Two Decompositions of Dependence for Multivariate Extremes

Dan Cooley
 Department of Statistics

Joint work with: Emeric Thibaud, CSU

Penn State University
October 2016
DMS-1243102

Non-extreme multivariate analysis: linear algebra and covariance matrix

- PCA: \boldsymbol{X} a p-dim'I random vector $\mathrm{w} / \mathrm{cov}$ matrix $\Sigma_{\boldsymbol{X}}$.
- Spectral decomposition $\Sigma_{X}=U D U^{T}$.
- U an ordered orthonormal basis.
-PCA/EOF: $\boldsymbol{Y}:=U^{T} \boldsymbol{X}, \Sigma_{Y}=D$.
- Eigenvectors often interpreted, 'modes of variability'.
- $Z_{q} q$-dimensional random vector with cov mtx I.
$-A$ a $p \times q$ matrix, $\boldsymbol{X}:=A \boldsymbol{Z}_{q}: \Sigma_{X}=A A^{T}$.
- In extremes, covariance matrix not used to summarize dependence.
- Extremal dependence often modeled via framework of multivariate regular variation.

Outline

1. Inner product space via transformation
2. Regular variation and transformed linear operations
3. Tail pairwise dependence matrix
4. Decomposition 1: Eigen decomposition
5. Decomposition 2: Completely positive decomposition
6. Application: Extreme precipitation in Switzerland

Vector space via transformation

- $\boldsymbol{x} \in \mathbb{R}^{p}$
- t : 'transform', monotone function $\mathbb{R} \mapsto \mathbb{V}$, componentwise
- Example: $t(\boldsymbol{x})=\exp (\boldsymbol{x})$
- $\boldsymbol{v} \in \mathbb{V}^{p}$
- $\boldsymbol{v}_{1} \oplus \boldsymbol{v}_{2}:=t\left(t^{-1}\left(\boldsymbol{v}_{1}\right)+t^{-1}\left(\boldsymbol{v}_{2}\right)\right)$
- $c \circ \boldsymbol{v}=t\left(c t^{-1}(\boldsymbol{v})\right)$ for $c \in \mathbb{R}$
- $\mathbf{0} \in \mathbb{V}^{p}:=t(\mathbf{0})$
- $-\boldsymbol{v}:=t\left(-t^{-1}(\boldsymbol{v})\right)$

Claim: \mathbb{V}^{p} is a vector space.

Associativity of vector addition

$$
\begin{aligned}
\left(\boldsymbol{v}_{1} \oplus \boldsymbol{v}_{2}\right) \oplus \boldsymbol{v}_{3} & =\left[t\left(t^{-1}\left(t\left(t^{-1}\left(v_{1 j}\right)+t^{-1}\left(v_{2 j}\right)\right)\right)+t^{-1}\left(v_{3 j}\right)\right)\right]_{j=1, \ldots} \\
& =\left[t\left(t^{-1}\left(v_{1 j}\right)+t^{-1}\left(v_{2 j}\right)+t^{-1}\left(v_{3 j}\right)\right)\right]_{j=1, \ldots, p} \\
& =\left[t\left(t^{-1}\left(v_{1 j}\right)+t^{-1}\left(t\left(t^{-1}\left(v_{2 j}\right)+t^{-1}\left(v_{3 j}\right)\right)\right)\right]_{j=1, \ldots}\right. \\
& =\boldsymbol{v}_{1} \oplus\left(\boldsymbol{v}_{2} \oplus \boldsymbol{v}_{3}\right)
\end{aligned}
$$

Associativity of scalar multiplication

$$
\begin{aligned}
c_{1} \circ\left(c_{2} \circ \boldsymbol{v}\right) & =\left[c_{1} \circ\left(t\left(c_{2} t^{-1}\left(v_{j}\right)\right)\right]_{j=1, \ldots, p}\right. \\
& =\left[t\left(c_{1} t^{-1}\left(t\left(c_{2} t^{-1}\left(v_{j}\right)\right)\right)\right]_{j=1, \ldots, p}\right. \\
& =\left[t\left(c_{1} c_{2} t^{-1}\left(v_{j}\right)\right)\right]_{j=1, \ldots, p} \\
& =\left(c_{1} c_{2}\right) \circ \boldsymbol{v}
\end{aligned}
$$

