
Chapter 3

Polymers at interfaces

3.1 Interfaces in polymer blends

When we have immiscible polymer blends — which is the most common circumstance, since it is
so di�cult to mix dissimilar polymers — materials will consist of some arrangement of droplets or
other domains of one phase within a matrix of the the other coexisting phase.

It can be advantageous to prepare such “physical blends”, as the heterogenous local structure
can give desirable macroscopic physical properties if the domain sizes are not too large. For example,
a rubbery polymer material with micron-sized droplets of a glassy polymer will be sti↵ened by
the inclusions; a glassy polymer matrix with micron-size droplets of a rubbery polymer may be
toughened.

An detailed account of how these desirable properties come about is beyond the scope of these
lectures. However, it is clear that the nature of the interface between immiscible polymers is a key
ingredient in understanding such demixed blends. In particular, the width of the interface, i.e.,
the thickness over which the polymers at the interface intermingle, is a fundamental parameter. If
the interface is broad enough that the polymers are entangled across the interface, then we may
intuitively expect the interface to be strong — certainly compared to the case where the interface
is so sharp that the two phases are only bonded together by weak dispersive (van der Waals)
interactions.

We now give a scaling argument for the width of the interface between demixed polymers. We
suppose that the phase separation is strong, in the sense that the compositions of the two coexisting
phases are nearly pure A and pure B. We begin by assuming the interface is infinitely sharp; now
ask, what would be the typical excursion that a polymer immediately adjacent to the interface
might make into the other phase?

We expect that such an excursion would be a fluctuation, typically observed if the cost to
produce it were of order kT . Since only kT is at stake, the subchain making the excursion must
adopt configurations that are only weakly perturbed from being random walks. The cost of the
excursion is then of order �n, where n is the length of the subchain. The distance h the subchain
penetrates into the other phase scales as the size of the subchain coil.

Thus we have

�n ⇠ kT

h2 ⇠ nb2 (3.1.1)

Combining these results, we have
h ⇠ b(kT/�)1/2 (3.1.2)
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We can also make a scaling argument for the surface tension at this A-B interface. The A and B
monomers are intermixed over a region of thickness h, so the interaction energy density is of order
�/⌦

0

in this region (here ⌦
0

is the volume of a monomer). Thus the interfacial tension scales as

� ⇠ h�/⌦
0

⇠ kT (b/⌦
0

)(�/kT )1/2 (3.1.3)

A more precise calculation (using the mean-field approximation) by Helfand and Tagami gives the
result

� = kT (b/⌦
0

)(�/6kT )1/2

h = 2b(kT/6�)1/2 (3.1.4)

Now a typical value for � for a weakly immiscible polymer pair might be 10�2kT or so, such
that to achieve ��N = 2 would require N = 100, i.e., short chains of less than 100 monomers
would be miscible. Then the resulting interfacial thickness is rather large relative to monomeric
dimensions, h = 20b/

p
6 ⇡ 8.2b.

((Here b is the e↵ective step size for a monomer, defined by R2 = nb2 where n is the actual
number of monomers. Since we write also R2 = C1na2, where a is the distance between monomers
along the chain, we see b =

p
C1a, somewhat larger than a.))

The corresponding surface tensions are rather small compared to typical tensions for small-
molecule liquids; for our example of � = 10�2kT we have � = kT (b/⌦

0

)/(10
p
6). Now kTa/⌦

0

turns out to be about 23mN/m, a typical small-molecule tension; so we have a value about ten
times smaller for our example. This is another consequence of the relatively weak interactions
required to demix polymers.

Note also that when � is of order its critical point value of 2kT/N , we have an interfacial
thickness of order

p
Nb, which is to say, of order the radius of the polymers in the blend. When

the interface gets to be this broad, the polymers are threatening to mix.
If � is known for a given polymer blend, then we can infer the interfacial width and tension.

On the other hand, if we can measure the interfacial thickness for an immiscible polymer pair, this
amounts to a determination of �. In the next portion of this lecture, we shall describe a scattering
technique — reflectivity, using either X-rays or neutrons — for measuring interfacial profiles.

Reflectivity

Reflectivity is scattering applied to flat, stratified samples. Films, coatings, layered phases, and
interfaces are all usefully studied by reflectivity. The regularity imposed by the parallel geometry
increases the precision with which microscopic length scales can be measured, when compared to
conventional small angle scattering.

If a sample is layered, there will typically be reflections from the top surface as well as from
buried interfaces. These reflections can interfere at the detector, which ultimately gives information
as to the vertical distance between the interfaces. If the interfaces are di↵use, such interference will
be damped out when the probing wavelength becomes of order the interfacial thickness.

To analyze reflectivity experiments, we first review the simple case of scalar waves reflecting
o↵ a single sharp interface. (By analyzing “scalar waves”, we are neglecting e↵ects related to
polarization of electromagnetic waves; this analysis is completely correct for neutrons, and turns
out to be accurate for X-rays at su�ciently small incidence angles.)

When a incident plane wave impinges on an interface, a reflected wave and a transmitted wave
result. All three waves oscillate at the same temporal frequency, because the transmission and
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reflection processes do not change the quantum of energy carried by each photon or each neutron
— the scattering is “elastic” (energy-conserving). We may write the waves as

 i = exp(iki · x� i!t)

 r = R exp(ikr · x� i!t)

 t = T exp(ikt · x� i!t)

(3.1.5)

The incoming wavevector ki defines the x-z plane; the incident angle ✓̄i is between ki and the
z axis, and the glancing angle ✓i is between ki and the x axis.

Across the interface, the index of refraction changes. We write n for the index on the incident
side, and n0 on the transmitted side of the interface. The wavenumber depends on the index, as

! = c
0

k/n (3.1.6)

in which c
0

is the phase velocity of the wave in vacuum. We write k and k0 for the wavenumber on
the incident and transmitted side respectively.

Along the interface, the waves all oscillate together, with the same spatial dependence in the x
direction. That is, the field is continuous across the interface. This implies

k sin ✓̄i = k sin ✓̄r = k0 sin ✓̄t (3.1.7)

Using the dependence of k on refractive index gives Snell’s laws,

✓̄i = ✓̄r

n sin ✓̄i = n0 sin ✓̄t (3.1.8)

A beam transmitted into a medium of higher index “bends towards the normal”, and bends away
from the normal when passing into a medium of lower index.

If the index on the transmitted side of the interface is lower than on the incident side, there is
a maximum possible value of ✓̄i, called the critical angle ✓̄c, beyond which the transmitted wave
cannot propagate:

✓̄c = sin�1 n0/n (3.1.9)

For incident angles larger than ✓̄c, there is no solution to the Snell refraction equation, and the
beam is completely reflected (as we shall see below). Just below ✓̄c, the transmitted wave travels
almost parallel to the interface.

Because we are interested in the amplitude of the reflected wave, and not just the directions of
the transmitted and reflected waves, we need one more relation, implied by the continuity of the
field and its normal derivative across the interface:

1 +R = T

k cos ✓̄ �Rk cos ✓̄ = Tk0 cos ✓̄0 (3.1.10)

Solving for R, we have

R =
k cos ✓̄ � k0 cos ✓̄0

k cos ✓̄ + k0 cos ✓̄0
=

kz � k0z
kz + k0z

(3.1.11)

The reflected intensity is the complex modulus of the reflected amplitude.
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The above discussion has been general; now we specialize to consider reflectivity of X-rays and
neutrons. It turns out that the indices of refraction for X-rays and neutrons in matter are both
slightly less than unity. We define n = 1� �, with

�X = �2⇢er0/2⇡

�N = �2c
mon

b
mon

/2⇡ (3.1.12)

In the above, ⇢e is the electron density and r
0

the classical electron radius (2.82⇥ 10�13cm), c
mon

the monomer concentration and b
mon

the scattering length for a monomer.
The scattering length is a sum over all the nuclei in the monomer; neutrons scatter from nuclei,

whereas X-rays scatter from electrons. Neutrons scatter relatively strongly from hydrogen and
deuterium, with scattering lengths of 0.667 ⇥ 10�12cm and �0.374 ⇥ 10�12cm respectively. Note
the change in sign; this is why “deuterium labeling” can be used to e↵ectively change the contrast
for neutron scattering.

