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Etherton, Terry D., and Dale E. Bauman. Biology of Somatotropin in Growth and Lactation of Domestic
Animals. Physiol. Rev. 78: 745–761, 1998.—Impressive progress has been made during the past 15 years in our
understanding of the biology of somatotropin (ST) in domestic animals. In part, this progress was sparked by
advances in biotechnology that made feasible the production of large quantities of recombinant bovine ST (bST)
and porcine ST (pST). The availability of recombinant bST and pST resulted in an exponential increase in
investigations that explored their role in growth and lactation biology, as well as evaluated their potential for
commercial use. Collectively, these studies established that administration of bST to lactating dairy cows in-
creased milk yield, and treatment of growing pigs with pST markedly stimulated muscle growth and reduced
fat deposition. In addition to these ‘‘efficacy’’ studies, a substantial number of investigations examined the
mechanisms by which ST affects lactation and growth of domestic animals. This review summarizes the diverse
physiological effects ST has on growth and lactation and discusses the underlying mechanisms that mediate
these effects in domestic animals.

I. INTRODUCTION production, the benefits of ST include effects on environ-
mental impact through reductions in animal waste prod-
ucts and expenditures for feed production, including fertil-Technological developments in a variety of scientific
izer and other inputs associated with growing, harvesting,and engineering disciplines will be needed to support the
processing, and storing animal feed (13, 101).growing world population, which is expected to double in

Another important impetus for developing biotech-the next 40 years. It has been estimated that the supply of
nologies for animal agriculture is the need to reduce thefood required to adequately meet human nutritional needs
fat content of fresh meat products. Numerous studiesover the next 40 years is quantitatively equal to the amount
have shown that ST effectively alters nutrient use in grow-of food previously produced throughout the history of hu-
ing animals in a manner that markedly reduces the amountmankind (137). To meet this need, it will be essential that
of carcass fat. This is important because of the evidencescientists continue to develop new technologies that in-
that certain saturated fatty acids (e.g., myristic and pal-crease productive efficiency of food production. With re-
mitic acids) found in animal fat potently elevate low-den-spect to animal agriculture, administration of exogenous
sity lipoprotein cholesterol levels, a major risk factor forsomatotropin (ST) is one biotechnology that increases the
coronary heart disease (4, 113). Because animal productsfood output (meat or milk) per unit of feed resource input.

In addition to positive effects on the efficiency of food provide Ç60–70% of the total saturated fatty acids in the
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average American diet (103), it is evident that new tech- II. STRUCTURE OF SOMATOTROPIN

nologies that reduce fat content of fresh meat will be of
benefit to consumers who wish to reduce their risk of Somatotropin is a protein hormone synthesized in
chronic diseases. and secreted from the anterior pituitary gland. Somato-

Somatotropin was first characterized in the 1920s tropin secretion is regulated by two well-characterized
when Evans and Simpson (72) demonstrated growth-pro- hypothalamic peptides that act to stimulate (growth hor-
moting effects in rats treated with a crude extract from mone-releasing factor; GRF) or inhibit (somatostatin) re-
bovine pituitaries. The discovery that the pituitary con- lease of ST from the pituitary gland (169). In addition
tained a factor that stimulated growth led to this factor to these two peptides, evidence (reviewed in Ref. 162)
being referred to as ‘‘growth hormone.’’ It became appar- indicates that a third as yet unidentified hormone binds
ent shortly thereafter, however, that growth hormone did to the growth hormone secretagogue receptor to stimulate
much more than stimulate growth, since administration ST release using a signal transduction pathway distinct
of pituitary extracts also enhanced milk yield in lactating from that of GRF. Somatotropin contains 191 amino acids,
rats (166) and goats (6) and reduced carcass fat in growing and bST and pST share a high degree of amino acid se-
rats (22, 55, 117). Another major development in ST re- quence similarity (Ç90%; Refs. 19, 68). In contrast, the
search occurred in 1937 when Russian scientists treated amino acid sequence of both bST and pST is appreciably
600 dairy cows and demonstrated that milk yield was in- different from human ST (hST) (Ç35% of the amino acids
creased as long as administration of pituitary extract con- in hST differ from both bST and pST). Because of this
tinued (7). It was not until 1945, however, that ST was difference, bST and pST have no effect on human growth,
isolated from the anterior pituitary (119). This allowed Li consistent with their binding affinity to the hST receptor
et al. (120) to conduct the first experiment to show that being several orders of magnitude lower than that of hST
crude preparations of ST mimicked the effects the alka- (36, 118, 135).
line pituitary extract had on carcass fat in rats. Others It is important to appreciate that there are variant
extended this finding to lactation and demonstrated that forms of ST. For example, bST is released from the pitu-
ST was the galactopoietic factor in pituitary extracts itary as four variants. These variants have either a leucine
(188). In addition, British scientists conducted studies in or valine substitution at position 127 and an alanine (191-
the 1940s to evaluate the potential of using bovine ST amino acid sequence) or a phenylalanine (190-amino acid
(bST) to help alleviate food shortages during World War sequence) at the NH2 terminus (185). The variation in the
II. Although they found bST increased the milk yield of NH2 terminus is due to differences in cleavage of the sig-
dairy cows, the amount of bST that could be extracted nal peptide. The frequency of these gene alleles differs
from the pituitary glands of slaughtered animals was inad- between dairy breeds (122). Furthermore, there is some
equate to impact commercial production (188). indication that these variants may differ in their potency.