Linear combinations, matrix/vector multiplication

$$
c_{1} \circ \boldsymbol{v}_{1} \oplus \ldots \oplus c_{q} \circ \boldsymbol{v}_{q}=\left[t\left(\sum_{j=1}^{q} c_{j} t^{-1}\left(v_{j i}\right)\right)\right]_{i=1, \ldots, p}
$$

Linear indep: $c_{1} \circ \boldsymbol{v}_{1} \oplus \ldots \oplus c_{p} \circ \boldsymbol{v}_{p}=0 \Rightarrow c_{1}=\ldots=c_{p}=0$ Basis for \mathbb{V}^{p} : Any linearly indep set of p vectors in \mathbb{V}^{p}.
A a $p \times q$ matrix in $\mathbb{R}^{p \times q}$

$$
\begin{aligned}
A \circ \boldsymbol{v}_{1} & :=\left[a_{i 1} \circ v_{11} \oplus \ldots \oplus a_{i p} \circ v_{1 p}\right]_{i=1, \ldots, p} \\
& =\boldsymbol{a} \cdot 1 \circ v_{11} \oplus \ldots \oplus \boldsymbol{a} \cdot p \circ v_{1 p} \\
& =t\left(A t^{-1}\left(\boldsymbol{v}_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
c_{1} \circ \boldsymbol{v}_{1} \oplus \ldots \oplus c_{q} \circ \boldsymbol{v}_{q} & =t\left(c_{1} t^{-1}\left(\boldsymbol{v}_{1}\right)\right) \oplus \ldots \oplus t\left(c_{q} t^{-1}\left(\boldsymbol{v}_{q}\right)\right) \\
& =t\left(c_{1} \boldsymbol{x}_{1}\right) \oplus \ldots \oplus t\left(c_{q} \boldsymbol{x}_{q}\right) \\
& =t(X \boldsymbol{c}) \\
& =X \circ t(\boldsymbol{c})
\end{aligned}
$$

Inner product definition

$$
\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\rangle:=\sum_{i=1}^{p} t^{-1}\left(v_{1 i}\right) t^{-1}\left(v_{2 i}\right)
$$

- $\|\boldsymbol{v}\|:=\sqrt{\langle\boldsymbol{v}, \boldsymbol{v}\rangle}$
- $\boldsymbol{v}_{1} \perp \boldsymbol{v}_{2}:=\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\rangle=0$
- $\boldsymbol{x}_{1}=t^{-1}\left(\boldsymbol{v}_{1}\right), \boldsymbol{x}_{2}=t^{-1}\left(\boldsymbol{v}_{2}\right) \in \mathbb{R}^{p} \Rightarrow\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\rangle=\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\rangle$
$\Rightarrow\|v\|=\|x\|_{2}$
$\Rightarrow \boldsymbol{x}_{1} \perp \boldsymbol{x}_{2}$ in \mathbb{R}^{p} iff $\boldsymbol{v}_{1} \perp \boldsymbol{v}_{2}$ in \mathbb{V}^{p}

Eigenvalues and eigenvectors

- $S \in \mathbb{R}^{p \times p}$, think operator $\mathbb{V}^{p} \mapsto \mathbb{V}^{p}$ defined by $S \circ \boldsymbol{v}$
- S^{-1} defined such that $S^{-1} \circ(S \circ \boldsymbol{v})=S \circ\left(S^{-1} \circ \boldsymbol{v}\right)=\boldsymbol{v}$ (corresponds to usual matrix inverse)

Define an eigenvalue/eigenvector pair $\lambda \in \mathbb{R}, e \in \mathbb{V}^{p}$ of S to be such that $S \circ \boldsymbol{e}=\lambda \circ \boldsymbol{e}$.

$$
\begin{aligned}
S \circ \boldsymbol{e} & =t\left(S t^{-1}(\boldsymbol{e})\right) \\
& =t(S \boldsymbol{u}) \\
& =t(\lambda \boldsymbol{u}) \\
& =t\left(\lambda t^{-1}(\boldsymbol{e})\right) \\
& =\lambda \circ \boldsymbol{e}
\end{aligned}
$$

\Rightarrow if $\lambda, \boldsymbol{u} \in \mathbb{R}^{p}$ eigenvalue/vector pair, then $\lambda, \boldsymbol{v} \in \mathbb{V}^{p}$ evalue/vector pair.