Typical wavelengths for X-ray and neutron scattering experiments would be perhaps 1.5Å and
3Å respectively. For any reasonable values of electron density and monomer concentration, �X and
�N are much smaller than unity. Because n < 1 for X-rays and neutrons in matter, a beam incident
from vacuum onto matter will have a critical angle; but because n is nearly unity, the critical angle
will be very small.

We can expand Snell’s law of refraction for small grazing angle ✓ (we now work in terms of ✓,
as is customary for reflectivity), which leads to

✓2 = ✓02 + 2� = ✓02 + ✓2c (3.1.13)

From this we can identify
p
2� as ✓c, the critical angle (at which ✓0 would vanish). From the above

we can write the transmitted beam grazing angle as

✓0 =
p
✓2 � ✓2c (3.1.14)

Because the grazing angle is small, kz ⇡ k✓, so that we can convert from ✓ to kz just by multiplying
by k; hence

k0z =
p

k2z � k2c (3.1.15)

in which kc = k✓c.
So the critical angle as promised is very small (less than a degree typically). And, as we shall see

below, it is usually desirable to operate at small grazing angles (because this probes the interface
on the desired range of length scales in the z direction), but well above the critical angle (so that
the reflected intensity is weak). The reflected amplitude then becomes

R =
kz �

p
k2z � k2c

kz +
p
k2z � k2c

(3.1.16)

This result is called the Fresnel reflection coe�cient.
R(kz) becomes a complex number of unit modulus for kz below kc; thus the reflection is perfect

beyond the critical angle. For kz well above the critical angle, we can expand to find

R ⇡ k2c/(4k
2

z) (3.1.17)

Above the critical angle, the reflected amplitude falls o↵ sharply.
For an interface with structure, we can think of it as a succession of interfaces between di↵er-

entially thin slabs, each with an interface, each resulting in a weak reflected wave. Because the
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index is nearly unity everywhere and we stay well above the critical angle, we can ignore both
di↵raction e↵ects (bending of the transmitted beam) as well as multiple reflections of the reflected
beam (analogous to the Born approximation).

Thus the incident wave proceeds almost undisturbed into material, and generates set of weak
reflections from each layer. We add up the amplitudes of the scattered waves from each thin
interface, with a phase shift exp(iqz) with q = 2kz the scattering wavevector, arising from path
length di↵erence just as for small-angle scattering. The reflected amplitude dR from one layer
is proportional to the change in k2c across the interface, which is proportional to the change in
scattering density ⇢e or c

mon

(since k2c = 2k2� and � is proportional to the scattering density).
Putting this all together, we have

I = |R|2 / (kc/q)
4

����
Z

dz ⇢0(z)eiqz
����
2

(3.1.18)

In the above, ⇢(z) is the scattering length density normalized to the bulk value deep in the sample
(which we use to define kc). Hence ⇢0(z) is the normalized “density of interface”.

The result of an interface with structure is to modulate the Fresnel reflectivity law (the fallo↵
of scattered intensity as q�4 for angles well above the critical grazing angle), with the modulus
squared of the form factor (Fourier transform) of the interfacial profile. Consider an example first
of a sharply defined layer of thickness a on top of a thick substrate, in which the scattering length
density of the layer is some fraction ↵ of that of the substrate.

The normalized interface density ⇢0(z) for this problem is the sum of two delta functions, one
at the top of the layer (z = 0 and one at the bottom (z = �a):

⇢0(z) = ↵�(z) + (1� ↵)�(z + a) (3.1.19)

Then we have Z
dz ⇢0(z)eiqz = ↵+ (1� ↵)e�iqa (3.1.20)

and hence

I = (kc/q)
4

�
↵2 + (1� ↵)2 + 2↵(1� ↵) cos qa

�

= (kc/q)
4 ((1�A) +A cos qa) (3.1.21)

with A = 2↵(1� ↵). The Fresnel law is modulated by the interference between the front and back
interfaces; if the change in scattering length density is the same from vacuum to layer as from layer
to substrate, A = 1/2 and the modulation completely suppresses the intensity periodically.

The modulation period tells us the thickness of the layer. Note however that as for small-
angle scattering, the intensity is not su�cient to determine ⇢0(q), but only its modulus — phase
information needed to reconstruct ⇢(z) from ⇢0(q) is once again missing. Thus for reflectivity as well
as for small-angle scattering, structure determination requires modeling of the interfacial structure
and validation by comparison to data. But because the structure is known to be one-dimensional
(assuming the sample was properly prepared!), the modeling task is significantly easier; and because
of the strong interference between di↵erent interfaces, the signal has more structure to account for,
which helps to constrain the model.

If the interfaces are not infinitely sharp but instead are blurred out with a characteristic width
b, the Fresnel oscillations do not persist to arbitrarily high q, but decrease in amplitude, dying
away when the wavelength probed by the reflectivity (�q = 2⇡/q) becomes as small as the blurring
width b. To see this, we represent ⇢0(z) as the sum of two normalized Gaussians,

⇢0(z) = ↵ exp(�z2/2b2)/
p
⇡b2 + (1� ↵) exp(�(z + a)2/2b2)/

p
⇡b2 (3.1.22)
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The required Fourier integrals can be performed by our usual tricks of completing the square
in the exponent and shifting the integration variable, to obtain

I = (kc/q)
4 ((1�A) +A cos qa) exp(�q2b2) (3.1.23)

As promised, the oscillations, indeed the entire Fresnel reflectivity, dies away when qb > 1. If one
of the interfaces was sharp and one was di↵use, the oscillations would decay away but the Fresnel
q�4 reflectivity would persist.
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3.2 Single polymers at interfaces

One important role for polymers in complex fluids is to modify the properties of surfaces. Polymers
can be adsorbed or chemically attached to surfaces of materials or colloidal particles to change the
wettability of the surface, or to modify the attractive forces between particles in a suspension.

Colloidal suspensions, such as inks or paints (in which the pigment particles are suspended in
a carrier fluid), must be designed to be stable against flocculation, which results when dispersive
forces are su�ciently strong to cause particles to stick together when they come into contact. We
shall discuss the origins and magnitudes of dispersive forces in later lectures. For now, it su�ces
to remark that dispersive forces are generically attractive, and can only be eliminated by careful
matching of the particle and suspending fluid. This is usually impossible, however, when the choice
of particle and fluid are dictated by other concerns.

One successful strategy is to provide the colloidal particles with a loosely adsorbed layer of poly-
mer, chosen so that the suspending fluid is a good solvent. Then the adsorbed polymer layers can
serve as “bumpers” for the particles, providing a repulsive interaction to counteract the dispersive
attractions. In this and the following lecture, we shall investigate various kinds of adsorbed polymer
layers, to determine the thickness of the resulting layer, the monomer concentration profile, and
the force required to compress the layer by some amount. With these results, the strength and
range of repulsive forces provided by adsorbed polymer layers can be estimated.

Weak uniform adsorption

The simplest approach to building an adsorbed polymer layer is for the surface to be made weakly
attractive to the monomers. This method was used in ancient times in the formulation of inks,
which are polymer-stabilized suspensions of pigment (carbon black) in water.