Breakthroughs in biotechnology in the early 1980s en- Although studies have been limited, results indicate that
abled ST to be produced by recombinant DNA technology. treatment with the valine-127 variant elicited a greater
This resulted in the first study in 1982 in which recombi- increase in circulating ST and milk yield than the leucine-
nantly derived ST was administered to domestic animals. In 127 variant (63, 64). The commercial bST formulation
this study, lactating cows were treated with recombinant (Monsanto, St. Louis, MO) approved for use in dairy cows
bST (14). The subsequent production of large quantities of is the 190-amino acid variant with leucine at position 127,
recombinant bST and porcine ST (pST) resulted in an expo- and it has an extra methionine at the NH2 terminus.
nential increase in investigations that explored the role of The three-dimensional structure of pST (1) and hST
ST in growth and lactation biology, as well as evaluated (50, 182, 183) has been established. Somatotropin consists
their potential for commercial use. Collectively, these stud- of four a-helices and adjoining regions of nonhelical poly-
ies resulted in an unprecedented increase in our understand- peptide. Each ST molecule is bivalent because it contains
ing of how ST affects growth and lactation of domestic two separate sites (site 1 and site 2) that bind to different
animals. Thus the objectives of this review are 1) to provide ST receptors. Indeed, bST has been shown to bind to
an overview of the remarkable biological effects that ST has recombinant ST binding protein (the extracellular domain
on lactation and growth of domestic animals and 2) to re- of the receptor) in a 1:2 molar ratio, suggesting that bST
view our present understanding of the biological mecha- forms a homodimer with its receptor (165). Although we
nisms that account for the diverse and orchestrated effects are unaware of any similar data regarding pST receptor
ST has on metabolism and nutrient partitioning. The focus dimerization, it seems likely that this occurs because of
of this review is on growing pigs and lactating dairy cows the structural similarities between hST, bST, and pST and
because the database related to production responses and their respective receptors. Dimerization of the ST recep-
the biological mechanisms of ST action is much more exten- tors occurs in a sequential manner, with site 1 interacting

with a receptor followed by site 2 binding. Studies withsive for these species than for other domestic animals.
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TABLE 1. Effect of pST on accretion rates of protein andtransgenic mice expressing bST mutated in site 2 also
lipid in growing pigs (60–90 kg)have shown that these mice do not have the characteristic

growth response (38).
Accretion Rate, g/day

The ST receptor for cattle and pigs has been cloned
Gender pST, mg/kg Protein Lipid(41, 92). The pST receptor cDNA sequence shares 89%

sequence identity with the hST receptor cDNA (41), and
Male 0 162 340

the bST receptor cDNA sequence is 76% identical (92). 100 273 134
Female 0 119 344Thus the sequence similarities among the pST, bST, and

100 220 134hST receptors are much greater than for the respective
hormones that bind to the homologous receptor. A num- Dose of porcine somatotropin (pST) represents daily dose.

