
Chapter 2

Polymers in bulk

2.1 Flexible polymer chains

[Reading: Colby Chapter 1, sections 1.1–1.3, 1.5, 1.7 for background; Chapter 2, sections 2.1–2.3]

Polymer molecules are predominately linear structures, in which small chemical units are bonded
together. Typically, at least some portion of the repeating interconnections between adjacent
monomers are single covalent bonds. We are interested in understanding the origin of flexibility
of polymers, their ability to adopt many di↵erent conformations at moderate temperature, rather
than just one lowest-energy conformation. To understand this, we consider the hierarchy of energy
scales related to the deformation of a polymer molecule away from its lowest-energy state.

First, the energy to break covalent bonds is very large, typically a few hundred kJ per mole
(100 kJ/mole is 40kT at room temperature); no bonds are broken as the molecule moves. Second,
covalent bonds are very particular about their length. The results of quantum mechanical calcula-
tions and vibrational spectroscopy may be summarized by describing covalent bonds as harmonic
springs with a finite rest length, with a sti↵ness of order xx kJ/(mole Å2). Thermal energies at
room temperature are su�cient to vary the length of such a bond by xx percent. So we may regard
the bond lengths in polymers as fixed.

Third, molecules are also very particular about the angles formed by adjacent atoms, again for
quantum mechanical reasons; a typical “angular spring” has some preferred angle and a sti↵ness
of order xx kJ/(mole rad2), which means that room-temperature thermal energies are su�cient
to vary the angle by xx percent. Again, we may to good approximation regard bond angles in
polymers as fixed.

Finally, the dihedral angle — defined by rotating everything on one side of a covalent bond
with respect to everything on the other side, around an axis through the bond itself — also has
a potential governing its motion. But this potential, arising only from the residual interactions of
the sidegroups of the two bonded atoms, is weak; for example, the di↵erence in energy between the
trans and gauche minima in polyethylene is about 3kJ/mole. So some fraction of the bonds in a
polymer in solution or melt will typically be found in gauche states. This is the origin of flexibility
in polymers.

If we take a long enough subchain of a flexible polymer, we expect that the tangent to the chain
at one end will become uncorrelated with the tangent at the other end. Thus, the “step” taken by
this subchain will be in a random direction, with some well-behaved distribution of possible lengths
(the maximum step length is bounded, so all moments are finite). These are the conditions for
applying the central limit theorem; so any su�ciently long polymer should execute a random walk.
(We will see later that this argument, which neglects polymer “self-avoidance”, is not quite right.)
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38 CHAPTER 2. POLYMERS IN BULK

So to understand the conformational statistics of the polymer chain on a large scale, we can
“coarse-grain” our description on a small scale, from the individual dihedral angles to a sequence
of uncorrelated subchain “steps”. (Note that the central limit theorem tells us we can coarse-grain
further without changing the large-scale description; a random walk of N/2 steps with variance 2�2

has the same distribution of end-to-end vectors as a random walk of N steps with variance �2.)
The question is, how long a subchain do we need before the tangent forgets its direction, and what
will be the mean-square end-to-end distance of the whole chain?

Freely jointed chain and freely rotating chain

The simplest model of a flexible polymer, to which more realistic models are usefully compared, is
a freely jointed chain, in which the distance a between adjacent atoms is fixed but the bond angles
are completely free to vary. Then the end-to-end vector R(n) of a chain of n segments is the sum
of n random steps of fixed length,

R(n) = a
nX

i=1

ti (2.1.1)

Evidently R(n) has zero average (the steps point in all directions with equal probability); the
mean-square end-to-end distance is

hR(n)2i = a
nX

i,j=1

hti · tji = na2 (2.1.2)

Because di↵erent ti are uncorrelated, and separately average to zero, the only nonzero terms in the
double sum are the n terms with i = j.

To describe real polymers, at a minimum we need a model for the configurations of a polymer
with dihedral angles that vary. There are a lot of possible choices here: Do the dihedral angles take
on fixed values (i.e., trans, gauche+, gauche-)? With what probability? Are subsequent dihedral
angles influenced by the value of adjacent dihedral angles? Detailed models have been developed
for each of these variations.

For our purposes, the simplest model will su�ce to illustrate how the tangent correlation decays
with increasing arclength distance between monomers; namely, a model in which the bond angle is
fixed at some ✓, but the dihedral angle rotates freely. Then, the direction ti of the bond i can be
written in terms of the previous tangent as

ti = ti�1

cos ✓ + �ti sin ✓ (2.1.3)

in which the ti are unit vectors, and �ti is a random unit vector perpendicular to ti�1

.
Iterating the above equation results in

tn = t
0

(cos ✓)n + sin ✓
�
�t

1

(cos ✓)n�1 + �t
2

(cos ✓)n�2 + . . .
�

(2.1.4)

We can now compute the average projection of tn onto the original t
0

, as

htn · t
0

i = (cos ✓)n = exp(�n log(1/ cos ✓)) (2.1.5)

which results because the average of all the �ti are zero (they each spin in a circle, uncorrelated to
t
0

). So the memory of the tangent decays exponentially with the number of monomers.
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Wormlike chain model

Another class of polymers, typified by DNA, are much less flexible than single-bond main-chain
polymers, because their structure admits no low-energy deformation like dihedral rotation. Instead,
these polymers deform from their lowest-energy straight conformations by small bends all along
the contour length. Ultimately, these small bends are the result of either bond angle deformations
or bond stretching within the structure of the polymer.

For our purposes, it su�ces to describe such deformations in terms of a model in which the
angle between successive tangents can be deflected from zero, with an energy cost

U(✓) = K/2✓2 (2.1.6)

Now a given tangent vector can be chosen to define the z axis, and we may ask about the proba-
bility distribution for the direction of the next tangent vector along the chain. Adopting spherical
coordinates to describe its direction, the probability distribution for the next tangent is

P (✓) / sin ✓ exp(��K/2✓2) (2.1.7)

(The prefactor of sin ✓ results from the di↵erential solid angle,

d⇥ = sin ✓d✓d� (2.1.8)

which is the area of a small patch on the unit sphere at inclination angle ✓, over which ✓ varies by
d✓ and � varies by d�. )

The bond angles fluctuate, so our previous expression for the successive tangent directions
becomes

tn = t
0

nY

i=1

cos ✓i + �t
1

sin ✓
1

nY

i=2

cos ✓i + . . . (2.1.9)

Upon averaging, we have
htn · t

0

i = exp(�n log(1/hcos ✓i)) (2.1.10)

in which we have used the fact that the di↵erent ✓i are all independent of each other, and of the
azimuthal deflections �ti.

If the potential is reasonably sti↵, such that the angular deflections are small, then we can
expand the cosine as

hcos ✓i ⇡ h1� ✓2/2i (2.1.11)

and likewise replace sin ✓ in P (✓) with ✓ itself. Then the average we need is

h✓2i =
R
d✓ ✓3 exp(��K/2✓2)R
d✓ ✓ exp(��K/2✓2)

(2.1.12)

If angular deflections are small, we can extend the range of integration to infinity (the integrand
is negligible there anyway). Then, making the change of variable y = �K/2✓2 results in

h✓2i = (2/�K)

R1
0

dy y exp(�y)R1
0

dy exp(�y)
= 2/�K (2.1.13)

Using this, we have

log(1/hcos ✓i) = � loghcos ✓i ⇡ � log(1� 1/�K) ⇡ 1/�K (2.1.14)
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So finally, we have
htn · t

0

i = exp(�n/Lp) (2.1.15)

in which Lp = �K is the “persistence length” (here measured in whatever repeat units were used
to define the successive tangents and angles). We note that the persistence length increases as the
polymer becomes sti↵er (i.e., as K increases).

We can identify the persistence length of the previous model, the freely rotating dihedral chain,
by noting that �K (which is Lp) is in that case the same as �1/ log(cos ✓). So for a small bond
angle, such that cos ✓ is nearly unity and the log is very small (and negative), the persistence length
would reasonably be large.

Mean-square end-to-end distance

The end-to-end vector R connecting the two ends of a wormlike chain should for short chains grow
linearly with length, while for long chains should behave like a random walk. To see this, we
compute the end-to-end vector from the tangent, by integrating along the arclength:

R(n) =

Z
dst(s) (2.1.16)

(For convenience, we are taking a continuum limit, in which the repeat unit index i is replaced by
arclength position s, according to s = na, where a is the length of a repeat unit.)

Then the mean-square end-to-end distance is

hR(n) ·R(n)i =

Z n

0

ds

Z n

0

ds0 ht(s) · t(s0)i

=

Z n

0

ds

Z n

0

ds0 e�|s�s0|/Lp = 2

Z n

0

ds

Z s

0

ds0 e�(s�s0)/Lp (2.1.17)

In the above, the arclength distance between the two tangents is |s� s0|, and we break the integral
into two equal halves (one with s > s0, the other with s < s0) to get rid of the pesky absolute value
sign.

The integral is now elementary to perform, and a bit of algebra leads to

hR(n) ·R(n)i = 2L2

p (n/Lp � 1 + exp(�n/Lp)) (2.1.18)

For short chains such that n is much less than Lp, we can expand the exponential to second order,
to find that hR2(n)i is approximately L2 (that is, that the end-to-end distance is as for a straight
rod). For long chains, the first term in parenthesis dominates, and we have hR2(n)i approximately
equal to 2nLp; that is, the mean-square end-to-end distance grows only linearly with chain length,
as for a random walk.

Contour length, Kuhn length, C1

In the previous section, we analyzed two models, and found that long polymer chains with di↵erent
flexibility can have quite di↵erent mean-square end-to-end distances. The more flexible a long
chain is, the smaller its dimensions are. A traditional measure of this e↵ect is provided by the
“characteristic ratio” C1, defined as the ratio of hR2i as it is for a given type of long chain (hence
the subscript 1), to what it would be if every repeat unit in the chain were freely jointed. The
ratio C1 is always larger than unity.
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The definition of C1 presupposes an agreed-upon definition of a chain repeat unit, which can
sometimes be confusing (in polyethylene, is it every carbon, or every two carbons? What about
polypropylene? What about random copolymers?). Anyway, C1 is customarily defined as

C1 =
hR2i
Nl2

(2.1.19)

in which l is the bond length. By this definition, the segment length of a carbon-carbon bond in
PE (taking a segment as one carbon, not one ethylene) is 1.54Å.

The maximum extended length of the chain Rmax can be written in terms of this bond length
l as

Rmax = Nl cos(✓/2) (2.1.20)

in which ✓ is the deflection angle between successive bonds, i.e., cos ✓ = ti · ti+1

.
It is more physically meaningful to define for a polymer chain an equivalent freely jointed chain,

in which we choose the e↵ective number of steps N⇤ and e↵ective step length b⇤ in such a way
that the maximum length N⇤b⇤ equals the actual maximum length Rmax, and the mean-square
end-to-end distance N⇤b⇤2 equals the actual hR2i. We have

b⇤ = hR2i/Rmax

N⇤ = R2

max/hR2i (2.1.21)

The length b⇤ is called the Kuhn length, which is independent of the definition of the repeat unit,
and is a good measure of the distance over which a chain forgets its direction.

In terms of the characteristic ratio, the above can be written

b⇤ = C1l
cos(✓/2)

N/N⇤ = C1
cos

2
(✓/2)

(2.1.22)

Since C1 is always greater than unity and cos(✓/2) is always less than unity, the equivalent freely
jointed chain always has fewer units of greater length than the real chain.