Our particular transformation

$$
t(x)=\log (1+\exp (x))
$$

- anti-derivative of Iogistic fn $t(x)=\int \exp (x) /(1+\exp (x)) d x$.
- $t^{-1}(v)=\log (\exp (v)-1)$.
- $\mathbb{V}^{p}=(0, \infty)^{p}$.
- leaves upper tail alone: $\lim _{x \rightarrow \infty} \frac{t(x)}{x}=\lim _{x \rightarrow \infty} \frac{t^{-1}(x)}{x}=1$.
- $t(0)=\log 2$.

Geometry of \mathbb{V}^{p}

- Vector pairs orthogonal.
- All vectors unit length.

Outline

1. Inner product space via transformation
2. Regular variation and transformed linear operations

- Regular variation background
- Transformed linear ops on reg var random vectors
- A class of reg. var. random vectors

3. Tail pairwise dependence matrix
4. Decomposition 1: Eigen decomposition
5. Decomposition 2: Completely positive decomposition
6. Application: Extreme precipitation in Switzerland

Regular variation: definition

\boldsymbol{X} is a p-dimensional non-negative random vector.
\boldsymbol{X} is regularly varying if there exists $\left\{b_{n}\right\}$ such that

$$
n P\left(\frac{\boldsymbol{X}}{b_{n}} \in \cdot\right) \xrightarrow{v} \nu(\cdot)
$$

where ν is a Radon measure on $[0, \infty]^{p} \backslash\{0\}$.
Polar representation:
For any norm, let unit ball $\mathbb{S}_{p-1}=\left\{\boldsymbol{x} \in \mathbb{R}^{p}:\|\boldsymbol{x}\|=1\right\}$. Let $D(r, B):=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{p}:\|\boldsymbol{x}\|>r,\|\boldsymbol{x}\|^{-1} \boldsymbol{x} \in B\right\}$ for some $r>0$, and some Borel set $B \subset \mathbb{S}_{p-1}$.

$$
\nu(D(r, B))=r^{-\alpha} H(B)
$$

where H is 'angular' measure on \mathbb{S}_{p-1}.

$$
\Rightarrow \nu(d r \times d \boldsymbol{w})=\alpha r^{-\alpha-1} d H(\boldsymbol{w})
$$

- α is index of reg var.

Making sense of regular variation

Idea: multivariate heavy-tailed distribution

Definition says: distribution of large points

- decomposes into independent radial/angular components.
- radial component decays like power function (α).
- angular component's dist'n described by H.

Why use regular variation for modeling?

- theoretical justification-tied to MVEVD's.
- defined in terms of tail, says nothing about distn's 'bulk'.
- framework for modeling (norm) threshold exceedances.
- allows for extrapolating further into the tail.
- a multivariate model for asymptotic dependence.

Modeling approach:

- Model assumes heavy-tailed marginals w/ common index.
- Often, transform to a common marginal:
- often chosen s.t. $\alpha=1$.
- induces a balance condition on H.
- After transformation:
- radial component behavior known.
- need to model angular measure.
- In high dimensions, modeling H is hard!

Transformed regular varying random vectors

\boldsymbol{X} is p-dimensional reg var with measure ν.
Let $\overline{\mathbb{V}}^{p}:=[0, \infty]^{p} \backslash\{0\}$.
Extend definition of t such that $t(-\infty)=0$, and $t^{-1}(0)=-\infty$.
For $\boldsymbol{x}>\mathbf{0}$,

$$
\begin{aligned}
n P\left(\frac{t^{-1}(\boldsymbol{X})}{b_{n}} \in[-\infty, \boldsymbol{x}]^{c}\right) & =n P\left(t^{-1}(\boldsymbol{X}) \in\left[-\infty, b_{n} \boldsymbol{x}\right]^{c}\right) \\
& =n P\left(\boldsymbol{X} \in\left[\mathbf{0}, t\left(b_{n} \boldsymbol{x}\right)\right]^{c}\right) \\
& \sim n P\left(\boldsymbol{X} \in\left[\mathbf{0}, b_{n} \boldsymbol{x}\right]^{c}\right) \\
& \left.\rightarrow \nu\left([\mathbf{0}, \boldsymbol{x}]^{c}\right]\right) .
\end{aligned}
$$