Adapted from Campbell et al. (34).ber of mRNA variants for the ST receptor have been re-
ported for cattle (93), sheep (142), and other species in-
cluding humans (189). Studies have shown that a single
arginine residue in the hST receptor is the major determi- g/day), it is apparent that the biological capacity or ‘‘ceil-
nant of species specificity in ST binding (164). ing’’ (as estimated by maximally effective doses of pST)

for protein accretion is still considerably greater than
rates presently attained despite the impressive improve-

III. EFFICACY OF SOMATOTROPIN
ments that have occurred with genetic selection over the
last several decades in protein accretion rate. This sug-

A. Growth gests that considerable progress in increasing protein
accretion rate can still be made with genetic selection
programs that use protein accretion rate as a selectionSomatotropin has been shown to have impressive ef-

fects on nutrient partitioning between muscle and adipose criterion.
The early studies evaluating the effects of pST ontissue that leads to a dramatic alteration in the growth of

these tissues. Daily administration of maximally effective growth and carcass composition (40, 71, 73) suggested
that responsiveness was age dependent. This has beendoses of pST (¢100 mgrkg body wt01

rday01) to growing
pigs for 30–77 days can increase average daily gain verified in subsequent studies (Table 2) that have shown

the increase in growth rate and effects on protein and lipidÇ10–20%, improve feed efficiency (i.e., the ratio of feed
consumed to body weight gain) 13–33%, decrease lipid deposition with pST treatment are significantly greater in

the latter phase of the growth cycle. The mechanisms thataccretion rates by as much as 70%, and stimulate protein
deposition (muscle growth) by as much as 62% (reviewed account for this remain unclear.

There is a good understanding of how changes in thein Refs. 66, 68, 137). In general, responses in lean tissue
accretion to ST treatment have been less for growing ru- pST dose affect various parameters of growth, productive

efficiency, and carcass composition (28, 73, 137). Collec-minants than observed for pigs. However, this species
difference appears to relate to the difficulty in ensuring tively, these studies have established that the dose rela-

tionship varies considerably among the different parame-an amino acid supply that is adequate in balance and
quantity. When the supply of rumen microbial protein is ters (see Fig. 1). For example, body weight growth and

rate of protein accretion are maximally stimulated at acomplemented with additional amino acids that escape
rumen fermentation, the dramatic increase in protein ac- daily dose of pST of Ç100 mg/kg body wt. In contrast,

lipid accretion rate and the ratio of feed consumed tocretion with bST treatment of ruminants is comparable
to that observed with pST treatment of growing pigs (re- body weight decrease in a more linear manner over a

range of pST up to 200 mg/kg body wt (see Fig. 1). Theviewed in Refs. 27, 137).
It is evident that pST administration has dramatic fact that there are differences in the shape of the dose-

response curves is important because it illustrates thateffects on protein accretion even in pigs highly selected
for rapid growth and high rates of protein accretion (34). pST affects growth and nutrient metabolism of adipose

tissue and muscle by different mechanisms. This is furtherThis is vividly illustrated by the results in Table 1, which
show the effects of pST on rate of protein accretion in illustrated by how dietary protein restriction affects lipid

and protein accretion in pST-supplemented pigs (Fig. 2).pigs that are considered to be ‘‘genetically elite’’ for rapid
protein accretion. In this study, boars (intact males) The stimulatory effects of pST on protein accretion and

circulating insulin-like growth factor (IGF)-I are progres-treated with pST gained 273 g protein/day. This is the
highest rate of protein deposition observed in pigs to date sively decreased until they are completely blunted as di-

etary protein levels decline (Fig. 2). In contrast, the abilityand corresponds to a muscle growth rate of Ç1.4 kg/day.
When this rate of protein accretion rate is compared with of pST to reduce lipid accretion occurs across the range

of dietary protein, even with the diets that contain thethat observed for elite pigs not treated with pST (162
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TABLE 2. Summary of levels of performance and accretion rates of protein and lipid and responses to exogenous

pST across different phases of growth in pigs

Accretion Rate, g/day

Phase of Growth pST, mg/kg Gain, g/day Gain/Feed Protein Lipid

10–25 kg* 0 680 0.61 96 89
120 680 (0) 0.61 (0) 113 (/17) 61 (031)

20–50 kg† 0 900 0.43 120 207
150 990 (/10) 0.49 (/13) 150 (/25) 122 (041)

50–100 kg† 0 1,140 0.33 135 340
150 1,334 (/17) 0.44 (/33) 235 (/74) 61 (082)