Sometimes it is convenient to count actual monomers, rather than Kuhn monomers consisting
of N/N⇤ segments; in this case, we define a statistical segment length b, such that the mean-square
end-to-end distance of the actual chain R2 is equal to Nb2, where N is the actual number of
monomers.

Evidently, this definition depends on what we take to be a monomer (which is sometimes
unambiguous, i.e., for homopolymers such as polystyrene, and is sometimes ambiguous, as for
random copolymers). With this definition, we can think of the chain conformations as freely
jointed with N steps of length b, but only for chains that are either unperturbed random walks, or
weakly stretched such that they are far from their fully extended length. The statistical segment
length can be related to the characteristic ratio by

b2 = C1l2 (2.1.23)
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2.2 Probing single chains: pulling

[Reading: CR, Chapter 2, sections 2.5–2.6, 2.8]

To find out about the properties of a material, interact with it and see what happens. The
two most straightforward ways to interact with a polymer are to pull on it, and to look at it. Of
course, polymers are small, so we can neither grab the end directly, nor see a polymer with our eyes.
(Although, with fluorescently labeled DNA attached to microbeads manipulated with an optical
tweezer and viewed in a microscope, we can do both.) But there are indirect ways to pull on one
end of a polymer with respect to the other — by placing the polymer in solution, and applying an
extensional flow, for example.

Pulling force

If we pull the ends of a random-walk polymer chain well apart from each other, we bring the chain
into a set of unlikely conformations, that it would only rarely visit in equilibrium. We have reduced
the entropy of the chain by pulling on it. From our general discussion of external parameters
coupled to statistical systems, we recall that the force “conjugate to” a given external parameter
is given by the derivative of the entropy with respect to the parameter.

So what is the entropy of a polymer chain with a specified end-to-end vector? Recall that the
probability of the chain end being found at R for an unbiased random walk is

P (R) / exp(�3R2/2Nb2) (2.2.1)

(This form is Gaussian, as the central limit theorem says it must be, with a width chosen in such
a way that hR2i = Nb2.)

Now P (R)d3R is the fraction of polymer configurations in which the chain winds up within the
small volume dV = d3R around R, out of all possible polymer configurations. So the change in
entropy, upon constraining the location of the chain end to this small volume, is

1/k�S = log(P (R)dV ) = � 3R2

2Nb2
+ log dV (2.2.2)

The corresponding force is given by the thermodynamic derivative,

f = �T@S

@R
=

3kTR

Nb2
=

3kTR

R2

e

(2.2.3)

(where R2

e = Nb2 is the mean-square end-to-end distance). This is the force of a harmonic spring
of zero rest length, with spring constant 3kT/Nb2. Because the springlike response results from
entropy e↵ects, we call this an “entropic spring”.

If we bias the random walk with an applied external force f , the energy acquires a term �R · f ,
so that the probability distribution becomes

P (R) / exp(�3R2/2Nb2 + �f ·R) (2.2.4)

The most likely value of R under tension is the one that maximizes the exponent, which again gives
f = 3R/(Nb2).
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Stretch blobs and scaling

The entropic spring for shorter chains is progressively sti↵er, scaling as 1/N . For any given force
f , there is a chain segment short enough that the end-to-end distance is perturbed by an amount
of “relative order unity”, i.e., by about the root-mean-square end-to-end distance Re itself.

To see this, put R = Re in the force law, and solve for Re, to obtain

Re =
3kT

f
(2.2.5)

As the applied force becomes larger, the size of the marginally perturbed segment decreases.
The free energy change of this length of this marginally perturbed segment (with R = Re) is

�F = �T�S = 3kT/2 (2.2.6)

which is to say, “of order kT”. In other words, the chain segment of length such that a given force
perturbs its typical size by a factor of order unity, stores about kT worth of free energy under the
deformation.

This specially chosen size of chain segment is called a “stretch blob”. We can regard a longer
chain stretched out by this same force as a succession of stretch blobs, arranged in a (more or less)
straight line. Let g be the number of e↵ective segments in the stretch blob, so that the entire chain
consists of N/g such blobs.

Each blob has an typical end-to-end distance ⇠, such that ⇠2 is of order gb2 (that is, the blob
is marginally perturbed from being a random walk). The total end-to-end separation R of the full
chain is then of order N/g times ⇠. Finally, the free energy stored in the entire stretched chain is
of order “kT per blob”, or (N/g)kT altogether. That is, we expect

⇠2 ⇠ gb2

R ⇠ (N/g)⇠

�F ⇠ (N/g)kT

(2.2.7)

When these assumptions are combined, we obtain

N/g ⇠ (R/Re)2

⇠2/Nb2 ⇠ (Re/R)2

�F ⇠ kT (R/Re)2 (2.2.8)

That is, 1) the number of blobs is of order the “stretch ratio” R/Re squared (the stretch ratio is
the ratio of the proscribed end-to-end distance R to the mean end-to-end distance Re); 2) the blob
size compared to the unstretched coil size goes as the inverse stretch ratio squared; and 3) the free
energy stored in deformation is kT times the stretch ratio squared, or kT times the number of
“stretch blobs” (marginally perturbed segments).

The above argument is a “scaling argument”, in which we are concerned with how a set of
interrelated quantities with some given parameter (here, the stretch ratio, or equivalently the stored
free energy in kT units). By “scaling”, we mean the power law or other functional dependence
the quantities have on the parameter. In cases where there is only one parameter varying, we
can often determine the scaling by some combination of physical arguments (as here) augmented
by dimensional analysis, without doing any calculation, and without keeping track of numerical
prefactors (the omission of the prefactors is what is meant by the ⇠ relation.)

Scaling arguments are very useful in several ways:
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• They are easier to work out than full calculations.

• They can be useful in assessing which physical e↵ects to neglect and which to focus on, in
designing a model simple enough to analyze.

• They constrain the behavior of a more precise calculation; if the calculation violates the
scaling argument, a mistake has been made.

Freely jointed chain

The freely jointed chain model turns out to be simple enough that we can compute the force-
extension relation exactly from the partition function, while capturing the expected finite extensi-
bility of a real chain. To represent a freely jointed chain under constant tension f , we introduce a
simple expression for the potential energy U , as

U = �R · f (2.2.9)

in which R is the fluctuating end-to-end vector,

R = a
X

k

nk (2.2.10)

in terms of the step length a and set {nk} of unit vectors describing each step.
The partition function Z is

Z =

Z Y

k

dnk e
�a

P
k f ·nk (2.2.11)

Because each step is independent, coupled only to the biasing force f , the multidimensional integral
over all nk factors into a product of integrals over each step:

Z =

✓Z
dn e�faẑ·n

◆N

(2.2.12)

in which we have taken the force to point along the z axis.
Correspondingly, the mean end-to-end displacement R along the z axis is

hRi =
aN

R
dn e�faẑ·nẑ · n

Z
(2.2.13)

The fully extended length of the chain is evidently aN .
The dependence on the force appears in terms of the dimensionless group �fa, which compares

the orientational energy of a single steps under tension fa to the thermal energy. When �fa is
small, the individual steps are only weakly oriented, and the chain is a weakly biased random
walk. When �fa is large, the individual steps are strongly biased to point along ẑ, and the chain
approaches its fully extended length. To simplify the notation, we define x = �fa.

The integrals
R
dn over the unit sphere of possible directions for the step can be written in

spherical coordinates as
R
2⇡
0

d�
R ⇡
0

sin ✓d✓. Since the Boltzmann factor ex cos ✓ is independent of
�, the integrals over � cancel in the numerator and denominator of the expression for hRi. The
integral over ✓ can be recast as an integral over cos ✓ = µ (because sin ✓d✓ = d(cos ✓) = dµ), where
µ runs from -1 to 1. The partition function becomes

Z =

✓
1

2

Z
1

�1

dµ exµ
◆N

=

✓
sinhx

x

◆N

(2.2.14)
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Here we have introduced a constant factor 1/2 in each partition integral, which amounts to defining
the zero of free energy as the unperturbed random walk (for which x ! 0 and Z ! 1).

Note that we can write R in terms of a derivative of Z, as

hRi
a

= Nhµi = @ logZ

@x
= N (cothx� 1/x) (2.2.15)

This result gives the force-extension law in an “inverse” form; we would like to write f as a function
of hRi, but the function on the right-hand side cannot be inverted in terms of common functions.

However, we can explore the force-extension law by plotting it, and we can investigate the small-
and large-force limits of the force-extension law, by taking the limits of small and large x. For large
x, the function cothx � 1/x is approximately 1 � 1/x, and so hRi approaches the fully extended
length Na, with corrections of order 1/(�af).

For small x, we expand cothx as 1/x+ x/3 + . . ., which leads to

hRi ⇡ (1/3)N�fa2 (2.2.16)

We can invert this linear force-distance relation to write

f =
3kT

Na2
R (2.2.17)

This entropic spring constant K = 3kT/(Na2) is exactly what we obtained by considering the
entropy of a random walk as a function of the end-to-end vector. We can also argue that this force
should be the derivative of the free energy with respect to the end-to-end vector, f = �@F/@R,
which we can integrate to obtain

�F =
3kT

2Na2
R2 (2.2.18)

which is again the entropic cost of requiring the end-to-end vector to take a certain value.
More generally, we can obtain the free energy by taking the log of the partition function Z =

e��F , which gives

F = �kT logZ = �NkT log

✓
sinhx

x

◆
(2.2.19)

The free energy defined this way equals E � TS, i.e., it includes the energy �R · f . We can obtain
the entropic part of the free energy �TS by subtracting the energy from F , and regarding the
combination as a function of R:

�TS(R) = F (f) +Rf (2.2.20)

Practically speaking, to compute the entropy using this result we select a value of f , compute
the corresponding values of F and R and hence S. To obtain the function S(R), we generate
a table of values {fi} and the corresponding values {Ri} and {Si}, and then the pairs {Ri, Si}
as numerically defining the function S(R). Plotted this way, we find that S(R) monotonically
increases from zero (the entropy was defined with respect to the unstretched chain), and diverges
logarithmically at maximum extension (when the number of configurations becomes vanishingly
small).
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2.3 Scattering and the size of polymers

[Reading: CR Chapter 2, Sections 2.4 and 2.8] Single polymer molecules are too small to see with
the unaided eye. However, we can use scattering of X-rays, neutrons, or light to “look” at the
average shape of a polymer. These experiments are all variations on scattering a well-defined wave
from an object whose size is comparable to the wavelength of the incident radiation. To understand
how to interpret such experiments, we need to describe the scattering of waves. Because polymer
coils fluctuate in their conformation, we must perform averages over the possible conformations in
order to predict the results of scattering experiments.

Radius of gyration

The end-to-end distance provides one measure of the size of a fluctuating polymer chain. However,
it only depends directly on the location of the two ends, not on the intervening monomers. Another
more democratic measure of the size of the coil is the radius of gyration, defined by

R2

g = 1/N
X

i

(Ri � R̄)2 (2.3.1)

in which R̄ is the position of the center of mass, defined by

R̄ = 1/N
X

i

Ri (2.3.2)

Thus the radius of gyration is the average of the square distance from each monomer to the center
of mass.