Intuitively, a polymer near a weakly attractive surface should adopt a confined conformation,
with loops of some length projecting into the solvent. A carpet of such loops may provide repulsive
interactions with another such carpet on a second surface. We want to know, in terms of the
properties of the surface, polymer, and solvent, how tall and how dense is the adsorbed layer?

To estimate the thickness of such an adsorbed layer, we begin by making a Flory argument, for
a single chain attracted to a surface. We suppose that the binding energy of a monomer is ✏kT ,
small compared to kT , and that the attraction operates over a monomeric distance �. Following
the usual formula for such estimates, we write the free energy per chain as the sum of two terms: an
estimate of the entropy loss due to confinement, and of the energy gain due to surface attractions:

�F/chain =
R2

e

h2
� ✏N�

h
(3.2.1)

The second term results from assuming that the N monomers are uniformly distributed over a
layer of thickness h, such that a fraction �/h of them are within interaction range of the surface.
The first term is the same confinement entropy estimate we made when considering chain swelling.
Note that the confinement is only in the direction normal to the surface; the chain is free to adopt
random-walk conformations in the plane of the surface.

Minimizing with respect to h, we obtain the scaling relation

h ⇠ b2

✏�
(3.2.2)

Presuming that the interaction range � is of order b, we see that the layer thickness is of order b/✏.
If ✏ is much less than unity (weak absorption), the layer will be thick compared to a monomeric
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length, but thin compared to Re. If the binding energy is of order kT per monomer, the thickness
will be monomeric — the chain will not wander away from the surface to gain entropy, since there
is only of order one degree of freedom per monomer to be gained by wandering.

Note that the binding energy scales as

�F/chain =
N✏2�2

b2
(3.2.3)

So for example if ✏ = 1/10 and N = 1000 (and �/b = 1), the layer is 10b thick, whereas Re is
about 30b, and the binding energy is about 10kT . So even though the attraction per monomer is
small, the chain as a whole is rather strongly bound to the surface. Weakly adsorbed polymers are
di�cult to wash o↵ by mere dilution, without disrupting the attractions by a change of solvent.

End grafted chains; image methods

A di↵erent strategy for assembling an adsorbed polymer layer is “end grafting”, which is to attach
chains by one end, either by chemical bonding or a strongly attractive short-range potential. For
example, we may terminate a hydrocarbon polymer with a dipolar group, such as a carboxylic acid
or sulfonate group with its counterion; such an endgroup will prefer to sit at an interface, relative
to being bathed in nonpolar solvent. Or, we can terminate the polymer with a short length of a
second polymer, for which the solvent is poor. In either case, the endgroup will serve to anchor the
polymer at the interface by adsorption.

With end grafting, we arrange things so that the interaction between monomers and the surface
is repulsive. A single chain end-grafted to a surface is free to adopt random-walk configurations,
with the constraint that the chain path always begins at the surface, and never crosses the surface.
Intuitively, we may expect the monomers of such a chain to be spread out over a region of size Rg,
displaced away from the surface because of the constraint of not crossing. Certainly such chains
would not be confined to a thin adsorbed layer, so the height of a “bumper” built from such chains
could potentially be taller than for uniform adsorption.

It turns out that random walks near uncrossable interfaces appear frequently in many di↵erent
contexts. We now describe a useful method for dealing with such random walks, called the “image
method”. Suppose we want to perform averages over the configurations available to an ideal random
walk, which is obliged to start next to a wall, and cannot cross the wall. To keep things simple,
we consider only a one-dimensional random walk; At each timestep, the walker either takes a step
towards the wall, or away from it, each with probability 1/2. The walker starts at z = z

0

and is
not permitted to reach z = 0. We can draw the “world-line” of these walks in two dimensions, with
“time” (steps) on the vertical axis.

We would like a scheme for automatically throwing away any walk that arrives at the wall. This
can be achieved, by launching a walker at z = z

0

and an “antiwalker” at z = �z
0

; both are “free
random walkers”, unaware of the constraint of the wall. Consider the probability distribution of
the free walkers, minus that of the antiwalkers, as a function of z and n. The antiwalker can follow
the same paths available to the walker (displaced by 2z

0

); in fact, it is useful to pair up a given
path for the walker, with its mirror image for the antiwalker. If the walker never reaches the wall,
the walker stays on the positive side of the wall, the antiwalker on the left. Walkers on such paths
contribute to the probability distribution on the positive side of the wall. But if the walker ever
arrives at the wall, he meets the antiwalker and annihilates. (We may say that thereafter, we pair
up the path for the walker with the same path for the antiwalker — not the mirror image — and
they cancel forever after in the probability cloud of walkers and antiwalkers.) Thus walkers that
reach the wall contribute nothing thereafter to the probability distribution.
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This amounts to saying that the probability distribution of walkers PW (z, n) starting at z
0

that
respect the uncrossable wall is given by

PW (z, n) = P (z, z
0

, n)� P (z,�z
0

, n) (3.2.4)

in which P (z, z
0

, t) is the probability distribution for free random walks. By translational symmetry,
we have P (z, z

0

, n) = p(z�z
0

, n), and by reflection symmetry we have p(z, n) = p(�z, n). Together,
these give P (0, z

0

, n) = P (0,�z
0

, n), so that PW (z, n) vanishes at z = 0.
If the initial distance z

0

of the walker from the wall is small (one Kuhn length, for example),
the di↵erence is well approximated by a derivative with respect to the launching point of walker
and antiwalker, and we have approximately

PW (z, n) ⇡ �2b@zp(z, n) (3.2.5)

in which p(z, n) is the free random walk probability distribution

p(z, n) =
exp(�3z2/2nb2)

(2⇡nb2/3)1/2
(3.2.6)

Semicrystalline polymers; Gambler’s Ruin

One important context in polymer physics where we encounter random walks near a wall, is the
structure of the interface between a crystalline lamella and the adjacent melt in a semicrystalline
polymer. The ground state of crystalline polymers are extended chain crystals, with parallel chains
in all-trans or helical conformations, packed into a regular array. However, it turns out that crys-
tallizable polymers in practice almost never crystallize completely. Instead, when a crystallizable
molten polymer is cooled, small crystals nucleate, and grow much faster in the directions normal
to the parallel chain stems, resulting in crystalline lamellae (layers).

Crystal growth in the directions normal to the chain stems is relatively easy because only a
small portion of chains ahead of the growth front must be “combed out” to become parallel stems
ready to add to the crystal. The tangles and loops present in that region of melt are swept to the
adjacent melt, and become part of a carpet of loops above and below the lamella. Crystal growth
is extremely slow normal to the layers because it is very di�cult to extend the loops and remove
the tangles in the adjacent melt in order to extend the parallel chain stems and thicken the lamella.

The final state of crystalline polymers consists of lamellae separated by amorphous regions,
which are unable to crystallize either because they are too thin for new crystals to nucleate, or
because they are too much beset by trapped entanglements that were swept out of the adjacent
lamellae when they crystallized. (The details of this picture are a subject of current research.) A
typical crystalline polymer may only be 50 percent crystalline, with lamellae of thickness of order
100Å interleaved with amorphous layers of comparable thickness.

If the lamella grows slowly enough, the carpet of trapped loops may be rather random, charac-
teristic of a low free energy state of maximum entropy. If the chains are long, such that chain ends
are rarely encountered, every chain stem that exits a lamella must re-enter the lamella elsewhere,
or cross through the adjacent amorphous layer to reach the next lamella.

Let us first make the approximation that the next lamella is very far away, so that we have
essentially just one crystal-melt interface, made of loops. And, let us suppose that these loops
are noninteracting, ideal random walks (we will consider this assumption further, below). We may
make an analogy to a classic problem in probability theory, called the Gambler’s Ruin.