Transformed-linear operations on

 regularly varying random vectorsProposition 1: Let \boldsymbol{X}_{1} and \boldsymbol{X}_{2} be indep p-dimensional reg var random vectors, with normalizing sequence $\left\{b_{n}\right\}$ st

$$
n P\left(b_{n}^{-1} \boldsymbol{X}_{1} \in \cdot\right) \xrightarrow{v} \nu_{1}(\cdot) \text { and } n P\left(b_{n}^{-1} \boldsymbol{X}_{2} \in \cdot\right) \xrightarrow{v} \nu_{2}(\cdot) .
$$

Define $\boldsymbol{X}_{1} \oplus \boldsymbol{X}_{2}=t\left(t^{-1}\left(\boldsymbol{X}_{1}\right)+t^{-1}\left(\boldsymbol{X}_{2}\right)\right)$. Then

$$
n P\left(\frac{\boldsymbol{X}_{1} \oplus \boldsymbol{X}_{2}}{b_{n}} \in \cdot\right) \xrightarrow{v} \nu_{1}(\cdot)+\nu_{2}(\cdot) .
$$

Proposition 2: Let \boldsymbol{X} be st $n P\left(b_{n}^{-1} \boldsymbol{X} \in \cdot\right) \xrightarrow{v} \nu(\cdot)$. Assume $n P\left(X_{i} \leq \exp \left(-k n^{1 / \alpha}\right)\right) \rightarrow 0$ for any $k>0$. Then for $a \in \mathbb{R}$,

$$
\begin{aligned}
& n P\left(\frac{a \circ \boldsymbol{X}}{b_{n}} \in \cdot\right) \xrightarrow{v} a^{\alpha} \nu(\cdot) \text { if } a>0, \text { and } \\
& n P\left(\frac{a \circ \boldsymbol{X}}{b_{n}} \in \cdot\right) \xrightarrow{v} 0 \text { if } a \leq 0 .
\end{aligned}
$$

A matrix-defined class of reg var random vectors

Corollary 1 : Let $A=\left(\boldsymbol{a}_{\cdot 1}, \ldots, \boldsymbol{a}_{\cdot p}\right)$ be a $p \times q$ matrix where $\max _{i=1, \ldots, p} a_{i, j}>0$ for all $j=1, \ldots q$.
Let $Z=\left(Z_{1}, \ldots, Z_{q}\right)^{T}$ be vector of iid reg var α random variables with b_{n} s.t. $n P\left(Z_{j}>b_{n} z\right) \rightarrow z^{-\alpha}$ for $j=1, \ldots, q$. Then $A \circ Z$ is reg var α and angular measure

$$
H_{A \circ Z}(\cdot)=\sum_{j=1}^{q}\left\|\boldsymbol{a}_{\cdot j}^{(0)}\right\|^{\alpha} \delta_{a_{\cdot j}}^{(0)} /\left\|a_{\cdot j}^{(0)}\right\|(\cdot),
$$

where $\boldsymbol{a}^{(0)}=\max (\boldsymbol{a}, 0)$. (Geometry not quite right.)

- angular measure discrete, corresponds to columns of A.
- similar to max-linear constructions (e.g., Strokorb and Schlat 2015).
- can show construction with nonnegative A forms dense class of reg var rand vecs (e.g., Fougères et al., 2013).
- realizations would differ from max-linear.

Outline

1. Inner product space via transformation
2. Regular variation and transformed linear operations
3. Tail pairwise dependence matrix

- Special reg var case: $\alpha=2, L_{2}$ norm.
- Properties
- scale.
- pairwise asymptotic independence.
- positive-definite.
- relation to construction by A.
- completely positive.