It turns out that another equivalent expression for the gyration radius is

R2

g = 1/2N2

X

i,j

(Ri �Rj)
2

= 1/2N2

X

i,j

�
(Ri � R̄)� (Rj � R̄)

�
2

= 1/2N2

X

i,j

�
(Ri � R̄)2 � 2(Ri � R̄)(Rj � R̄) + (Rj � R̄)2

�

= 1/N
X

i

(Ri � R̄)2 �
"
1/N

X

i

(Ri � R̄)

#
2

= 1/N
X

i

(Ri � R̄)2 (2.3.3)

Viewed this way, the radius of gyration is an average of the square distance from any monomer to
any other monomer.

We can compute the mean square radius of gyration for a flexible polymer, by performing the
average over configurations of the second expression, as follows:

hR2

gi = 1/2N2

Z
ds ds0 h(R(s)�R(s0))2i

= 1/N2

Z N

0

ds

Z s

0

ds0 (s� s0)b2

= Nb2/6 (2.3.4)
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In the above, we used the fact that h(R(s)�R(s0))2i is the mean-square end-to-end distance of the
polymer strand between monomers s and s0, which is |s � s0| monomers long, and so has mean-
square end-to-end distance |s � s0|b2. (We then divide the square region of integration into two
identical regions, s > s0 and s < s0, to replace the inconvenient absolute value |s� s0| with s� s0,

in the integration
R N
0

ds
R s
0

ds0.)
Remarkably, the radius of gryation emerges from a consideration of scattering of waves (light,

X-ray, or neutrons) from a weakly scattering object, as we shall demonstrate in the next section.

Scattering

One very important probe of small objects is to scatter various kinds of radiation from them. The
radiation can be monochromatic light from a laser, collimated single-energy neutrons from a nuclear
reactor or a spallation source, X-rays from a laboratory rotating anode source or a synchrotron.

In each case, the essential physics is that the incident radiation can be regarded as a plane wave
impinging on a small but macroscopic region of the sample, which scatters a certain amount of the
radiation in various directions as an outgoing wave, where the scattered intensity is measured by
a detector far from the sample. The wave electromagnetic for the case of light and X-rays, and a
quantum-mechanical “matter wave” for the case of neutrons, but the mathematical description for
all three is similar.

A reasonable mental image is to think of waves in a water tank generated by an immersed
vertical plate oscillating up and down at a regular frequency; the waves travel along with planar
wavefronts until they reach some small object held fixed in the water, whereupon a pattern of
circular scattered waves emanates from the scatterer (small object).

We write the incoming wave as a plane wave, with amplitude at location x equal to

Ain = A
0

eik·xe�i!t (2.3.5)

(To obtain a real-valued wave, we may for example take the real part of the above expression.)
This expression represents a traveling plane wave. The planar wavefronts are perpendicular to the
“wavevector” k, which can be seen by noting that two points x and x + �x have the same phase
(value of the exponent) if k · �x = 0, i.e., if the two points are displaced perpendicular to the
wavevector.

Two points displaced by � normal to the wavefronts (i.e., in the direction of k) have the same
amplitude, with phase displaced by 2⇡, from which we find

|k|� = 2⇡ (2.3.6)

We can see that the wave travels in the direction of k, because the origin (x = 0) is a point of zero
phase at time zero, whereas at later times a point of zero phase along the k direction satisfying

k · x = !t (2.3.7)

Thus the plane of zero phase moves in the k direction with velocity !/|k|.
This wave strikes a sample located at the origin, with some finite extent away from the origin

described by its “scattering density” ⇢(x). For light, the scattering density is proportional to
di↵erence in refractive index; for X-rays, scattering density is proportional to the electron density
and hence ultimately to the atomic number of atoms present; and for neutrons, the scattering
density is mainly a function of the number of hydrogen and deuterium atoms present.

Here k is the wavevector of the wave, and ! its temporal frequency; that is, the field (electro-
magnetic, or matter wave) oscillates with frequency !, and the wavelength — distance between
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successive peaks in the wave — is such that k� = 2⇡, or � = 2⇡/k. The length k of the wavevector
k is called the wavenumber. Note that the wavevector points in a direction perpendicular to the
wavefronts, because any two points separated by some �x perpendicular to k have the same phase.

(In writing a wave as a complex exponential, we are making use of a mathematical convenience
in the case of electromagnetic waves, for which the actual fields are real; we should quietly take the
real part of any wave amplitude at the end of a calculation.)

In any case, an outgoing spherical wave emanates from each scattering point x

s

, with an am-
plitude at location x equal to

�Aout(R,x) = A
0

⇢(x)eik·xe�i!t e
ik|R�x|

|R� x| (2.3.8)

in which |R� x| is the distance from the scatterer at x to the observation point at R. The above
expression describes spherical wavefronts, with the phase k|R � x| growing linearly with distance
in all directions away from the scatterer at x. The wavefronts at time t = 0 are spherical shells
with radii 2⇡n/k, for n = 0, 1, 2, . . ..

The factor |R�x| in the denominator enforces the requirement that the intensity of the spherical
wave (which is given by the square of the amplitude), integrated over the entire spherical shell at
some fixed distance d from the scatterer, will be independent of d. The total scattered intensity is
conserved, corresponding either to the energy of the scattered wave (for electromagnetic waves) or
the probability of observing a particle (for quantum-mechanical matter waves). Hence the intensity
in any given direction falls o↵ as the inverse square of the distance, and the scattering amplitude
falls o↵ inversely with distance.

The sample, though macroscopic, is small (microns for light, millimeters for X-rays, up to
centimeter for neutrons, depending on the collimation and focussing of the beam, limited by the
incident wavelength), and the detector is far away (many centimeters to a few meters). So we
expand |R� x|, writing

|R� x| =
p
R

2 � 2R · x+ x

2

⇡ R(1� 2R · x/R2)1/2 ⇡ R� n · x (2.3.9)

in which n is a unit vector that points in the same direction as R.
The small change in distance to the detector as we move over the sample is negligible in the

denominator, but not in the exponent, where it has the e↵ect of changing the phase of the scattered
wave received at the detector. (If we change the path length from scatterer to detector by of order a
wavelength, the phase of the scattered amplitude is changed significantly relative to other scattered
waves.) So we use the above expansion to write the outgoing wave from a scattering point as

�Aout(R,x) = A
0

⇢(x)eik·xe�i!t e
�ikn·x

R
=

A
0

e�i!t

R
⇢(x)e�iq·x (2.3.10)

Here we have absorbed into the amplitude A
0

the constant phase factor eikR, which is the “reference
phase shift” from the origin to the detector, independent of the displacement x of the various
scatterers from the origin.

In the above, q is the scattering wavevector, defined by

q = k

0 � k

k

0 = kn (2.3.11)
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That is, the scattered wavevector k

0 has the same wavelength as the incident wave, but points
towards the detector; and the scattering wavevector connects the tip of the incident wavevector
(which points forwards) to the tip of the scattered wavevector. By analyzing this geometry, we can
show that

q =
4⇡

�
sin(✓/2) (2.3.12)

where ✓ is the deflection angle between the incoming wavevector k (direction of the incoming beam)
and the outgoing wavevector k0 (direction from the sample to the detector).

From the scattered amplitude, we can see that two scatterers at x and x+�x scatter “coherently”
— with the same phase at the detector — if q · �x = 0. By drawing the paths perpendicular to
the incoming plane wavefronts from the source to the scatterers, and the paths perpendicular to
the outgoing wavefronts from the scatterers to the detector, we can see directly that two particles
displaced perpendicular to q have the same path length.

In contrast, if we draw the corresponding paths for a pair of particles displaced along q, we find
that the paths are not the same length. The geometry, and the phase factor eiq·x, tell us that parti-
cles displaced along q by a length ⇡/q will scatter “incoherently” — out of phase — at the detector.
The magnitude of q determines the necessary displacement for particles to scatter out of phase.
Roughly speaking, particles displaced by less than ⇡/q along the q direction scatter coherently.
Thus the magnitude of q determines the length scale over which scattering probes inhomogenieties
in the sample, since particles closer than ⇡/q scatter coherently, as a single scattering entity.

As the scattering angle ✓ is varied (by moving the detector in an arc around the sample),
the direction of q changes, and its magnitude varies over a certain range of values. The smallest
magnitude corresponds to the smallest angle ✓, which is limited in practical situations by how close
the detector can come to the forward direction, without being damaged by the intense, unscattered
main beam.

Every point in the sample scatters, so the total scattered amplitude at the detector is the sum
over all points in the sample. If the scattering amplitude is strong, so that a scattered wave may
be scattered again by some other scatterer before it exits the sample, then it is not simple to sum
up the scattering contributions. This is called “multiple scattering”, and experimenters work hard
to avoid it by adjusting things so that the scattering amplitude is not too strong (by doing such
things as index matching the sample, using thin samples, and so on).

If we have weak scattering, it is a good approximation to assume that waves are not multiply
scattered (this is called the Born approximation), so that the amplitude at the detector is

Aout =
A

0

e�i!t

R

Z
d3x ⇢(x)e�iq·x =

A
0

e�i!t

R
⇢(q) (2.3.13)

in which ⇢(q) is the Fourier transform of the scattering density ⇢(x). Some authors use a tilde, as in
⇢̃(q), to distinguish the Fourier transform from the original function; others, as here, use the letter
chosen for the argument (q and k for wavevectors, x and r and such for positions) to distinguish
between the original function and the transform.

Detectors, it turns out, measure not wave amplitudes but rather wave intensities. The intensity
I of a wave is the complex modulus of the amplitude, I = |A|2. To see this, write the amplitude A
as

A = a exp(i�) exp(�i!t) (2.3.14)

in which the amplitude front factor a and the phase � are both real. All oscillatory waves observed
at a given point, for example the sum of the scattered waves at the detector, can be written this
way, because all complex numbers can be written this way.
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Now the actual field amplitude in the case of electromagnetic waves is the real part of these
complex exponentials; so the field intensity at the detector is

I = a2 cos(�� !t)2 (2.3.15)

which oscillates extremely rapidly (at the frequency of the light). The detector responds to the
short-time average of this field, which is Ī = a2/2. (For quantum mechanical matter waves, the wave
amplitude actually is a complex number, and the probability of detecting a particle is proportional
to the complex modulus of that amplitude, so the result is the same as for electromagnetic waves,
up to the factor of 1/2.)

So, assuming we have weak scatterers (no multiple scattering), the detector measures a signal
proportional to to the modulus squared of the Fourier transform of the scattering length density:

I(q) =
A2

0

R2

⇢(q)⇢(�q) (2.3.16)

(In the above, we have used the fact that the complex conjugate ⇢⇤(q) of the Fourier transform
of a real-valued field ⇢(x), is equal to ⇢(�q).) The signal is also proportional to the square of the
incident amplitude A

0

, and dies o↵ as 1/R2 (the inverse square law for wave intensity).
Note that even if we could measure I(q) with perfect accuracy, we could not infer the density

of scatterers ⇢(x). This is because we cannot simply “take the square root” of the real-valued
I(q), to obtain ⇢(q) which is in general complex, and hence cannot invert the Fourier transform
to find ⇢(x). The “phase information” has been lost; we know |⇢(q)|, but not its complex phase.
As a result, comparison of theoretical predictions of the structure of the scatterers to experimental
measurements of I(q) is almost always a matter of “forward modeling”. A guess is made as to the
structure, perhaps with some adjustable parameters, which are then varied to give the best fit to
I(q). Thus we may say that the scattering is consistent with some model, but cannot rule out that
some rather di↵erent arrangement of scatterers could produce very similar results.

Scattering from single ideal chains

Here we compute the expected scattering intensity from a dilute solution of ideal flexible chains.
Because the solution is dilute, we may regard the relative location of chains as completely random;
therefore, the scattering from di↵erent chains is completely incoherent, which means that the
intensities from di↵erent chains add together.