Consider a compulsive gambler with an initial stake of $1, who repeatedly plays a game in
which he bets $1, and with equal probability wins 1 or loses $1, until he goes bust. The question is,
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what is the likelihood that the gambler goes bust on the nth round of the game? (In the analogy,
the initial stake of $1 corresponds to the polymer chain starting one step above the surface, the
winnings of the gambler after k steps corresponds to the position of the chain above the surface,
and “going bust” corresponds to the return of the chain to the lamella.)

In our lecture on random walks, we showed that the probability distribution for free random
walkers satisfies a di↵usion equation. This is equally true for random walkers obliged not to cross
a wall; we have

@nP = D@2

zP + �(n)�(z � z
0

) (3.2.7)

In the above, we have added a “source term”, which injects a walker at z
0

at “time” n = 0.
We can use this equation to examine the “survival probability”, i.e., the fraction of an ensemble

of gamblers still playing the game after n rounds. The fraction of surviving gamblers is S(n) =R1
0

dz P (z, n). We can derive an equation for S(n) by integrating the PDE for P (z, n) with respect
to z, obtaining

dS/dn = � D@zP |
0

(3.2.8)

This equation expresses the conservation law in terms of the di↵usive flux of walkers into the
absorbing boundary; �D@zP is the flux into the wall, which decreases the number of surviving
walkers (gamblers).

Of course, we can also compute S(n) directly by integrating the image method solution over
all positive z. It is clear that S(n) must decay with “time” n, as the equal and opposite di↵usive
clouds of the walkers and antiwalkers on opposite sides of the wall broaden and increasingly cancel
out. By either approach, we find that �dS/dn scales as n�3/2, so that S(n) itself decays as n�1/2.

With this result, we can investigate the average time to go bust. Note that �dS(n)/dn can be
interpreted as the probability that a gambler goes bust on the nth round (the reduction of S(n)
on the nth round is S(n) � S(n + 1) ⇡ �dS/dn). In terms of the carpet of loops, �dS/dn is the
probability that a loop has length n. So the average time to go bust is

n̄ = �
Z 1

0

dnn dS/dn (3.2.9)

which diverges, because ndS/dn decays only as n�1/2. Perhaps this result explains in part the
allure of gambling; all gamblers go bust, but some take a very long time to do so.

Tie chains; cashing out; first-passage time

Now we consider the e↵ect of a second lamella, some distance L above the first. If the random
chain configuration reaches the second interface, a “tie chain” results, connecting the lower and
upper lamellae. In terms of the gambler analogy, if a gambler is lucky enough that his winnings
exceed L dollars, he is permitted to “cash out” and leave the casino. We would like to know how
likely is this unlikely event.

The direct approach to answer this question is complicated. We could try to compute the time-
dependent probability distribution for an ensemble of walkers launched one step from the lower
boundary, with absorbing conditions on both the lower and upper boundaries. Then, we could
integrate the flux at each boundary with respect to time, to see how many walkers exit through each
boundary. Note that we cannot use image methods for problems with two absorbing boundaries (or
rather, image methods are not convenient, because to enforce both absorbing boundary conditions
requires an infinite sequence of antiwalkers and antiantiwalkers and so on, each a reflection of
previous images in one of the two mirror interfaces).
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There is a simpler way. Imagine supplying a new gambler, with his starting stake of $1, onto the
casino floor at regular time intervals (every minute, following P. T. Barnum’s dictum). Eventually,
a steady state will be reached: gamblers will continually go bust or cash out, at a fixed total rate
of one per minute, balancing the influx of new suckers. To compute the fraction of gamblers who
cash out, we need only find the steady-state probability distribution of winnings, from which we
can compute the steady-state flux out each boundary.

To carry out this scheme, we change the time-dependent source �(n)�(z � zz � 0) in the PDE
for P (z, n) to a steady-state source r�(z � z

0

). Then in the steady-state limit, the time derivative
vanishes, and we have simply

0 = D@2

zP (z) + r�(z � z
0

) (3.2.10)

On either side of the source, which corresponds to a steady injection of walkers at z
0

at a rate r,
the di↵erential equation is simply P 00(z) = 0, which means P (z) is linear. P (z) vanishes at both
absorbing boundaries. Putting this together, we have

P (z) =

⇢
P
0

z/z
0

0  z  z
0

P
0

(L� z)/(L� z
0

) z
0

 z  L
(3.2.11)

The presence of the source implies a discontinuity in slope at z
0

, as can be verified by integrating
the di↵erential equation for P (z) from z

0

� � to z
0

+ �, resulting in

D @zP (z)|z0+�
z0�� = �r (3.2.12)

which is consistent with the above “rooftop” solution if we take the value P
0

such that DP
0

/z
0

plus DP
0

/(L � z
0

) equals r, i.e., such that the sum of the fluxes out both boundaries equals the
incoming rate. This gives

P
0

= rz
0

(L� z
0

)/DL (3.2.13)

The fluxes out the boundaries at z = 0 and z = L are DP
0

/z
0

and DP
0

/(L� z
0

) respectively.
The fraction of walkers exiting the far boundary is then

f =
1/(L� z

0

)

1/z
0

+ 1/(L� z
0

)
= z

0

/L (3.2.14)

Returning now to the problem of semicrystalline polymers, we have typical values of interlamellar
spacing and thickness about equal, and of order 100Å. For polyethylene, we have a Kuhn length
of about 14Å, so if we take the “injection point” (initial location of the walker) as z

0

= b, we have
f = 0.14. This fraction of tie chains is su�cient to link adjacent lamellae. (Note that lamellae may
also be tied together by loops from adjacent lamellae that entangle across the amorphous space; it
is more complicated to compute this probability of indirect coupling of lamellae in this fashion.)

We can use this same steady state to infer the mean survival time of the walkers. Because we
are supplying walkers at a fixed rate r, the number W of walkers present at any given time is the
mean lifetime n̄ times the supply rate r. We compute the number present by integrating P (z) over
the entire range, which gives W = P

0

L/2. Using our result for P
0

above, we have then

n̄ = z
0

(L� z
0

)/2D (3.2.15)

If we put D = b2/6 as appropriate for a freely jointed polymer random walk in three dimensions,
and take z

0

= b as before, we have n̄ = 3L/b (assuming L >> z
0

). With the values above for
typical crystalline lamellae and amorphous layer thicknesses, we then have n̄ ⇡ 20 Kuhn segments
as the mean length of a loop or tie chain.
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Finally, we return to consider the reasonableness of approximating the loops at the crystal-melt
interface by ideal random walks. There are two issues to consider: first, the question of whether the
loops should be regarded as “random”, i.e., maximally entropic, as they would be if the interface
were constructed to minimize the free energy. This is perhaps reasonable if the crystal grows slowly
enough that the material ahead of the crystal growth front can reorganize to some extent.

Second, we may ask whether the loops can be thought of as ideal, that is, not interacting with
each other. One way in which the loops must interact in principle is through the requirement of
constant melt density. It turns out that a carpet of random loops do correspond to a constant
density melt, but the value of the density is correct only at a particular areal density of injected
loops. This can be recognized by considering an isotropic melt, cut through by a “phantom plane”;
on each side, the halfspace is in fact a carpet of loops at constant melt density.

On a simple cubic lattice, it is easy to see that the injection density corresponding to an isotropic
melt of loops is 1/6, because in an isotropic melt the probability of a chain taking a step across
to the other side of a phantom plane immediately adjacent is 1/6. Now the actual areal density of
injected loops is set by the spacing of chain stems in the crystalline lamella, which is determined
by the crystal geometry, una↵ected by the interfacial structure. The excess of injected chains is
resolved by whatever fraction is necessary of “tight loops”, adjacently reentering the lamella.