4. Decomposition 1: Eigen decomposition
5. Decomposition 2: Completely positive decomposition
6. Application: Extreme precipitation in Switzerland

Tail pairwise dependence matrix

Assume \boldsymbol{X} is such that

$$
n P\left(\frac{\boldsymbol{X}}{\sqrt{n}} \in \cdot\right) \xrightarrow{v} \nu(\cdot), \text { where } \nu(d r \times d \boldsymbol{w})=2 r^{-3} d r d H_{\boldsymbol{X}}(\boldsymbol{w}),
$$

and H_{X} is Radon measure on $\Theta_{p-1}=\left\{\boldsymbol{w} \in \mathbb{R}_{+}^{p}:\|\boldsymbol{w}\|_{2}=1\right\}$.

- $\alpha=2, L_{2}$ norm

Define TPDM

$$
\sigma_{i k}:=\int_{\Theta_{d-1}} w_{i} w_{k} d H_{X}(\boldsymbol{w}), \text { and } \Sigma_{X}:=\left[\sigma_{i k}\right]_{i, k=1, \ldots, p}
$$

- each $\sigma_{i k}$ an extremal dependence measure (Larsson and Resnick, 2012). (χ, ext coef, madogram).
- analogous to a covariance matrix in non-extreme setting.
- pairwise!
- gives useful but incomplete dependence information.
- much of standard MV analysis based on cov matrix.

Properties of TPDM

- Diagonals describe scale:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n P\left(\frac{X_{i}}{\sqrt{n}}>x\right) & =\int_{\Theta_{p-1}} \int_{x / w_{i}}^{\infty} 2 r^{-3} d r d H(\boldsymbol{w}) \\
& =x^{-2} \int_{\Theta_{p-1}} w_{i}^{2} d H(\boldsymbol{w}) \\
& =x^{-2} \sigma_{i i}
\end{aligned}
$$

- Asymptotic independence:

$$
\lim _{n \rightarrow \infty} P\left(\left.\frac{X_{i}}{\sqrt{\sigma_{i i}}}>\sqrt{n} z \right\rvert\, \frac{X_{k}}{\sqrt{\sigma_{k k}}}>\sqrt{n} z\right)=0 \text { iff } \sigma_{i k}=0
$$

- Σ_{X} is non-negative definite.

Let $Z=\left(Z_{1}, \ldots, Z_{q}\right)^{T}$ indep rand vars st $n P\left(Z_{j}>\sqrt{n} z\right) \rightarrow z^{-2}$. A a $p \times q$ matrix with $\max _{i=1, \ldots, p} a_{i, j} \geq 0$. From before:

$$
H_{A \circ Z}(\cdot)=\sum_{j=1}^{q}\left\|a_{\cdot j}^{(0)}\right\|_{2}^{2} \delta_{a_{i j}^{(0)} /\left\|a_{a j}^{(0)}\right\|_{2}}(\cdot) .
$$

The (i, k) th element of $\Sigma_{A \circ Z}$ is

$$
\begin{aligned}
\sigma_{i k} & =\int_{\Theta_{p-1}} w_{i} w_{k} d H_{A \circ Z}(\boldsymbol{w}) \\
& =\sum_{j=1}^{q}\left(\frac{a_{i, j}^{(0)}}{\left\|\boldsymbol{a}_{, j, j}^{(0)}\right\|_{2}}\right)\left(\frac{a_{k, j}^{(0)}}{\left\|\boldsymbol{a}_{\cdot, j}^{(0)}\right\|_{2}}\right)\left\|\boldsymbol{a}_{\cdot, j}^{(0)}\right\|_{2}^{2} \\
& =\sum_{j=1}^{q} a_{i, j}^{(0)} a_{k, j}^{(0)},
\end{aligned}
$$

thus $\Sigma_{A \circ Z}=A^{(0)}\left(A^{(0)}\right)^{T}$.
(Again geometry gets slightly in the way.)

Completely positive (New!)

Defn: Σ is completely positive if \exists a finite $p \times q$ matrix A with nonnegative entries st $\Sigma=A A^{T}$. (Usually, $q>p$).
Dense result says \exists nonnegative $\left\{A_{q}\right\}$ st $H_{A_{q} \circ Z_{q}} \xrightarrow{w} H_{\boldsymbol{X}}$.
Define $\Sigma_{q}=A_{q} A_{q}^{T}$. $\left\{\Sigma_{q}\right\}$ a sequence of comp pos matrices. $\Rightarrow \Sigma=\lim _{q \rightarrow \infty} \Sigma_{q}$ is comp pos. (exist on closed cone)
(Berman and Shaked-Monderer, 2003, Theorem 2.2). $\Rightarrow \exists q^{*}<\infty$ and nonnegative $A_{q^{*}}$ st $\Sigma=A_{q^{*}} A_{q^{*}}^{T}$.