To see this, consider the simple case of two equal strength point sources scattering into a
detector, with random phases relative to each other; the amplitude at the detector could be written

A = A
0

exp(�i!t) (1 + exp(i�)) (2.3.17)

Then the average intensity (averaged over the random phase) would be

hIi = A2

0

h(1 + exp(i�))(1 + exp(�i�)i
= A2

0

(1 + 0 + 0 + 1) (2.3.18)

The crossterms vanish under averaging over the relative phase, and we get the same result as if
we had simply added the intensities. If the two scatterers had scattered coherently, with the same
relative phase (i.e., � = 0), we would have had an intensity of 4A2

0

rather than 2A2

0

. This di↵erence
becomes more pronounced if we have N particles, rather than just two. If the N particles scatter
incoherently, the intensity is proportional to N ; whereas, if the particles all scatter coherently, the
intensity is proportional to N2.
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In a typical scattering geometry, the scattering volume illuminated by the source and imaged
onto the detector would contain very many chains, even for a quite dilute solution, so that the
instantaneous intensity at the detector would result from the incoherent scattering from many
chains, each in a di↵erent configuration. Because there are many chains scattering at once, the
intensity would represent an average over the chain conformations. If the sample were extremely
dilute, or the scattering volume very small, it may be that so few chains scatter at any moment,
that the scattered intensity is not averaged instantaneously. In this case, the intensity at the
detector would fluctuate in time, and the time-averaged intensity would restore the average over
chain conformations.

To perform the average over conformations of the scattering from a single chain, we introduce
the density for a single chain as

⇢(x) =

Z
ds �(x� r(s)) (2.3.19)

The corresponding Fourier transform is

⇢(q) =

Z
d3x exp(�iq · x)⇢(x) =

Z
ds exp(�iq · r(s)) (2.3.20)

This is evidently a fluctuating object; we want the average intensity, from many di↵erent chains in
the scattering volume.

So we compute the average intensity, as

hIi = A2

0

R2

Z
ds ds0 hexp(�iq · (r(s)� r(s0)))i (2.3.21)

We need the average for the integrand. To compute it, we use the fact that we know the distribution
function for the separation R = r(s)�r(s0); it is a Gaussian, proportional to exp(�3R2/2|s�s0|b2).
So we write

hexp(iq · (r(s)� r(s0)))i =
R
d3R exp(�3R2/2|s� s0|b2) exp(iq ·R)R

d3R exp(�3R2/2|s� s0|b2)
(2.3.22)

We deal with the Gaussian integral in the numerator by “completing the square”; that is, write

�3R2/2nb2 + iq ·R = �3/2nb2
�
R2 � 2inb2/3q ·R

�

= �3/2nb2
⇣�

R� inb2/3q
�
2

+
�
nb2/3

�
2

q2
⌘

(2.3.23)

in which n equals |s � s0|. Then we can change variables in the numerator integral to R0 =
R�inb2/3q, whereupon the integral is the same Gaussian as the denominator, times exp(�b2q2n/6).
The final result is

hexp(iq · (r(s)� r(s0)))i = exp(�b2q2n/6) (2.3.24)

Using this result in the expression for hIi, we have

hIi = A2

0

R2

Z
ds ds0 exp(�b2q2|s� s0|/6) (2.3.25)

And remarkably, we have seen this exact integral before, in the context of the mean-square end-to-
end distance of semiflexible chains. Applying that result here, we have finally

hIi = A2
0

R2N2g(q2R2

g)

g(x) = 2(x� 1 + exp(�x))/x2 (2.3.26)
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The function g(x) is called the Debye function, and describes the average scattering from di-
lute ideal polymer chains. In the limit of small wavenumber, where small means q2R2

g much less
than unity, all of the monomers in the polymer scatter coherently (i.e., in phase), and the scatter-
ing intensity is proportional to N2 (the amplitudes add, and the intensity goes as the amplitude
squared).

As the wavenumber increases, di↵erent portions of the chain begin to scatter out of phase with
each other. We see this by expanding g(x) for small x as

g(x) ⇡ 1� x/3 . . . (2.3.27)

This means that when q2 starts to be comparable to R2

g, the scattering intensity decreases. By this
means, we can measure the size of polymer coils in solution, as long as the coil size is in the range
of accessible scattering wavenumbers.

Scattering and fractal dimension

The scattering I(q) for a dilute polymer solution, proportional to g(q2R2

g), does not have very much
structure; basically, it has a characteristic length (qRg = 1) and a power-law fallo↵ at large q, as
q�2. Here, we consider an argument for the form of the fallo↵, which reveals something about the
short-range structure of random walks.

We have argued previously that at a given wavevector q, scatterers closer to each other than
2⇡/q will scatter “coherently”, i.e., the spherical waves emanating from these scattering points will
arrive at the detector with nearly the same phase. So the selection of q determines the “resolution”
with which we examine the sample.

So consider an ideal polymer chain of N total steps, and imagine the walk as a sequence of N/n
subchains, of n steps each. Each of the subchains is itself a random walk, with a characteristic size
R(n) scaling as

p
nb. If we adjusted q such that qR(n) was of order unity, which is to say q scaling

as n�1/2/b, then each subchain would scatter coherently.
The N/n di↵erent subchains, separated by distances larger than 1/q, would scatter incoherently,

i.e., their intensities would add linearly at the detector. As a result, the scattered intensity at the
detector would scale as N/n times n2, or Nn. Writing this in terms of q, we have I(q) scaling as
N/(q2b2), in agreement with our calculation.

This argument can be generalized, for other types of random arrangement of scatterers. The
key ingredient how the number and mass of subunits of the collection of scatterers depends on the
spatial “resolution” or length scale 1/q. Suppose we have a random collection of scatterers of total
mass M , with the property that if we “coarse-grain” the random collection on a length scale ⇠,
there are of order M/m subunits, each of mass m, with m(⇠) scaling as (⇠/a)Df .

Here we call Df the “fractal dimension”; it tells how the mass of a randomly constructed object
depends on its size relative to the size a of its constituents. (For the ideal random walk, we had
R(n) scaling as

p
nb or equivalently n(R) scaling as (R/b)2, so Df = 2 in this language.) Not

all collections of scattering points are fractals; scaling of this form is a rather special property,
that indicates that the random structure is “self-similar” — it “looks the same” under di↵erent
magnifications, or “has no characteristic length scale” other than the size of the constituent and
the size of the entire object.

When we do have a fractal, though, the scattering at wavelengths 1/q smaller than the size
of the entire object again scales as the number of subobjects M/m times the coherent scattering
m2 from each; with m scaling as (qa)�Df , this leads to I(q) scaling as M/(qa)Df . Hence when we
observe a power-law dependence of scattering, it can sometimes be interpreted as a measure of the
“fractal dimension” of the collection of scatterers.
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Structure factor and form factor

Scattering is a very versatile probe of microscopic structure, which we will revisit in various forms
in later lectures. Now, we consider the common example of scattering from a fluid of pointlike
particles. In a fluid, the particle locations are not completely random, but are correlated in some
way, because the molecules cannot strongly overlap, but are held by attractive interactions into
close contacts. The resulting structure of the fluid is described by the pair correlation function,

g(r, r0) = ⇢�2h⇢(r)⇢(r0)i (2.3.28)

in which ⇢(r) is the concentration of particles at r, with average value ⇢.
The function g(r, r0) measures the joint probability of having a particle at r and a second particle

at r0. Because a homogeneous fluid is translationally invariant, g(r, r0) actually only depends on
the separation vector r � r0 (there are no distinguished locations in the fluid). Likewise, for an
isotropic fluid, g(r, r0) does not depend on the direction of the separation vector r� r0, but only on
its length |r � r0|.

For large separations |r�r0|, the two points r and r0 are uncorrelated — a particle will be present
at r0 without regard to whether another particle is present at r. Hence the average h⇢(r)⇢(r0)i for
large separations can be factored as h⇢(r)ih⇢(r0)i, which equals ⇢2. The front factor of ⇢�2 in the
definition of g(r, r0) is chosen so that g(r, r0) approaches unity for large separations.

We have shown earlier that the scattered intensity I(q) from a collection of pointlike scatterers
is proportional to the average h⇢(q)⇢(�q)i. This average in turn can be related to g(r, r0) using
Fourier transforms:

I(q) / h⇢(q)⇢(�q)i

=

Z
dr

Z
dr0 e�iq·(r�r0)h⇢(r)⇢(r0)i

= ⇢2
Z

dr0
Z

dr e�iq·rg(r)

= N⇢

Z
dr e�iq·rg(r) (2.3.29)

In the above, we reverse the order of integration, and shift the integration variable r by r0. The
integral

R
dr0 then gives a factor of V (the illuminated scattering volume); ⇢V equals N , the total

number of scatters. The result says that the scattered intensity is proportional to the number of
scatters, times the Fourier transform of the pair correlation function.

A similar argument can be made for particles that are not pointlike, but have a scattering
density profile. For convenience, suppose the particles are spherically symmetric, with a density
profile given by f(r). We can regard the particles as composed of tiny pointlike scattering bits. The
scattering intensity is still proportional to the Fourier transform of the pair correlation function
g(r, r0) of the pointlike scattering bits.

We can write this pair correlation function in terms of the density profile f(r) and pair corre-
lation function of the particles g

0

(r, r0), as

g(r) =

Z
dr

1

Z
dr

2

f(r
1

)f(r
2

)g
0

(r + r
1

� r
2

) (2.3.30)

The above relation expresses the fact that the probability of finding a scattering bit at the origin
and at r, requires there to be a particle near the origin and near r, such that the density profile of
the first particle overlaps the origin, and the second particle overlaps r.



54 CHAPTER 2. POLYMERS IN BULK

We evaluate the Fourier transform of g(r), as

g(q) =

Z
dr e�iq·r

Z
dr

1

Z
dr

2

f(r
1

)f(r
2

)g
0

(r + r
1

� r
2

)

=

Z
dr

1

Z
dr

2

Z
dr

0

e�iq·(r0+r2�r1)f(r
1

)f(r
2

)g
0

(r
0

)

= S
0

(q)f(q)f(�q) = S
0

(q)|f(q)|2 (2.3.31)

In the above, we define r
0

by r
0

= r+ r
1

� r
2

, and shift the integral
R
dr to an integral

R
dr

0

, thus
separating the multiple integral into a product of Fourier transforms. The structure factor S

0

(q) is
the Fourier transform of g

0

(r), the pair correlation function of the particle centers.
Since the scattering intensity I(q) is proportional to g(q), we have

I(q) / S
0

(q)|f(q)|2 (2.3.32)

That is, the scattering intensity is proportional to the product of the particle structure factor, and
the square of the “form factor” f(q) (Fourier transform of the particle density profile).
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2.4 Single chains in real solvents

Up to now, we have considered only e↵ects of flexibility on the conformations of a polymer chain,
and said nothing about how conformations would be a↵ected by interactions between monomers,
or between the monomers of a chain and surrounding solvent.

Two monomers, distant along the chain but located close by in space, have some e↵ective
interaction potential U(r) that influences their relative position. This potential incorporates the
e↵ects of the intervening solvent, which can originate both in direct energetic interactions, as well
as changes in the solvent configurational entropy induced by the presence of the monomers.