Multiple chains, weakly adsorbed

We return to the problem of chains adsorbed to a weakly attractive interface, this time with
many chains present. As the attraction of the surface for the monomers is increased, a surface in
equilibrium with a solution of chains at some finite concentration must eventually saturate, with
all available surface sites occupied by monomers. Further increases in the surface attraction can
have no e↵ect on the adsorbed mass per unit area, nor on the shape or extent of the monomer
concentration profile away from the surface. It is this limiting adsorbed layer we would like to
describe.

The concentration profile must reach meltlike density near the surface, and fall o↵ somehow as
we move away from the interface. Surely it cannot extend much farther than the radius of gyration
of the constituent chains; there would be no reason for a chain to stretch to reach the interface, as
other less-distorted chains could take its place in filling the surface sites. Because the concentration
profile is not uniform, the usual style of Flory argument (which assumes uniform concentration
within a region of some characteristic size) cannot be used to analyze this situation.

Instead, we give a di↵erent kind of scaling argument, based on enlightened dimensional analysis.
We would like to know, what is the size of the correlation blob a distance z from the wall? If we
knew this, we would know the monomer concentration c(z), from blob scaling (c ⇠ g/⇠3 and so
forth). Now we argue that ⇠(z) cannot depend on microscopic lengths, such as the monomer size;
for if we coarse-grained the monomer appropriately, for example changed our description from
chemical monomers to Kuhn (flexible) monomers, ⇠ would not change. And, we argue that ⇠(z)
cannot depend on the total length of the chain as long as ⇠ is much smaller than Rg, just as ⇠ in
semidilute solution is not influenced by chain length for chains above overlap concentration.

So, ⇠ must be of order z itself, because we have no other lengths in the problem that ⇠ can
depend on. This is a statement both about dimensional analysis — whatever expression we give
for ⇠ must have dimensions of length — as well as a statement about what ⇠ cannot depend on
(microscopic lengths and total chain dimensions).
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Thus we write the following scaling assumptions:

⇠ ⇠ z

c ⇠ g/⇠3

⇠/ls ⇠ (g/ns)3/5

in which the latter two equations correspond to the usual assumptions that the blobs fill space,
and are constructed of self-avoiding walks of thermal blobs (size ls, mass ns). Combining these
assumptions gives

c ⇠ (ns/l
3

s)(ls/z)
�4/3 (3.2.16)

which holds down to the scale of a thermal blob (z ⇠ ls), at which c takes the value ns/l3s , which
is the concentration within one thermal blob. (At shorter length scales still, inside of one thermal
blob, the concentration profile is again inhomogeneous, finally approaching melt density in a very
thin layer near the surface.) The concentration profile is eventually cut o↵ somehow, for z beyond
Rg.

Evidently, the concentration profile obtained from uniform adsorption of chains is long-ranged,
but not very robust, in that the concentration distant from the surface is quite low. At far distances
from the interface, a simple estimate of the repulsive force between two such layers could be made
by overlapping two concentration profiles, and estimating the overlap energy as of order kT per
blob.
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3.3 Grafted polymer brushes

In the previous lecture, we analyzed the behavior of single chains end-grafted to an uncrossable
surface. Now, we consider the case of multiple grafted chains at an interface. We want to describe
the height and compressibility of the resulting polymer layer, as a function of chain length N ,
excluded volume parameter v, and grafting density � (chains per area).

For su�ciently low values of �, the grafted chains are isolated, and form individual random coils
of dimension essentially equal to RF , the Flory radius of a swollen chain in good solvent. (This
low-coverage limit is called the “mushroom” regime, with each chain forming a “mushroom” above
the surface.) When the coverage reaches of order 1/R2

F , the mushrooms begin to overlap. It then
pays for the chains to stretch away from the surface to some extent, forming a “brush” (each chain
analogous to a bristle in a hairbrush).

We construct a Flory argument to estimate the height h of the brush, as follows. The free
energy per chain we estimate in the usual way, as

�F/chain =
3h2

2nb2
+ vN

✓
N�

h

◆
(3.3.1)

In the above, the second term is the usual excluded volume estimate, with v the excluded volume
parameter, and the monomer concentration estimated as � chains per area times N monomers per
chain, spread out over a layer of thickness h.

Minimizing with respect to h gives the result

h = N

✓
v�b2

3

◆
1/3

(3.3.2)

Note that at fixed coverage �, the layer height is proportional to N , which means if we go on
doubling the chain length at fixed �, we can make the layer arbitrarily tall compared to the Flory
radius RF . In fact, we know that at � of order 1R2

F , we must get h of order RF , so our result must
be consistent with the scaling

h/RF ⇠
�
�R2

F

�
1/3

(3.3.3)

which expresses how much taller than the native coil size the layer is, as a function of coverage
relative to the overlap coverage.

We can also examine the brush using a blob model, which illuminates the structure in a di↵erent
way. A chain in the brush is envisioned as a linear sequence of correlation blobs, stacked one atop
the next. The correlation length ⇠ is set by the coverage, such that � is of order 1/⇠2. The
correlation blobs as usual are taken to be self-avoiding walks of thermal blobs. The total brush
height h scales as n⇠, where n is the number of blobs per chain. We determine n by requiring that
N/g ⇠ n, where g is the number of monomers per blob.

Together, the scaling assumptions are

h ⇠ n⇠

� ⇠ 1/⇠2

⇠/ls ⇠ (g/ns)3/5

N/g ⇠ n

Combining these assumptions (together with our usual scaling results for the thermal blob size),
we find a scaling result consistent with the Flory argument.

One result that is easy to see from the blob model is that the free energy per chain must scale
as kT times the number of blobs. (This is consistent with the estimate from the Flory argument,
but the physical origin of the result is less evident there.)
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Compressing a brush

From the Flory expression for the brush free energy as a function of height, we can immediately
determine the free energy cost of compressing the brush to a height less than the optimum height.
We are typically interested in the force per unit area (i.e., pressure) required to compress the brush
at fixed coverage (i.e., the chains do not move on the surface, or leave the brush). Noting that the
free energy per area F/A is simply � times the free energy per chain, we have

P = �@(F/A)/@h = �kT�
@(�F/chain)

@h

= �kT�

✓
3h

Nb2
� vN2�

h2

◆
(3.3.4)

The above result vanishes at the optimum height h⇤; it can be expanded to first order in
�h = h� h⇤, with the result

P ⇡ �9kT��h

Nb2
(3.3.5)

Note that the force is proportional to �, so that we can get progressively sti↵er brushes by increasing
the coverage.

The corresponding free energy change (from integrating dF/A = �Pdh, or expanding the free
energy itself around the minimum) of

�F/A ⇡ 9kT��h2

2Nb2
(3.3.6)

Thus if we compress the brush by of order the ideal end-to-end distance Nb2, which will be signif-
icantly less than the total brush height for a brush of several blobs, the change in free energy will
be of order kT per chain.

Forces are somewhat less obviously calculated within the blob picture. When a brush is com-
pressed, the blobs must become smaller and more dense, to accommodate the same number of
monomers per unit surface area in a shorter brush. The blob size in the compressed brush is
therefore not given by the coverage (as � = 1/⇠2). What remains true is that the free energy of
formation of the brush is still kT per blob, so the force to compress the brush may be inferred from
the increase in the number of blobs per chain on compression, under the assumption of a uniform
concentration and hence uniform blob size within the compressed brush.

Growing a brush

Having described the structure of a brush at a given coverage, we may ask about how a brush may
be grown or assembled on a surface. There are several possible approaches; one fancy way is to
somehow polymerize the chains from initiation sites chemically bound to the surface.