Take-away message:

- To match any H_{X}, A needs infinite number of columns.
- To match $\Sigma_{\boldsymbol{X}}, A$ can have finite number of columns.

Open questions about completely positive matrices:

- cp-rank. Can be pretty big (Berman et al., 2015).
- Factorization algorithms (Dür and Groetzner, 2016).

Outline

1. Inner product space via transformation
2. Regular variation and transformed linear operations
3. Tail pairwise dependence matrix
4. Decomposition 1: Eigen decomposition
5. Decomposition 2: Completely positive decomposition
6. Application: Extreme precipitation in Switzerland

Decomposition 1: Eigen decompostion

Why?

A: PCA/EOF. In standard PCA, a random vector can be created from a linear combination of an orthonormal basis with random coefficients of decreasing variance.
Σ is positive definite, can perform the usual eigendecomp.

$$
\Sigma=U D U^{T},
$$

where $U=\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right)$ is unitary. D is diagonal $\mathrm{w} / \lambda_{1} \geq \ldots \geq \lambda_{p}>0$.
As $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}$ are basis for $\mathbb{R}^{p}, \boldsymbol{e}_{i}=t\left(\boldsymbol{u}_{i}\right)$ are basis for \mathbb{V}^{p} \Rightarrow for any (nonrandom) realization $x \in \mathbb{V}^{p} \exists$ representation

$$
\begin{aligned}
x & =y_{1} \circ \boldsymbol{e}_{1} \oplus \ldots \oplus y_{p} \boldsymbol{e}_{p} \\
& =U \circ t(\boldsymbol{y})
\end{aligned}
$$

Defining principal components

Following PCA, define

$$
\boldsymbol{Y}=U^{T} \circ \boldsymbol{X}
$$

In standard PCA, cov mtx of \boldsymbol{Y} is D. Here, not quite. Because U has negative entries.

Consider $\boldsymbol{X}=A_{q} \circ \boldsymbol{Z} . \Sigma_{X}=A_{1} A_{q}^{T}$. TPDM of \boldsymbol{Y} :

$$
\begin{aligned}
\Sigma_{Y} & =\left(U^{T} A_{q}\right)^{(0)}\left(\left(U^{T} A_{q}\right)^{(0)}\right)^{T} \\
& =\left(U^{T} A_{q}\right)^{(0)}\left(\left(U^{T} A_{q}\right)^{(0)}\right) \\
& =\left(U^{T} A_{q}\right)^{(0)}\left(A_{q}^{T} U\right)^{(0)} \neq D .
\end{aligned}
$$

Scales of principal components

$$
\boldsymbol{Y}:=U^{T} \circ \boldsymbol{X} ; \Sigma_{Y} \text { is TPDM of } \boldsymbol{Y} \text {. }
$$

Result 1: $\sum_{i=1}^{p} \sigma_{i i}=\sum_{i=1}^{p} \lambda_{i}$. (from properties of trace)
Result 2: $\sigma_{11 Y}=\lambda_{1} ; \sigma_{11 Y} \geq \sigma_{i i Y}$ for $i=2, \ldots, p$.
Result 3: $\sigma_{i i} \leq \lambda_{i}$ for $i=2, \ldots, p$.
Although we cannot show the scales of \boldsymbol{Y} are ordered, we can show there is an ordered upper bound.

My conclusion: Constructing PC's is useful for exploring the modes of dependence in extremes.

- Represent as linear combination of orthogonal basis (new to extremes).
- Some idea of ordering of importance: can still do dimension reduction.

Outline

1. Inner product space via transformation
2. Regular variation and transformed linear operations
3. Tail pairwise dependence matrix
4. Decomposition 1: Eigen decomposition
5. Decomposition 2: Completely positive decomposition
6. Application: Extreme precipitation in Switzerland

Completely positive decomposition

\boldsymbol{X} has $\operatorname{TPDM} \Sigma_{X} ; \exists A_{q^{*}}$ st $\Sigma_{X}=A_{q^{*}} A_{q^{*}}^{T}$.