Qualitatively, the interaction potential will have a repulsive “hard core”, which imposes a high
energetic cost for configurations in which two monomers overlap. The potential may also have
an “attractive well”, a lower energy when the monomers are located close by, without intervening
solvent. Such an attraction can have many di↵erent microscopic origins, but typically has a range
of order the size of a monomer (unless interactions between charges contribute).

If the monomers were not bonded together to form a chain, but instead were simply free to
move about in dilute solution, the potential U(r) would alter the probability P (r, r

0

) of finding a
second monomer at r near a given monomer at r

0

.
When the distance between r and r

0

is large, the probability P (r) must become equal to the
average monomer concentration c — the monomer at r

0

can have no e↵ect on the concentration at
distant points r. This motivates the definition of the pair correlation function g(r) as

P (r, r
0

) = cg(|r � r
0

|) (2.4.1)

Roughly speaking, we expect g(r) to go like exp(��U(r)), because the probability of placing a
second monomer near a given monomer (now at the origin) should be proportional to this Boltzmann
factor.

For a potential U(r) with just a repulsive core and no attractive well, the e↵ect of the potential
on g(r) is clear; monomers are never found in the repulsive core, leading to an “excluded volume”.
If a potential has both attractive and repulsive parts, a more detailed analysis than we present here
finds that a useful measure of the e↵ective size of the excluded volume is given by

v =

Z
d3r (1� exp(��U(r)) (2.4.2)

The virial coe�cient v measures the average change in g(r) (by our simple estimate) from what
it would be if there were no interactions at all (i.e., g(r) = 1). Depending on the strength of
attractive contributions to v, we may have the following cases:

• v ⇡ v
0

, where v
0

is the excluded volume of a pair of monomers. For spherical monomers of
hard-core radius a, this is v

0

= 4⇡/3(2a)3 (the monomers cannot approach closer than 2a).
A solvent that induces no attractive interactions between monomers is called “athermal”.

• v significantly less than v
0

, but still positive. This is the case when the monomers feel some
attraction, but not enough to overwhelm the hard-core contribution to v. Such a solvent is
called a “good” solvent, though in some sense it should be called a “not-so-good” solvent,
because it could be “better” by being athermal.

• v = 0. This is the special case when the attractive and repulsive contributions cancel. Then,
we have no pairwise interaction between monomers. At this special point, as we shall see
below, chain behave as ideal random walks. Such a solvent is called a “theta” solvent.
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• v < 0 but |v| < v
0

. Attractions overwhelm repulsions; this is called a “poor” solvent, and
leads to chain conformations of collapsed globules, but with some solvent present within the
globule.

• v ⇡ �v
0

. Attractions are so strong that solvent is essentially repelled from with the globule.
Such a solvent is called a “nonsolvent”.

It is convenient to consider the virial coe�cient for an “e↵ective monomer”, i.e., a Kuhn step.
Because the chain is persistent in its direction, we should think of a Kuhn step as roughly cylindrical
in shape, with length b⇤ and diameter d (where the monomers, say, are spheres of diameter d). The
excluded volume of two randomly oriented cylindrical monomers involves an average over their
relative orientation.

When the angle between the two cylinders is ✓, the excluded volume is b⇤2✓d (the excluded
volume is a paralellpiped of height d and side length l). Averaging over ✓ gives v = 2b⇤2d/⇡. The
answer scales as b⇤2d rather than the (smaller) volume b⇤d2.

Interaction e↵ects on polymer size

Now we turn to consider the e↵ect of monomer interactions on the conformations of the entire
chain. We begin by estimating how likely are close approaches of monomers in a random walk, if
no special measures are taken to avoid them.

First we note that a polymer in an ideal random-walk conformation is mostly empty space.
We loosely define the “pervaded volume” of a polymer chain as the volume of a sphere su�cient
to contain the conformation. (We sidestep questions of whether this definition should be precisely
4⇡/3R3

g, or Re instead of Rg, or with or without the 4⇡/3.) Additionally, we speak of the “displaced
volume” of a chain as the space its monomers take up in solution; this volume ⌦ equals N⇤v

0

(here
again, N⇤ is the number of Kuhn monomers).

Now the fraction � of pervaded volume actually occupied by the chain scales as

� ⇠ ⌦/R3

e ⇠ N⇤�1/2v
0

/b⇤3 (2.4.3)

which is small for long chains and smaller for sti↵ chains (since v
0

/b⇤3 goes as (d/b⇤)2).
But although the polymer coil is mostly empty space, there are a large number of monomer-

monomer contacts within the coil. To count them, we consider one given monomer, observe that
the expected number of other monomers within its excluded volume would be cv

0

, where c is the
monomer concentration within the pervaded volume, if the monomers were placed randomly. The
concentration c satisfies cv

0

= �, so per monomer, we have an average of � contacts. Taking all
monomers together, then, we have N�/2 contacts (every contact counted twice). Though � was
small (as N�1/2), N� is large (as N1/2).

What is the free energy cost of these contacts? If they were indeed overlaps between monomers,
the energetic cost would be enormous. However, the literal overlap of two monomers can be avoided
by local rearrangements, leading to “near misses” between two sections of chain. For example, one
chain may rearrange two adjacent e↵ective monomers in a “crankshaft motion” to swing a colliding
monomer out of the way. This local rearrangement reduces the conformational entropy of the chain,
by an amount of order kT since conformation of one freely jointed segment is no longer randomly
selected (the freely jointed steps are less random by about one “decision”)

Another way for a polymer chain to avoid collisions is by adopting “flu�er”, more open confor-
mations, for instance by separating its two ends as if under an external force. We know that a chain
can roughly double its typical end-to-end distance at a cost of only about kT, which would avoid
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a lot of contacts between monomers at a single stroke. So the question arises, what is the optimal
strategy for the chain to maximize its entropy — should it remain an ideal random walk but make
many local adjustments to avoid collisions, or should it adopt less prevalent flu�er conformations
which preclude collisions?

A simple and ingenious argument was given by Flory to determine the optimum size for a chain
in solution; one writes an estimate for the free energy of the chain, assumed to have a size R to be
determined, as the sum of an “energy” cost for collisions, and an entropy cost for adopting a larger
size:

�F = N2v/R3 + 3/2R2/R2

e (2.4.4)

In the above, the second term is the same entropy change we wrote when considering the stretching
of a chain; here, we assert that the entropy cost of making the chain “flu�er” scales the same way.

The first term is an estimate of the number of collisions N�, with a cost of kT per collision.
This “energy” cost of collisions is actually entropic as well, to some extent, because of the entropy
cost of the local rearrangement required to turn a collision into a near miss.

We choose R to minimize F :

0 = �3N2v/R4 + 3R/R2

e (2.4.5)

We cast the above in terms of the “stretch ratio” R/Re, by rearranging to write

R/Re = (N/Ns)1/10

Ns = (b⇤3/v)2 (2.4.6)

in which Ns is the “swelling length”. Equivalently we may write

R = Rs(N/Ns)
3/5 (2.4.7)

in which Rs is the ideal end-to-end distance of a subchain of Ns monomers, i.e., the size of a thermal
blob.

For su�ciently long chains, such that N is much larger than Ns, the Flory estimate finds that
the optimum size of the polymer coil is larger than Re, the ideal random-walk size, by a weak power
law of N . Nonetheless, the di↵erence between N1/2 and N3/5 can be distinguished, in scattering
determinations of Rg versus M for chains in good solvent.

Note that Ns may be many monomers, if the chain is rather sti↵ [since v goes as b⇤2d, Ns goes
as (b⇤/d)2] or if the solvent is not very good (since v becomes small). Recall that we are working in
terms of e↵ective freely jointed segments, each of which consists of C1/ cos2(✓/2) monomers, with
step length b⇤ of C1l/ cos(✓/2). Assuming that the monomers of the chain are roughly spherical, so
that l and d are of the same order, we have that b⇤/d is of order C1/ cos(✓/2), and Ns corresponds
to about (C1/ cos(✓/2))2 monomers.

Values of C1 of 5 or so are not uncommon, and with a typical deflection angle ✓ of 60 degrees,
cos(✓/2) equals

p
3/2. Thus Ns is of order 100/3 ⇡ 30 or so. so that even at N = 104 monomers

(a molecular weight of 106g/mol in polystyrene) the ratio N/Ns is only about 300, and R/Re is
(300)1/10 or about 2. This may seem a small e↵ect, but often we are interested in the pervaded
volume, which scales as R3, whereupon the swelling e↵ect is larger. For example, we often want to
know what is the “overlap concentration”, at which the individual coils of a dilute solution begin
to pervade the entire space within the solvent. The overlap concentration marks the boundary
between dilute and overlapping chains, which overlap leads to entanglement, large increases in
solution viscosity, and other phenomena. Chain swelling results in a smaller overlap concentration,
by a factor of 8 in the above example.
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If we have a chain shorter than Ns, the above equation gives a nonsensical result, that the
dimension of the chain is smaller than the ideal random walk. Indeed, if we have v = 0, the above
argument would imply that R equals zero, which is certainly wrong. In fact, we should recover
R/Re equal to unity for N much smaller than Ns; so clearly something is missing from the above
argument.

What is missing, is the entropic cost of confining the chain to a smaller volume than it would
otherwise pervade as an ideal random walk. We can give a scaling argument to estimate this
entropic cost. Suppose we wanted to confine a chain into a volume of size R less than the ideal Re

for the chain. We can break the chain up into N/n subchains of n monomers, where n is chosen so
that the subchains would just fit into the confined volume; that is, so that nb2 is of order R.

We can regard the entire chain as a random walk of subchain units. However, if we want to
confine the chain into the volume of size R, the walk cannot be random; we place the first subchain
into the volume, and the next subchain must likewise be placed into the volume, when it could
have made a random step elsewhere. Each subchain gives up of order kT of free energy to return
to the confining volume; the cost for the entire chain is N/nkT , or kTR2

e/R
2.

We add this term to the Flory estimate for the chain free energy:

�F =
3R2

2R2

e

+
N2v

R3

+
3R2

e

2R2

(2.4.8)

Now, minimizing with respect to R gives

(R/Re)
5 � (R/Re) = (N/Ns)

1/2 (2.4.9)

This equation describes the crossover between a swollen “self-avoiding” chain, and an ideal chain at
theta condition. As v becomes small, Ns becomes large; for N much less than Ns, R/Re approaches
unity, while for N much greater than Ns, R/Re scales as (N/Ns)1/10.

The ingenuity of the Flory estimate is in writing the estimate of the interaction energy com-
pletely neglecting correlations, i.e., assuming the monomers to be randomly placed within the
pervaded volume, while at the same time estimating the configurational entropy cost of a flu�er
coil as for an ideal chain, i.e., without regard to what interactions between the monomers would do
to the configurations. Each of these is a heuristic estimate; the surprising conclusion is that taken
together, they give a serviceable approximation to the actual behavior of chains.
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2.5 Polymer-polymer blends

In this lecture we construct a simple model that describes the free energy changes that occur when
blends of two polymers mix or demix. We begin by considering a mixture of two small-molecule
solvents. A detailed theory of the statistical mechanics of such a mixture would be daunting; the
molecules have shape, internal modes, complicated interaction potentials; and their conformations
at liquidlike densities would be extremely di�cult to count.

So, we resort to a simplified model, that captures the essential physics of small-molecule mix-
tures; namely, a “lattice liquid”. We idealize the molecules as identical-sized spheres, and count the
available configurations by obliging the molecules to reside within cells in a regular simple-cubic
lattice. Every cell contains one molecule.