More commonly, brushes are adsorbed from solution onto an initially bare surface. The dy-
namics of this process can be complicated; for example, the same energetics that lead the chain
endgroups to stick to the surface may lead them to stick to each other in solution, forming micellar
aggregates. We shall discuss this sort of self-assembly in later lectures. For now, it su�ces to say
that if the endgroups are bound to the core of an aggregate in solution, the process of adsorbing
onto the surface may be slow, because the equilibrium concentration of free chains in solution may
be low.

But there is another reason for growth of a brush from solution to be slow. Consider the process
by which a chain from solution penetrates a pre-existing, partially constructed brush to adsorb its
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endgroup to the surface. Suppose that the chain enters the brush, dragged by its end by a “Maxwell
demon” (thermal fluctuation). The work required to drag the chain into the existing brush is equal
to kT times the number of blobs created along the chain as it enters.

This leads to an e↵ective potential U(z) that is a linear function of the distance the end has
penetrated:

�U(z) = (h� z)/⇠ (3.3.7)

Once the endgroup reaches the surface, the chain energy drops abruptly, by the binding energy ✏.
In equilibrium, the free energy change on adsorbing an additional chain from solution will be zero,
so that

0 = kTh/⇠ � ✏� kT log(c⇠2�) (3.3.8)

The last term is the change in entropy of mixing of the chain, from solution at concentration c, to
the adsorbed state, where the endgroups form an ideal gas at a concentration of one per ⇠2�, in
which � is the range of the binding interaction. Neglecting the entropy of mixing contribution, the
equilibrium coverage is such that the binding energy of the endgroup just recovers the work done
in deforming the chain to fit into the brush.

Suppose we fix the concentration of chains at the boundary of the brush to some value c
0

, and
ask about the steady rate at which chains di↵use up the potential U(z) into the brush and stick.
The di↵usion equation describing the chain concentration is a biased di↵usion PDE,

0 = @tP (z, t) + @zJ

J = �D@zP � P (@zU/⇣) (3.3.9)

The concentration current is the sum of two terms: di↵usive (first term) and driven or “drift”
(second term). The drift current is driven by the gradient in the e↵ective potential for the endgroup
position; in absence of di↵usion, the drift current would carry the chains downhill in U , away from
the surface.

In the above, ⇣ is the drag coe�cient on the chain, such that the drift velocity v times ⇣ equals
the driving force on the chain position �rU . By the Stokes-Einstein relation, D equals kT/⇣. (In
the present problem, the drag coe�cient should be a function of z, proportional to the number of
blobs along the chain as it enters the brush, but we shall ignore that dependence for simplicity.)

The steady state of polymers slowly climbing by di↵usion into the brush is described by constant
current J , which leads immediately to

P (z) = A+Be�(h�z)/⇠ (3.3.10)

with A and B to be determined by boundary conditions of P = 0 at z = 0 and P = c
0

at z = h.
Imposing the boundary conditions gives after a bit of algebra

P (z) = c
0

ez/⇠ � 1

eh/⇠ � 1
(3.3.11)

The corresponding current J can then be evaluated as

J = � Dc
0

⇠
�
eh/⇠ � 1

� (3.3.12)

We can compare this current to the naive estimate of the on-current rate, J
0

of order �Dc
0

/h (i.e.,
di↵using down a linear concentration gradient over the height of the brush). The actual current is
much smaller, by a ratio

J/J
0

⇡ (h/⇠) exp(�h/⇠) , h >> ⇠ (3.3.13)
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Physically, the current is smaller because the chains must “di↵use uphill” in the potential U(z) all
the way to the surface, before the end can adsorb and bind the chain. As the brush grows, this
leads to progressively slower adsorption kinetics, and can place a practical limitation on how many
blobs tall a brush can be.

One way to overcome this kinetic limitation to growing dense brushes is to grow from a semidi-
lute solution of the adsorbing chains, in which the correlation blob is of roughly the same size as
the desired size for the blobs in the final brush. Then, the chains everywhere in the solution are
already distorted into sequences of blobs, which eliminates the barrier that led to slow adsorption
kinetics described above. This scheme can be employed until the blobs become so small that the
solution becomes very viscous, so that the di↵usive transport of the chains from solution to the
surface is sluggish.

Brushes on particles; Daoud-Cotton

So far, we have been describing brushes grown on flat surfaces. Our results to this point are also
valid for brushes grown on particles, as long as the brush height is small compared to the particle
radius. We can also analyze the opposite limit, in which n polymer chains are grafted to the surface
of a small particle, small in the sense that the radius of the resulting polymer brush is much larger
than the particle radius. This limit includes the case of “multiarm star polymers”, in which n
chains are covalently attached to a central grafting point of molecular size.

We can describe the overall size of the resulting polymer “corona”, but not the detailed spatial
dependence of the concentration, with a Flory argument. We write the total free energy of the
assemblage (not per chain, as we have previously) as

�F =
nR2

Nb2
+ vnN

✓
nN

R3

◆
(3.3.14)

in which we have made the usual approximations for the entropy reduction due to stretching,
and the monomer interactions with the average concentration (of order nN/R3). Minimizing with
respect to R gives

R/ls ⇠ (N/ns)
3/5n1/5 (3.3.15)

(In the above, we have put R and N in terms of the thermal blob size ls and mass ns, by observing
that for n = 1 we have the original Flory argument for a single swollen chain.)

We see that the size of the corona in the limit R >> a scales with chain length in just the same
way as for a single swollen chain, unlike the case of the planar brush. As the chain stretches away
from the particle or grafting point, there is a lot of room to avoid other chains and thereby relax
further stretching. Only by increasing n can we increase R, and then only weakly, as n1/5.

To find out how the monomer concentration decreases with increasing distance from the particle,
we need a more detailed picture of the corona structure. A blob model of the corona was developed
by Daoud and Cotton. Similar to the de Gennes blob model of the uniformly adsorbed polymer
layer, the key question is to decide what should be the correlation blob size ⇠ a distance r from the
particle.

Daoud and Cotton argued that the blobs at distance r from the surface must be such that n of
them are su�cient to fill up the surface area of a spherical shell of radius r. That is, n⇠2 should
scale as 4⇡r2. We combine this with the usual scaling assumptions for the concentration within a
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blob, and for the relation between the number of monomers and size of a blob:

n⇠2 ⇠ 4⇡r2

⇠/ls ⇠ (g/ns)3/5

c ⇠ g/⇠3 (3.3.16)

Together, these imply
c ⇠ (ns/l

3

s)(⇠/ls)
�4/3 (3.3.17)

We can find the outer dimension of the corona, beyond which the concentration profile must fall o↵
more sharply than the above power law, by requiring that the integral of the concentration profile
account for all the monomers in the grafted chains:

nN = 4⇡

Z R

0

dr r2c(r) (3.3.18)

which, when applied to our scaling result for c(r), reproduces the characteristic size of the corona
we found with the Flory argument.

Polyelectrolyte brushes

An important variation on polymer brushes appears when the polymers in the brush are poly-
electrolytes, which have some number of chargeable groups along their length. Such polymers are
typically soluble in aqueous solvents (water, salt water, water-based acids, water-alcohol mixtures).
The chargeable groups consist of a cation-anion pair, one of which is covalently bonded to the
chain (here, we assume the anion). The pair can dissociate in aqueous media, leaving the polymer
charged.

The mobile cations (typically alkali metals) dissociate from the polymer for two reasons: first,
the solvent polarizes around the cation, reducing the binding energy of the cation to the anion;
second, the cations can gain translational entropy by unbinding from the anions. A quantitative
treatment of this process is complicated; we will return to this topic in later lectures. For now, it
su�ces to make the assumption that the counterions are free to explore the brush, but are unlikely
to stray far outside the brush because of electrical neutrality. That is, if the counterions were to
escape far from the brush, it would leave the surface charged, which would result in a constant
electric field and hence a constant force on the counterions, which would pull the counterions back
into the brush.