Q: Why find $A_{q^{*}}$?
A: Simulation or Estimation of probabilities.
$\boldsymbol{X}^{*}:=A_{q^{*}} \circ Z, Z$ iid $\mathrm{w} /$ scale $=1$ has TPDM Σ_{X}.

Q: Can you find an $A_{q^{*}}$?
A: Active area of research.

- Algorithms can do moderate size ($\sim p=40$). (Big for extremes!)

Outline

1. Inner product space via transformation
2. Regular variation and transformed linear operations
3. Tail pairwise dependence matrix
4. Decomposition 1: Eigen decomposition
5. Decomposition 2: Completely positive decomposition
6. Application: Extreme precipitation in Switzerland

Swiss Data

- 44 stations.
- 4692 days.
- Rank-transformed to be reg var $\alpha=2$ with scale 1 .
- $\hat{\Sigma}_{X}$ estimated by taking largest 5%.

Note: Although data are spatial, we are doing multivariate, not process, modeling.

Plan:

1. Eigendecomposition (procedure: "eig" in R).
2. Completely positive factorization.

Leading eigenvectors

Plots of $\boldsymbol{u}_{1}, \ldots \boldsymbol{u}_{p}\left(\right.$ in $\left.\mathbb{R}^{p}\right)$

Partial basis reconstruction

Partial reconstruction of 3rd largest event in record.

Completely positive factorization

Procedure: Send to Dur and Groetzner (University of Trier). Returned \widehat{A} dimension 44×51 (dim surprisingly small). Error: $\left\|\hat{\Sigma}-\widehat{A} \widehat{A}^{T}\right\|=2.5 \times 10^{-14}$.

Image of $\widehat{A}_{q^{*}}$ and column norms.

Probability estimation and simulation

Define $\boldsymbol{X}^{*}=\widehat{A}_{q^{*}} \boldsymbol{Z}_{q^{*}}$. Important: $\boldsymbol{X}^{*} \neq \boldsymbol{X}$, they don't have same angular measure. But $\Sigma_{X^{*}}=\hat{\Sigma}_{X}$.
Probability of event in risk region:
$D^{(\text {orig })}=\left\{x \in \mathbb{R}^{44} \mid x_{i}>30\right\}$, define $D=\operatorname{tr}\left(D^{(\text {orig })}\right)$.
$\widehat{P}\left(\boldsymbol{X}_{t}^{*} \in D\right)=4.8 \times 10^{-4}$.
Empirical est of $P\left(\boldsymbol{X}_{t}^{(\text {orig })} \in D^{(\text {orig })}\right)$ is $2 / 4691=4.3 \times 10^{-4}$.

Simulated and observed

Generate $X^{*}=\hat{A} \circ \boldsymbol{Z}$.
Simulated

Observed

Different Application: Financial

Data: Daily returns from 30 industrial categories.

Summary

- Can create a vector space for positive orthant by applying a transformation to \mathbb{R}^{p}.
- With right transformation, transformed linear operations on reg var random vectors remain regular varying.
- \Rightarrow can do linear-algebra-like things for extremes.
- Can summarize tail dependence in TPDM $\left(\alpha=2, L_{2}\right)$.
- Two ways to factorize TPDM:
- Eigendecomposition \rightarrow exploring modes of variability, dimension reduction.
- Completely positive decomposition \rightarrow simulation, estimation of probabilities.

References

Berman, A., Dur, M., and Shaked-Monderer, N. (2015). Open problems in the theory of completely positive and copositive matrices. Electronic Journal of Linear Algebra, 29(1):46-58.

Berman, A. and Shaked-Monderer, N. (2003). Completely positive matrices. World Scientific.

Dür, M. and Groetzner, P. (2016). Personal communication.
Fougères, A., Mercadier, C., and Nolan, J. (2013). Dense classes of multivariate extreme value distributions. Journal of Multivariate Analysis, 116:109-129.

Larsson, M. and Resnick, S. I. (2012). Extremal dependence measure and extremogram: the regularly varying case. Extremes, 15(2):231-256.

Strokorb, K. and Schlather, M. (2015). An exceptional max-stable process fully parametrized by its extremal coefficients. Bernoulli, 21:276-302.