In the same spirit as the Flory theory of the size of a polymer chain, we estimate the free
energy F of the lattice liquid as the sum E�TS of two terms: a simple “random mixing” estimate
of the interaction energy E between neighboring molecules, and a corresponding estimate of the
configurational entropy S in placing the molecules on the lattice.

On the lattice, each cell has Z neighbors with which it interacts; we assign an energy cost � to
each pair of unlike neighbors. Every cell can be regarded as “owning” half of its bonds for counting
purposes. Each bond can have unlike neighbors in two ways, if the first cell is type A and the
second type B, or vice versa. Per cell, the average energy is then

E/N = (Z/2)�(�A�B + �B�A) = Z��A�B (2.5.1)

in which �A = NA/N is the fraction of N total sites occupied by NA molecules of type A.
The configurational entropy we estimate by counting the number of ways ⌦ of placing NA

molecules of type A and NB of type B onto N total lattice sites, which is just N !/(NA!NB!). The
entropy is then S = k log⌦; using the Stirling expansion, we have

S/k = N logN �N � (NA logNA �NA)� (NB logNB �NB)

= (NA +NB) logN �NA logNA �NB logNB

= �NA logNA/N �NB logNB/N (2.5.2)

Thus the entropy per site is

S/(kN) = ��A log �A � �B log �B (2.5.3)

Combining these two estimates, we have

�F/N = ���A�B + �A log �A + �B log �B (2.5.4)

Now we investigate the phase behavior implied by this free energy, as a function of �A = �
(with �B = 1 � �). The first term is a parabola with maximum of ��/4 at �A = �B = 1/2; the
second term is concave up, with a minimum at �A = �B = 1/2. Evidently the first term favors
demixing and the second favors mixing.

We can plot �F/N as a function of �: as � increases, the first term eventually splits the minimum
at � = 1/2 into a pair of minima, which progressively separate as � increases. These minima
correspond to coexisting phases, the location of which are determined by the common tangent
construction. The free energy of coexisting phases with a specified average value of �, determined
by a linear mixing rule along the common tangent connecting the two phases, is evidently lower
than any homogeneous point on the curve F (�)/N .



60 CHAPTER 2. POLYMERS IN BULK

The locus of inflection points on the free energy define the spinodal, which represents the limit
of stability of the single phase to spontaneous concentration fluctuations about the imposed average
concentration. For points on the concave-down portion of the curve F (�)/N , the free energy can
be made smaller by separating the homogeneous phase into two phases slightly richer and poorer in
�. The free energy is thus unstable to small variations in the average concentration. Whereas, for
points on the concave-up portion of the curve, separating the homogeneous phase into two phases
slightly richer and poorer in � leads to a higher free energy; thus the free energy is stable to small
perturbations.

The spinodal is easier to calculate than the binodal, as it satisfies

0 = @2�F/@�2 = �2��+ 1/�+ 1/(1� �) (2.5.5)

which rearranges to
2���(1� �) = 1 (2.5.6)

Because of the symmetry on exchange of A and B, which corresponds to � exchanged with 1��,
it turns out to be convenient to focus on the di↵erence between � and the symmetric value 1/2, by
defining � = 1/2 + ��. Then �(1� �) becomes (1/2 + ��)(1/2� ��) or 1/4� ��2, whereupon the
spinodal equation is

��2 = (��/2� 1)/2�� (2.5.7)

Evidently, the spinodal consists of a pair of real roots, as long as �� is greater than 2. This
defines the critical point for the demixing. As the temperature decreases, �� increases, which
increases the strength of the repulsive interactions relative to the entropy of mixing. The mixture
separates into two coexisting phases.

Now we modify this treatment to deal with mixtures of two long flexible polymers A and B,
with nA and nB segments respectively. We assume the A and B monomers to be the same size, such
that they fit into the cells of the lattice as we assumed for the small-molecule mixture. But unlike
the mixture of two small molecules, the polymers have a great deal of conformational freedom; it
would appear to be challenging to count the number of these conformations, to account for the
associated conformational entropy.

Here, we resort to an approximation, introduced by Flory (and justified later in a theoretical
treatment by Edwards): we assume that the set of conformations available to a polymer in the mixed
melt is the same as when the polymers are demixed. Why should this be true? First consider the
case of A and B polymers of identical length; then, as long as the interactions between the A and
B monomers are weak enough not to perturb the conformations very much, conformations in the
A–B mixture can simply be thought of as identical to conformations in the pure A state, with a
certain number of the chains randomly chosen to be labeled B.

If the lengths of the A and B polymers are not identical, but both are long, the argument
is slightly di↵erent. Then, we say that if the interactions between A and B monomers are weak
enough, then the conformations of both kinds of chains in the melt, whether mixed or unmixed, must
essentially be ideal random walks. The reasoning is as follows: chains in a melt must constantly
make small adjustments to avoid other chains; there is no distinction, if the chains have identical
local structure, between avoiding an A chain or a B chain, or between avoiding distant portions of
the same chain or avoiding other chains.

Thus (Flory argued, and Edwards proved) chains in the melt adopt essentially ideal random-walk
configurations, whether in a pure state or in a mixed state. Since the same set of conformations
is available to the chains in the mixed or pure state, there is no change in the conformational
entropy upon mixing, which eliminates the need to count the number of chain conformations. This
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argument assumes “conformational identity” between the two species of polymers; which would
not be so if the two chains had di↵erent sti↵ness, or di↵erent diameters. In such a case, there
could (and would) be a change in the conformational entropy upon mixing, which would lead to an
excess free energy as a result of the relative ease or di�culty of packing chains of di↵erent sti↵ness
or diameter together in the same melt.

What remains to count are the number of ways to locate the chains on the lattice. Each chain
has one translational degree of freedom, which we may regard as the location of the center of mass,
or the front end. The fraction of sites containing the center of mass of an A type chain is �A/NA

(only one out of every NA sites with an A monomer contains a front end monomer).
For long chains the concentration of ends is very small, essentially an ideal gas. There is a

negligible chance that randomly chosen locations for A ends and B ends will coincide. We may
therefore estimate the translational entropy of each species separately, as the log of the number
of ways to choose nA sites for the A ends among all N lattice sites (and similarly for the B type
chains).

We have

S/k = log(N !/nA!(N � nA!))

⇡ (N logN �N)� (nA log nA � nA)� ((N � nA) log(N � nA)� (N � nA))

= �nA log nA/N � (N � nA) log(N � nA)/N (2.5.8)

in which we have used the Stirling approximation as usual.
Now write the entropy per site, in terms of �A, as

S/(kN) = ��A/NA log �A/NA � (1� �A/NA) log(1� �A/NA)

⇡ ��A/NA log �A/NA (2.5.9)

This is a quite general result for the entropy per site of an ideal gas of lattice concentration �A/NA

(here, the concentration of ends). In the above, we have blithely dropped terms linear in �, because
they do not a↵ect the common tangent, or indeed any aspect of the phase behavior. Linear terms in
phi added to the free energy correspond only to constant shifts in the chemical potential of species
A relative to B.

We estimate the interaction energy in exactly the same way as before, whereupon we have

�F/N = ��A�B + �A/NA log �A/NA + �B/NB log �B/NB (2.5.10)

Carrying out the same exercise to find the spinodal, we obtain for the symmetric case NA = NB

��2 = (�NA�/2� 1)/2�NA� (2.5.11)

Now the critical point is � = 2kT/NA, a much weaker interaction, much less than kT per
monomer. This has several important consequences. First of all, it means that even very small
repulsive monomer-monomer interactions are su�cient to demix polymers, because there are so
many interactions per chain, but only one translational degree of freedom. That is, the entropy
loss in separating a symmetric polymer blend is of order kT log 2 per chain, but the interaction
energy in the mixed state is of order � per monomer.

Furthermore, it means that in most practical circumstances, the e↵ective monomer-monomer
interactions are weak compared to kT . This is part of the justification for the approximation that
chain conformations are ideal random walks even in the mixed state, largely unperturbed by A–B
interactions.
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For typical polymers, � is on the order of 10�2 to 10�3, in units of kT per “reference volume”
v, commonly taken as v = 0.1nm3. At a density of 1g/cm3, this is the volume of a unit of about
60g/mol, which is a typical monomer molecular weight. Thus a volume large enough that the excess
energy is of order kT , is 100 to 1000 typical monomers. This simple estimate illustrates the great
di�culty of determining � from molecular scale simulations or atomistic modeling.

Remarks on interactions

In our estimate of the energy of mixing, we blithely assumed that only contacts between unlike
monomers cost energy. More reasonable is to assume that contacts between A monomers have an
attractive energy ✏AA < 0, contacts between B monomers ✏BB < 0, and between A and B monomers
✏AB < 0. The random-mixing interaction energy per site would then be estimated as

E/N = (Z/2)(�2

A✏AA + 2�A�B✏AB + �2

B✏BB) (2.5.12)

Note that the pure phases now have nonzero interaction energy, with E/N equal to (Z/2)✏AA

in pure A and likewise in pure B. Thus, the energy of mixing — the di↵erence in energy per site in
the mixed versus the pure states — is

E/N = (Z/2)(�2

A✏AA + 2�A�B✏AB + �2

B✏BB)� �A(Z/2)✏AA � �B(Z/2)✏BB

= Z(✏AB � ✏AA/2� ✏BB/2)�A�B (2.5.13)

Only the combination of interaction energies Z(✏AB � ✏AA/2 � ✏BB/2) appears in the mixing
energy, which motivates the definition

�AB = Z(✏AB � ✏AA/2� ✏BB/2) (2.5.14)

If the interaction energy between A and B is less favorable than the A–A and B–B interactions that
were disrupted when A and B monomers were brought from the pure phases to the mixed phase,
i.e., if ✏AB is less negative than the average of ✏AA and ✏BB, then the net interaction is repulsive.

In the case of noncharged, nonpolar polymers (no permanent dipoles and no free charges), the
main source of interaction is dispersive or “van der Waals” interactions. A key feature of these
interactions is that to good approximation, the interaction energy between a molecular unit of type
A and one of type B at a given distance (closest approach, say) is the product of a quantity (the
“molecular polarizability”) pertaining only to A, times an analogous factor for B:

✏AB = �A�B (2.5.15)

The quantity �A is called the “solubility parameter” for A, and is tabulated for a wide range of
molecules and molecular groups.

For interactions for which this is true, we find

�AB / (�A � �B)
2 (2.5.16)

In other words, the interaction between A and B is always repulsive, and proportional to the
di↵erence in polarizability between the two species. The result is that “like prefers like”, there is
always some repulsive interaction between unlike species, and the strategy to get two polymers to
mix is to make them as similar in terms of solubility parameter as possible.

But this cannot be the entire story with regard to interactions between polymers, because there
are examples of polymers that mix readily which are evidently quite di↵erent in terms of polar-
izability. It turns out that in many of these cases, the mechanism at work is hydrogen bonding
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interactions. The essence of a hydrogen bond, so named for the bonds that occur between molecules
in liquid water and ice, is an electrostatic attraction between a somewhat positively charged hydro-
gen (stripped to some extent of its electron, which participates in a polarized covalent bond with
some other atom) and a some other negatively charged atom (oxygen, in the case of water).

In a hydrogen bond, there is a “donor” (the positively charged hydrogen) and an “acceptor”
(the negatively charged atom); they play distinct, asymmetric roles in the bond. Now a molecule
or molecular group can be an e↵ective hydrogen bond donor, acceptor, both, or neither. Water
is a good donor (at the H) and a good acceptor (at the O); ether and carbonyl oxygens are good
acceptors; “acidic” hydrogens such as those in -CHCl- (where the chlorine strips the electron from
the hydrogen) are good donors.