Under this simplifying assumption, the brush is in fact electrically neutral on average. However,
the counterions constitute an ideal gas within the brush, with osmotic pressure that tends to push
the brush to swell and become taller. We can once again estimate this e↵ect with a Flory argument.
We write the free energy per unit area as

�F/A = �
h2

Nb2
+ hc log c (3.3.19)

in which c is the concentration of counterions inside the brush.
We determine c in terms of the number of charges per monomer � of the chains (which depends

on how the chemist made them), as
c = N��/h (3.3.20)

Minimizing as usual with respect to h yields the scaling result

h ⇠ Nb�1/2 (3.3.21)
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Note that the brush height is now independent of coverage, determined instead by a balance between
the osmotic pressure of the counterions and the entropic penalty for stretching the chains.

Brushes made in this way can be strongly stretched for very modest charging, i.e., for � much
less than unity We may compare h to the ideal chain radius, as

h/Re ⇠ (N�)1/2 (3.3.22)

so that the stretch ratio h/Re scales as the square root of the total number of charges on the chain.
Thus we can have h/Re of order 10, with 100 charges per chain, which may be only one charge for
every 10 monomers on a chain of 1000 monomers.
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3.4 A more detailed look at brushes

In the previous lecture, we presented a Flory argument and scaling picture for grafted polymer
brushes. This description su�ces for most practical purposes, to estimate properties such as the
brush height, formation energy, and work to compress the brush by some finite amount. However,
a more detailed look reveals some oversimplified features of the model that can be remedied with
a more sophisticated though still manageable theory.

The more detailed theory, called the “strong stretching” theory for reasons we shall make clear
below, turns out to be an interesting illustration of self-consistent equations for polymers. For
this reason (and because I played some role in developing this approach), we take the time in this
lecture to explore the strong stretching theory of polymer brushes.

Beyond Flory theory; qualitative

In the Flory theory for brushes as well as the blob model, we assumed the chains in the brush were
uniformly stretched, with their free ends located at the outer extremity of the brush. The monomer
density profile is correspondingly constant. If the ends were attached to a thin plate permeable
only to solvent, this picture would be fully consistent; the Flory minimization would correspond to
balancing of forces on the plate due to chain stretching and osmotic pressure.

Suppose we start with such a brush of chains attached by their “free” end to such a plate, and
then we snip just one chain loose from the plate. What will that chain do? Freed from the constraint
to stretch alongside its neighbors, and surrounded by a uniform concentration profile, this chain
can lower its free energy by contracting back to the grafting surface and forming a random coil. In
consequence, the formerly constant concentration profile will now be not quite constant; instead,
in the vicinity of the released chain near the grafting surface, a slightly higher concentration will
result.

Now we release a second chain; it too contracts, nearly all the way to the surface, but finds
when it arrives (if it was nearby the first relaxed chain in the x-y plane) that the concentration
is no longer quite constant. The second chain may then settle into a coil slightly displaced from
the grafting surface, to avoid the concentration bump from the first chain. And so a bigger bump
results.

As we release more chains from the plate, it is clear what must occur: a nonuniform concentra-
tion profile must build up over the entire height of the brush, highest near the wall and steadily
decreasing in some fashion away from the wall. Indeed, the chains in an actual brush are not
attached to some phantom plate, and the only reason they stretch away from the grafting surface
is to avoid other chains. The chains stretch because the monomer concentration steadily decreases
away from the grafting surface.

Self-consistent theory

To describe this situation quantitatively, we make use of self-consistent field theory. That is, we
employ the same approximation we made in describing scattering from chains in a melt; namely, we
assert that the chains in the brush may be thought of as interacting with each other only through
the average local concentration. As before, we write the full partition function as a product of
single chain partition functions, with a final subtraction from the free energy of half the interaction
term, to avoid double-counting the monomer-monomer interactions:

Z = Zn
1

e�
R
d3r (1/2)U(r)�(r) (3.4.1)
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in which the single-chain partition function is

Z
1

=
X

configs

e��
R
dsU(r(s)) (3.4.2)

Now we need to say a bit more about how to do the sum over all configurations of a random walk.
If we coarse-grain the random walk at a scale above the Kuhn step, at which the chain is flexible,
each step will be approximately Gaussian distributed. So we describe the chain configurations first
as a sequence of locations {r

1

, r
2

, . . .} or equivalently as a sequence of steps {�r
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,�r
2

, . . .} in which
�ri = ri+1

� ri.
Then the sum over configurations can be written with its appropriate weight factors as
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i U(ri) (3.4.3)

We can write this single chain partition function also in a continuum fashion, as

Z
1

=

Z
Dr(s) e�3/(2b2)

R
ds (@r/@s)2e��

R
dsU(r(s)) (3.4.4)

in which r(s) is the continuum limit of ri, and @r/@s the limit of �ri (�s equals one, as we go from
one step to the next). The notation

R
Dr(s) stands for the “integral over all paths r(s)”, which

really is just shorthand notation for the big product of integrals over the values of the ri.

Strong-stretching limit

We do not yet know what the self-consistent potential U(z) actually is for the brush. We know
that it must satisfy the self-consistency condition U(z) = vhc(z)i, and we know it only depends
on z (because the problem is translationally invariant in the x-y plane). We also know from the
scaling analysis that if the coverage is high enough, the chains in the brush are strongly stretched,
with stretching energies many times kT . This means the chains are far from random walks; the
compromise each chain in a brush makes, between stretching and interacting with monomers from
other chains, is painful and exacting.

So we are led to guess that the chain configurations that will dominate the path integral (i.e.,
the sum over configurations) are those that make the exponent as small as possible, achieving the
best possible compromise between stretching (the first term) and interactions with other monomers
(the second term). To minimize the exponent, we set to zero its functional derivative with respect
to r(s), which gives

0 = �3/b2r00(s) +rU (3.4.5)

Sine we are only interested in the z component of the chain path (and U only depends on z), we
write

3/b2z00(s) = @U/@z (3.4.6)

When faced with a newly derived equation, it often pays to recall if the equation has been seen
before in some other context, where it may have been previously analyzed, and intuition about it
developed. The above equation looks just like classical mechanics of a particle in a potential —
Newton’s equation — for a particle of mass 3/b2, in a potential �U . The monomer position z is
the particle position, and the monomer index s corresponds to time. Continuing the analogy, we
consider the boundary conditions. Our chain is grafted, so we have z(N) = 0 (the particle arrives
at z = 0 in “time” N). The free end, attached to nothing, can have no tension on it; hence z0(0) = 0
— the particle starts from rest at time zero.
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Guessing the potential

We still do not know what shape U(z) must have, but we can make an inspired guess. From our
chain-releasing thought experiment, we might reasonably conclude that chain free ends ought to be
found within the brush at all distances from the grafting surface, with some probability. Translating
that statement into the language of classical mechanics: the potential �U(z) must be such that
particles falling from rest (no tension on the free end) from any distance from the surface must
arrive at the surface with the same time of flight (all chains in the brush have the same length).

That is, the potential �U(z) must be such that the period of a particle in the potential is N ,
independent of the amplitude of the motion. This is the hallmark of a simple harmonic oscillator,
as Galileo long ago observed, watching a chandelier swing after being lit. Thus U(z) must be a
parabola. The corresponding classical trajectories are cosines (the motion of an oscillator),

z(s; z
0

) = z
0

cos(s⇡/2N) (3.4.7)

in which the argument of the cosine is chosen to give z = 0 at s = N . The curvature of the potential
�U(z) can be found by the requirement that the above cosine is a solution of the equation of motion,
i.e., that a particle of mass 3/b2 takes a time N to cover one-quarter of a full oscillation. This leads
to

U(z) = A�Bz2

B = 3⇡2/(8N2b2) (3.4.8)

The coe�cient A is found by the requirement that U(h) = 0 (monomer density goes to zero at
the extremity of the brush) and

R
dz U(z) = v

R
dz c(z) = vN� (all monomers reside within the

brush). This gives

A = Bh2

2Ah/3 = vN� (3.4.9)

which leads to

h = (4vb2�N3/⇡2)1/3

A = (3/2)(⇡�v/2b)2/3 (3.4.10)

We see that the brush height scales as predicted by the Flory argument, but with a di↵erent
numerical prefactor.

