks for your attention!
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