In the same spirit as writing ✏AB = �A�B for nonpolar dispersive interactions, we can write the
interaction energy for hydrogen bonding as

✏(H)

AB = dAaB + dBaA (2.5.17)

in which dA and aA are some measure of the “donor strength” and “acceptor strength” of species
A, and likewise for B. (We may think for example of the maximum and minimum electrostatic
potential on the surface of closest approach of species A, as a rough measure of donor and acceptor
strength.)

Applying Eq. (2.5.14) for � with ✏AB given by Eq. (2.5.17), we find after a bit of algebra

� = Z(dA � dB)(aA � aB) (2.5.18)

Unlike the result for � from attractive dispersive interactions, this result is not the square of
a di↵erence. We can make the above expression negative, by choosing monomer A to be a good
hydrogen bond donor but a poor acceptor, and B a poor hydrogen bond donor but a good acceptor.
For such a case, only the mixed state can form strong hydrogen bonds, and the excess free energy
of mixing can be negative as a result.
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2.6 Semidilute solutions

In this lecture we describe polymer chains in solution in a good solvent at finite concentration,
and how the conformations and properties of the polymer chains vary with concentration. Our
approach will be to construct a scaling description of the polymer conformations.

We begin with a single chain in dilute solution, described in Lecture 2.4, which we may regard
as a self-avoiding walk of thermal blobs. The free energy cost of overlapping two thermal blobs is
of order kT . The dilute solution may be regarded as an ideal gas of chains.

As we concentrate the solution, we reach the “overlap concentration” c⇤ where the fraction of
volume pervaded by the individual chain coils approaches unity. The overlap concentration scales
as N/R3

e (N monomers per chain, distributed somehow within a pervaded volume of order R3

e).
As we increase the concentration c to beyond c⇤, we may regard the chains as composed of

subchains of g monomers, such that the subchains, as self-avoiding walks of thermal blobs, have
overlap concentration c. The subchain has a coil dimension denoted as ⇠, called the correlation
length. We refer to the subchain coil as a “correlation blob”. The correlation blobs, which at overlap
concentration are the size of the swollen chains, become progressively smaller as the concentration
increases.

The conformation of a complete chain is then a Gaussian random walk of correlation blobs
(which are themselves self-avoiding walks of thermal blobs, which are themselves Gaussian random
walks of Kuhn steps). The reason the chain is a Gaussian rather than a self-avoiding walk of
correlation blobs, is that there is no particular reason for a chain to avoid its own blobs, when the
entire solution is full of blobs, all of which must be contended with.

As we increase the concentration further, eventually the correlation blobs become as small as
the thermal blob size, at a concentration denoted c⇤⇤. At this point, the chain conformations are
Gaussian on all scales above the Kuhn length; a subchain large enough to avoid itself, is already
interacting with other chains, and there is no particular reason for self-avoidance.

Consequently, chains are largest in dilute solution, shrink progressively in the semidilute regime
(between c⇤ and c⇤⇤), and behave as Gaussian random walks at and above c⇤⇤, with conformations
as in the melt.

Osmometry

Another way to observe the e↵ects of chain swelling and self-avoidance is to measure the a�nity
the solution has for additional solvent, using osmometry. An osmometer is a U-shaped tube with
the two arms separated by a membrane, which is permeable to solvent but not to solute (here,
polymer). Initially, equal volumes of solution and pure solvent are loaded into the two arms.
Because the interactions between monomers are net repulsive, the free energy is decreased when
solvent passes across the membrane to dilute the solution. Solvent continues to pass through the
membrane until the height of the fluid column on the solution side rises enough that the hydrostatic
pressure di↵erence across the membrane prevents further dilution.

The equilibrium condition is that the exchange of a small volume of solvent across the membrane
gives zero net change free energy:

0 = ⇢gh+ @F/@V (2.6.1)

We have written the solution free energy per unit volume F/V as a function of polymer volume
fraction � = nNv

0

/V (n the number of chains, N the number of monomers per chain, v
0

the
monomer excluded volume). Thus F = V f(nNv

0

/V ), so that the expression for the osmotic
pressure we seek is

⇧ = @F/@V = f(�)� �@f/@� (2.6.2)
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How many correlation blobs are there per chain, as a function of concentration? At overlap
concentration, a chain consists of only one correlation blob, of size Re, so we have

c⇤ ⇠ N

R3

e

(2.6.3)

At higher concentrations, there are g monomers per blob; the concentration within the blob is c,
so that

c ⇠ g

⇠3
(2.6.4)

The blobs are presumed to be swollen, so that

⇠ ⇠ Rs

✓
g

Ns

◆
3/5

(2.6.5)

Here we assume g > Ns, which is equivalent to assuming that the concentration c is less than c⇤⇤,
at which the blob shrinks to the size Rs. The chain in dilute solution is likewise swollen, so that

Re ⇠s

✓
N

Ns

◆
3/5

(2.6.6)

We can combine these scaling assumptions to determine how the number of blobs and the size
of the correlation blobs scale with increasing concentration. Since all the scaling relations are power
laws, we may expect dimensionless quantities such as ⇠/Re and N/g to scale as some power of c/c⇤.
To combine our scaling assumptions, we begin by combining the expressions for c and c⇤, as

c

c⇤
⇠

⇣ g

N

⌘✓
⇠

Re

◆
3

(2.6.7)

We can likewise take the ratio of the scaling assumptions for ⇠ and Re, to relate the ratios ⇠/Re

and g/N , as
⇠

Re
⇠

⇣ g

N

⌘
3/5

(2.6.8)

This relation can be used to replace either g/N or ⇠/Re in the expression for c/c⇤. Putting these
results together, we have

g
N ⇠

�
c
c⇤
��5/4

⇠
Re

⇠
�

c
c⇤
��3/4

(2.6.9)

In the semidilute regime, the scaling assumption that the free energy is “kT per correlation
blob”, so that

F

V
⇠ kT

⇠3
⇠ kT

R3

e

⇣ c

c⇤

⌘
9/4

(2.6.10)

The corresponding osmotic pressure ⇧ then scales in the same way. In the dilute regime, the free
energy of the solution is that of an ideal gas of chains, for which

F

V
=

kT�

NV
log(�/N) (2.6.11)

The corresponding osmotic pressure is that of an ideal gas,

⇧ =
kT�

Nv
(2.6.12)
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The expressions for the osmotic pressure in the dilute and semidilute regimes must match up at
the overlap concentration. The semidilute result gives ⇧ of order kT/R3

e or kTc⇤/N , which indeed
agrees with the dilute result (recalling that � = cv). The dependence of the osmotic pressure on
concentration throughout the dilute and semidilute regimes must be a “crossover function”, of the
form

⇧ =
kT

R3

e

p(c/c⇤) (2.6.13)

with p(x) a dimensionless function such that p(x) ⇠ x for x << 1, and p(x) ⇠ x9/4 for x >> 1.
We note that the osmotic pressure becomes independent of chain length in the semidilute regime

(this may be verified directly from the various power law dependences). Physically, this must be
the case because the free energy and the osmotic pressure are both “kT per correlation blob”, and
the blob size is only a function of c/c⇤⇤, independent of chain length. In fact, asserting that this
must be so is one route to figuring out what power law must appear in p(x) at large x.

Confinement and stretching in good solvent

Scaling descriptions in terms of “blobs” can also be usefully constructed to describe polymers in
good solvents under various sorts of deformation, both as single chains and in semidilute solution.
Here we consider two cases: a single chain in good solvent under tension, and a single chain in good
solvent confined between two plates.

For a single chain in good solvent under tension, we again represent the conformation as a
linear sequence of marginally perturbed subchains or “stretch blobs”. However, in contrast to our
previous treatment of an ideal chain under tension, the stretch blobs are self-avoiding walks of
thermal blobs. As before, we denote the size of the blob by ⇠ and the number of monomers in a
blob by g.

The ingredients of our scaling treatment are

⇠ ⇠ Rs(g/Ns)3/5

R⇤
e ⇠ Rs(N/Ns)3/5

R ⇠ (N/g)⇠

�F ⇠ (N/g)kT

In the above, the scaling relations correspond to the following physical assumptions:

• the stretch blobs are self-avoiding walks of thermal blobs;

• the unstretched chain of end-to-end dimension R⇤
e is likewise a self-avoiding walk of thermal

blobs;

• the stretched chain is a line of stretch blobs;

• the stretching free energy is kT per blob.

When these assumptions are combined, we obtain

N/g ⇠ (R/R⇤
e)

5/2

(⇠/R⇤
e)

2 ⇠ (R⇤
e/R)3

�F ⇠ kT (R/R⇤
e)

5/2
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We find results similar in structure to the ideal-chain case — everything can be expressed in terms
of the “stretch ratio” R/R⇤

e — but the power laws are di↵erent, as a result of the swelling e↵ect.
In particular, the “entropic spring” is no longer harmonic; instead, it is progressively harder to
stretch the chain to larger deformations, because the diminishing self-avoidance of the deformed
chain helps less and less to push the chain outwards.

If we confine a single swollen chain between plates, we may regard the resulting chain confor-
mations again as a self-avoiding walk of correlation blobs; in this case, the blob dimension is set by
the plate spacing h. The scaling assumptions are then

⇠ = h

⇠ ⇠ Rs(g/Ns)3/5

R⇤
e ⇠ Rs(N/Ns)3/5

�F ⇠ (N/g)kT

with the result that
�F ⇠ kT (R⇤

e/h)
5/3 (2.6.14)

As the chain is confined, the blob size becomes smaller, more and more blobs result, at a free energy
cost of kT per blob.
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2.7 Fluctuations, scattering, and mean-field approximation

In previous lectures, we introduced scattering as a means to investigate the structure of individual
chains in solution. Then, we described the phase behavior of polymer-polymer blends. In the
present lecture, we combine these two topics, and discuss what is to be learned by scattering from
a binary polymer blend.

On average, in the single phase region, the concentration within a A–B polymer blend is uniform,
with no evident droplets of a distinct phase from which to scatter. However, the mixing is not
perfectly uniform; there are at any given moment regions rich in polymer A or B. The spatial
extent of these concentration fluctuations grows large in the vicinity of the critical point. At the
critical point, the osmotic compressibility — which governs the ease with which concentration
fluctuations can appear — diverges. The spatially large fluctuations scatter coherently at small
wavenumbers, giving rise to large intensity small-angle scattering.

We know that scattering is proportional to modulus squared of the Fourier transform of the
scattering density, which for concentration fluctuations in a binary melt (for which the mass density
is essentially constant) should somehow be proportional to the local di↵erence in concentration be-
tween A and B monomers. So we focus on calculating the following matrix of correlation functions:

S↵�(r, r
0) = h��↵(r)���(r

0)i (2.7.1)

in which ↵ and � each take on the values A or B, and ��↵(r) is the local deviation of the concen-
tration of species ↵ at r.

Because the melt is incompressible, the sum of the local volume fractions of A and B monomers
must be always unity, so that ��A(r) + ��B(r) must be zero everywhere. (This imposes a relation
between the di↵erent components S↵� , namely SAA = �SAB = SBB, which we shall eventually
enforce, below.)