End density; consistency

It remains to check whether some positive density of free end locations is indeed consistent with
a parabolic concentration profile. In fact, it turns out to be possible to say exactly what the end
density ✏(z) is as a function of z. For present purposes, it su�ces to give an argument that some
positive ✏(z) must work. Consider the contribution to the monomer density made by a single chain
launched from some z

0

. The chain starts from rest, depositing monomers at each tick of the clock
as it travels towards the grafting surface. Because the chain us unstretched at the free end, and
most stretched near the wall, the monomers from the chain are more spread out near the wall, and
bunched up near the free end.

That is, the contribution ��(z; z
0

) of this chain to the density decreases as z decreases, i.e., as
we move towards the wall. The chain lays down monomers further apart when it is more stretched,
according to

��(z; z
0

) = (dz/ds)�1 (3.4.11)
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(read the right-hand side as “one over (length per monomer)”, or “monomers per length”).
Whereas, the monomer density we are trying to build up from the contributions of individual

chains increases as we move towards the wall. So if we launch a chain from the outer extremity of
the brush, it will “underfill” the profile we are trying to reproduce, leaving room for another chain
to be launched from some z

0

slightly closer in, which will again underfill the profile, and so on. So
the end density is a positive function — launches of chains everywhere in the brush are required to
build up the profile — and our initial assumption is consistent.

The resulting picture of the grafted brush di↵ers from the simple Flory or scaling description
in several respects. First, of course the concentration profile is not flat; instead, the concentration
gradient is what drives the chains to stretch. Furthermore, the chains can have their free ends
anywhere in the brush; there is a large degeneracy of possible configurations, even in the strong
stretching limit.

We may make an analogy between chains in a brush, and o�ce workers who commute to
Manhattan. They can live close, in the city somewhere; their commute is short, but housing is
expensive and apartments are small. Or, they can live in New Jersey, and su↵er a long commute
but own a big inexpensive house. To the extent that o�ce workers in Manhattan are identical (as
are the chains in our brush) the tradeo↵ between the long commute and the cost of real estate is
an even trade; if it weren’t, more people would move into or out of the city, making the commute
worse or the real estate more expensive, until the tradeo↵ was perceived as even.

(Of course, o�ce workers are not identical; some are dedicated urbanites, willing to put up with
the indignities of city living but not willing to sit in a car for three hours a day. And some are
dedicated suburbanites, willing to su↵er long commutes to live surrounded by grass. In a brush
with short chains (urbanites) and long chains (suburbanites), the short chains will crowd out the
long chains near the grafting surface, and break the degeneracy.)

Free energy of assembly; compression

To compute the free energy of assembly of the brush, we could proceed in a straightforward way,
by summing over the free end density the stretch free energy of each chain, and integrating the
monomer-monomer interactions over the height of the brush. There is a simpler approach. Because
the chains in a brush are degenerate with respect to free end location, it must be that the free energy
�F (z

0

) required to add one chain to the brush with free end at z
0

must be independent of where
we put its free end. The simplest place to evaluate �F is with z

0

= 0 — a chain with no stretch,
only excluded volume penalty — whereupon �F = NA.

Then we can compute the free energy to assemble the brush, by progressively adding chains to
increase the coverage:

F/area =

Z �

0

d�0NA(�) (3.4.12)

Since A scales as �2/3, this leads to

F/chain = (1/�)F/area = (3/5)NA(�) (3.4.13)

Now we reconsider what happens when we compress a brush, either against another brush
or with a (hypothetical) semipermeable plate. The chains in the brush are stretched, so we do
not expect much interpenetration between brushes, hence the two methods of compression are
equivalent. The concentration profile must remain parabolic; the monomers in a compressed brush
are accommodated by increasing the constant A in the profile to whatever level is necessary to
account for all the monomers.
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The force per unit area required to compress the brush is simply the osmotic pressure of a
polymer solution of the concentration at the extremity of the brush. For a mean-field description
of a polymer solution, we write the free energy per unit volume f as

�f = �F/V = (1/2)vc2 (3.4.14)

in which c is the monomer concentration, and the factor of 1/2 corrects for “double counting”, i.e.,
we have an interaction energy of kT for every pair of monomers that su↵er a near-collision.

Now the osmotic pressure ⇧ is the change in free energy with respect to the system volume at
fixed number of polymer chains (or monomers or whatever):

⇧ = � @F

@V

����
n

(3.4.15)

To evaluate this, we recognize that the monomer concentration c can be written as nN/V , where
N is the number of monomers per chain, n the number of chains, and V the system volume. Then
we have

�⇧ = �@(V �f)

@V

= �
✓
�f + V

@�f

@c

@c

@V

◆

= �
✓
�f � c

@�f

@c

◆

= (1/2)vc2 (3.4.16)

Simple calculations can be made following these ideas, with the result that the free energy of a
compressed brush (h less than the unperturbed height) is

. . . (3.4.17)

By expanding around the equilibrium height, we find that the force at small compressions �h is
not linear in �h, but goes as �h2. This is a consequence of the “softer” concentration profile of the
self-consistent brush, which vanishes linearly at the brush extremity.

Corrections to strong stretching; “fuzz”

In a sketch of a polymer trajectory within the brush, we typically draw a random-looking blob of
monomers near the free end location, which then stretches out progressively as it heads for the
grafting surface. This is accurate, in that there are random fluctuations on top of the classical
trajectories. Because the classical particle starts from rest, for a certain length of time (segment
of chain) the random displacement h�z2i, which grows as sb2, exceeds the average displacement of
the trajectory.

(To present yet another strained analogy, the motion of the chain near its free end is reminiscent
of Wile E. Coyote, in frantic (random) motion as he runs o↵ a cli↵. At first, his random motion
exceeds the deterministic falling motion to the canyon floor; very soon, however, no amount of
stochastic flailing can return him to the edge of the cli↵.)

We can construct a scaling relation for the arclength distance and corresponding mean-square
displacement at which the stochastic and deterministic displacements become equal. This deter-
mines the length scale ⇠ of “fuzz” in many quantities in the brush, including for example the
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sharpness of the break in slope of the concentration profile at the brush edge. The stochastic
displacement is

h�z2i = sb2 (3.4.18)

whereas the deterministic displacement is

�z = z
0

� z
0

cos(⇡s/2N) ⇡ z
0

(⇡s/2N)2 (3.4.19)

Taking z
0

to be of order h, and using the scaling relations above for the brush height, after a
bit of algebra we arrive at a crossover arclength s⇤ scaling as

s⇤/N ⇠ (h/Re)
�2/3 (3.4.20)

As the brush becomes more strongly stretched and h/Re increases, the fraction of monomers s/N
for which random displacements are important decreases. Correspondingly, the spatial extent of
these random displacements becomes smaller, as

�z⇤/h ⇠ (s⇤/N)2 ⇠ (h/Re)
�4/3 (3.4.21)

The more strongly stretched are the chains in the brush, the smaller the size of the fuzz relative to
the brush height.

This strong-stretching, classical-mechanics approach to grafted polymers has been employed to
treat polydisperse brushes, bending rigidity of brushes on flexible surfaces (a model for surfactant
bilayers), growth and exchange kinetics, and properties of block copolymer mesophases.