Correlation and response functions

It turns out to be very useful to consider what at first sight is an unrelated problem, namely,
the calculation of the response of the local concentration �↵(r) at r to an “external field” W�(r0)
applied at r0. By an external field, we mean an imposed potential that attracts monomers of type
� to r0. The e↵ect of such a potential is to add a term to the system energy, of the form

�E =
X

�

Z
d3rW�(r)��(r) (2.7.2)

This can be written in another useful way, as a sum over the contributions of each chain to the
concentration:

�E =
X

�

X

i2�

Z N

0

dsW�(ri(s)) (2.7.3)

If the potential is weak — W� is taken to be small enough that its perturbing e↵ect is small —
then the response of the concentrations to its imposition should be first-order in W� , allowing us
to define a matrix of response functions R↵�(r, r0):

h��↵(r)i = �
Z

d3r0R↵�(r, r
0)W�(r

0) (2.7.4)

In writing the response functions this way, we are saying little except that the response is linear.
(And, we adopt a sign convention that is aimed at getting a positive result for R, since positive
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values of W disfavor positive values of ��.) We are, however, allowing for the possibility that a
potential imposed at a point r0 on species � could perturb the concentration of species ↵ at a point
r some distance away.

Now consider how the addition of such a term to the system energy would alter the partition
function. Surprisingly, we do not need to write the partition function very explicitly to observe
something useful. We write

Z =
X

configs

e��E0[configs]e���E

=
X

configs

e��E0[configs]e��
P

�

R
d3rW�(r)��(r) (2.7.5)

Now the perturbing term, the integral in the exponential, can be thought of equally well as a sum
over a fine mesh of points in space,

Z
d3rW�(r)��(r) ⇡ �V

X

j

W�(rj)��(rj) (2.7.6)

where �V is a di↵erentially small volume.
The point is, derivatives of Z with respect to W�(rj) bring down factors of ��(rj) “into the

average”; that is,

� 1

��V

@ logZ

@W�(rj)
= h��(rj)i (2.7.7)

If we take another derivative, with respect to W↵ at some other point rk, down comes another
factor of �V �↵(rk), leading to

1

(��V )2
@2 logZ

@W�(rj)@W↵(rk)
= h��(rj)�↵(rk)i � h��(rj)ih�↵(rk)i (2.7.8)

(The second term comes from the second derivative hitting the Z in the denominator of the average.)
We describe this result as “derivatives with respect to the potential W ‘generate’ averages of the
field �”.

Now we can prettify this a bit, by absorbing the factors of 1/�V into a special definition of a
“functional derivative”, which just means “derivative with respect to the value of a function at a
point”, as opposed to the usual “derivative with respect to the value of some parameter”: we write

1

�

� logZ

�W�(r)
= h��(r)i (2.7.9)

and so forth.
So what we notice is that on the one hand,

� 1

�

�h�↵(r)i
�W�(r0)

����
W=0

= h�↵(r)��(r
0)i = S↵�(r, r

0) (2.7.10)

in which the second term with the separate average of the two factors of � vanishes because we set
W = 0 after taking the derivative, to “turn o↵ the field”.

And on the other hand, if we apply the functional derivative to our linear response expression,
we have

�h�↵(r)i
�W�(r0)

����
W=0

= �R↵�(r, r
0) (2.7.11)
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So it must be that
�S↵�(r, r

0) = R↵�(r, r
0) (2.7.12)

The response function and the correlation function are the same thing, a result that does not
depend on any details of the partition function at all.

We may give a plausibility argument for why the response and correlation functions should be
proportional, as follows: if fluctuations are common in which a variation in �↵ at r accompanies a
variation in �� at r0, then it is reasonable that an externally applied potential that directly couples
to �� at r0 will likewise induce a response in �↵ at r.

Mean-field theory

Having established the equivalence of the correlation and response functions, we set about comput-
ing the response function from the partition function. Now the exact partition function of a system
of interacting chains is a complicated beast; we must sum over the set of configurations of all chains,
subject to the constraint of fixed density, with configurations weighted by their interaction energy.

The density constraint and the interactions between chains are complicated to enforce exactly.
But a serviceable approximation can be made, in which each chain is regarded as interacting with
all the others only through two average “potential fields” — the hydrostatic pressure p(r), and the
chemical potential µ↵(r) for monomers of type ↵.

In this approximation, called the mean-field approximation, the pressure p(r) and chemical
potential µ↵(r) do not fluctuate, but take on an average value that depends on the state of the
system. In a homogenous one-phase system, both fields would be spatially uniform. In a two-phase
system with an interface separating A-rich and B-rich regions, the potentials would have distinct
values in each phase.

What makes the mean-field approximation tractable, is that in the partition function we have
only to sum over the conformations of a single representative chain, which can take on all possible
random-walk configurations, weighted by their energy in the potential fields:

Z ⇡

2

4
X

Aconfigs

e��
R
ds (P (r(s))+µA(r(s))+WA(r(s))))

3

5
NA

2

4
X

Bconfigs

e��
R
ds (P (r(s))+µB(r(s))+WB(r(s))))

3

5
NB

(2.7.13)
Approximated in this way, the perturbed value of the concentration � is the linear response of

a system of independent chains to the imposed external field W and the “internal” fields P and µ:

h��↵(r)i = ��

Z
d3r0 S(0)

↵� (r, r
0)
�
W�(r

0) + µ�(r
0) + P (r0)

�
(2.7.14)

Note that S(0)

↵� (r, r
0) must actually be a function only of r� r0, because of translational invariance.

(Below, we shall compute S(0)

↵� (r, r
0) explicitly, and see that this is in fact the case.) We can turn

the convolution integral in the above equation into a product, by taking the Fourier transform:

h��↵(q)i = ��S(0)

↵� (q) (W�(q) + µ�(q) + P (q)) (2.7.15)

The potential fields P and µ are determined by self-consistency conditions. The chemical
potential field µ represents interactions of the given chain with the average monomer concentration,
so we enforce

µA(r) = �h��B(r)i
µB(r) = �h��A(r)i (2.7.16)
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The pressure field P is chosen to enforce the constraint of constant average density,

0 = h��A(r)i+ h��B(r)i (2.7.17)

If we think of h��↵(q)i as a two-component vector (A and B components), and S(0)

↵� (q) as a
2x2 matrix, then we are to choose P (q) in such a way that the vector h��↵(q)i points along the

direction {1,�1}. That is, P is chosen to cancel whatever part of ��S(0)

↵� (W� + µ�) points along
{1, 1}. Now we may as well enforce that W� points along {1,�1}, because any part of this vector
that points along {1, 1} can be absorbed into the P term.

Solving the self-consistent equations.

Here we present the details of how to solve this tricky little set of equations. We introduce some
notation: 1 is the vector {1, 1}; 1̄ is {1,�1}; we write � for the vector of ��↵, S(0) for the matrix
of correlation functions.

First, we need to find P . So we impose the condition that there is no component of the vector
� in the 1 direction. We write W as

W = (W/2)1+ (W̄/2)1̄ (2.7.18)

which implies W = WA +WB and W̄ = WA �WB. The term proportional to 1 can be absorbed
into P .

Likewise, we impose the condition that � has no component along 1, by writing

� = �1̄ (2.7.19)

We have
�1̄ = ��S ·

�
W̄/21̄� kT��1̄+ P1

�
(2.7.20)

We find P by taking the dot product of 1 with the above equation, to obtain

0 = 1 · S · 1̄(W̄/2� kT��) + 1 · S · 1P (2.7.21)

Solving for P , we have
P = �(W̄/2� kT��)�/⌃ (2.7.22)

in which we have defined

� ⌘ 1 · S · 1̄ = SAA � SBB

⌃ ⌘ 1 · S · 1 = SAA + 2SAB + SBB

⌃̄ ⌘ 1̄ · S · 1̄ = SAA + 2SAB + SBB

(2.7.23)

Now we compute � by taking the dot product of 1̄ with the equation, to obtain

2� = ��(⌃̄��2/⌃)(W̄/2� kT��) (2.7.24)

Solving for �, we have
� = ��SW̄ = �� (⌃/D � 2�)�1 W̄ (2.7.25)

in which D is the determinant of S, D = SAASBB � S2

AB. This result is sometimes called (for
historical reasons, which we need not explain here) the “random phase approximation” or RPA
result for the response function.
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For the case of homopolymer blends, the correlation matrix S is diagonal, so that ⌃ = SAA+SBB

and D = SAASBB, whereupon

�(q) = ��Seff (q)W̄ (q) = �� (1/SAA(q) + 1/SBB(q)� 2�)�1 W̄ (q) (2.7.26)

Observe that the response can become quite large if the denominator comes close to vanishing;
we shall see below that this happens when we are close to the critical point.

Note that W̄ couples to the concentration di↵erence), because of incompressibility:

W↵�↵ = (W↵ �W�)� = W̄� (2.7.27)

It remains to calculate the independent-chain correlation functions S(0)

↵� . For homopolymers
(which are either all A monomers, or all B monomers) there are no correlations for non-interacting
chains between the locations of A monomers and B monomers; hence SAB vanishes. So we focus
on SAA and SBB.

S(0)

AA(r, r
0) = h�A(r)�A(r

0)i

=
X

i,j2A

Z
ds

Z
ds0 h�(r � ri(s))�(r

0 � rj(s
0))i (2.7.28)

in which we have used

�A(r) =
X

i2A

Z
ds �(r � ri(s)) (2.7.29)

Now the average of the product of delta functions asks the question, if the sth monomer on chain
i is at r, how likely is it to find the s0th monomer on chain j at r0? First of all, for independent
chains, there are no correlations unless i = j. Then, the correlation can only depend on the
di↵erence in positions r � r0, not on the absolute position r; we expose this by writing

h�(r � r(s))�(r0 � r(s0))i = h�(r � r(s))�((r0 � r)� (r(s0)� r(s)))i
= h�(r � r(s))ih�((r0 � r)� (r(s0)� r(s)))i
= 1/V h�((r0 � r)� (r(s0)� r(s)))i

(2.7.30)

The second equality holds because there is no correlation between where the sth monomer sits in
space, and where the s0th monomer sits relative to the sth monomer. The final equality holds
because the sth monomer of the chain is equally likely to be found anywhere in the entire volume.

So we see that indeed S(r, r0) only depends on r � r0; taking the Fourier transform, we have

S(0)

AA(q) = (nA/V )

Z
ds

Z
ds0 heiq·(r(s)�r(s0))i (2.7.31)

in which nA is the total number of A chains. Lo and behold, we have twice before encountered this
particular integral; it is the Debye function N2

Ag(q
2R2

g), so that

S(0)

AA(q) = �ANAg(q
2NAb

2/6) (2.7.32)

So for a homopolymer blend, the scattering is

1/S(q) = 1/(�ANAg(q
2NAb

2/6)) + 1/(�BNBg(q
2NBb

2/6))� 2� (2.7.33)
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Remembering our expansion of the Debye function, for small q this is approximately

1/S(q) = 1/S(0) + q2b2

12�(1��)

1/S(0) = 1/(�ANA) + 1/(�BNB)� 2� (2.7.34)

The scattering intensity is then proportional to a Lorentzian function,

S(q)/S(0) = 1/(1 + q2⇠2)

⇠2 = b2S(0)/(12�A�B) (2.7.35)

The scattering in the forward direction diverges as we approach the spinodal condition; as well,
the length scale determined by the fallo↵ in the scattering diverges. The scattering signature of
a blend near to the spinodal is strong low-angle (low-q) scattering. The chi parameter can be
determined from the shape of the scattering, in particular from the magnitude of ⇠.