Dose of pST represents daily dose. Values in parentheses are response to pST treatment (in %). [* Data from Harrell et al. (89). † Data from
Boyd et al. (27).]

lowest protein levels. Collectively, the results depicted in to decrease glucose (the primary substrate for lipogenesis
in pig adipose tissue) utilization in adipose tissue resultsFigs. 1 and 2 also provide valuable insight about nutrient

requirements of pigs treated with pST. The marked in a situation where glucose that is normally used for
lipogenesis is redirected to other tissues, primarily mus-changes that occur in compositional growth and growth

rate in pigs treated with pST clearly underscore the impor- cle. This metabolic adaptation is important because it 1)
decreases the rate of adipocyte hypertrophy and, hence,tance of making adjustments in the dietary amino acid-

calorie relationship to ensure an adequate availability of the rate of adipose tissue accretion and 2) accounts for
the effects that ST has on productive efficiency as wellessential amino acids to accommodate the enhanced rate

of protein accretion. This is particularly important be- as contributes to the increase in muscle growth.
cause this dose of pST decreases feed intake.

The precipitous decrease in lipid deposition (see Fig.
B. Lactation1) observed when pigs are treated with a daily dose of

30–200 mg pST/kg body wt illustrates the magnitude to
which pST can alter nutrient utilization by adipose tissue Administration of exogenous ST has been shown to

enhance lactational performance in mammals rangingand subsequent adipocyte hypertrophy. The effect of pST

FIG. 1. Relationship between porcine so-
matotropin (pST) dose and different parameters
of growth performance (68). BW, body weight.
[Adapted from Boyd and Bauman (26) and Boyd
et al. (27).]
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the first few days of bST treatment and reaches a maximum
during the first week. If treatment is terminated, milk yield
gradually returns to pretreatment levels over a similar time
period. However, when treatment is continued, the in-
creased milk yield is maintained (Fig. 3). Thus bST results
in a greater peak milk yield and an increased persistency
in yield over the lactation cycle. As a consequence of the
changes in the lactation curve, commercial use of bST has
allowed a shift to extended lactations. On a herd basis, this
results in fewer parturitions, lower incidence of postpar-
tum metabolic diseases, lower veterinary costs, and an
overall improvement in herd life, animal well-being, and
dairy farm profitability (171).

Lactational response to bST is a function of the daily
dose represented by a hyperbolic dose-response curve
with a pattern of diminishing marginal returns to increas-
ing doses (17, 129). The daily bST dose needed to optimize
milk yield response results in blood concentrations of ST
that are within the range typically observed during epi-
sodic release of endogenous hormone, but average daily
concentrations are severalfold higher than before treat-
ment. Milk yield response appears to be related to the
average daily ST concentration rather than a particular

FIG. 2. Effect of dietary protein level on circulating insulin-like
growth factor (IGF)-I and rates of lipid and protein accretion in growing
pigs treated with pST (90 mg/day from 30 to 60 kg body wt; s) or excipient
(l). Dietary protein levels were 8.9, 11.4, 14.5, 17.6, 20.7, and 23.8%.
[Constructed using data of Campbell et al. (33).]

from laboratory animals to humans (19, 85, 134). In the
case of farm animals, a milk yield response has been dem-
onstrated with ST treatment of pigs, sheep, goats, and
cows. The majority of research has involved dairy cows,
and bST has been approved for commercial use in 25
countries. Additional countries have approved but have a
political moritorium on its use, e.g., European Union (91).
Commercial use in the United States commenced in early
1994, and adoption was unusually rapid for an agricultural
technology; Ç2 million dairy cows were receiving bST by
3 years postapproval.

Milk yield response to bST has been observed for all
dairy breeds and in animals of different parity and genetic
potential (30, 91, 137). In general, response is negligible in
early lactation before peak yield, so bST use is over the
last 80% of the lactation cycle. Typical milk yield responses
are increases of 10–15% (Ç4–6 kg/day), although even

FIG. 3. Effect of bovine somatotropin (bST) on milk yield andgreater increases occur when the management and care of
voluntary intake. Commencing at week 0 (84 { 10 days postpartum),

the animals are excellent (13, 39, 137). The pattern of re- cows received a daily injection of excipient (dotted line) or bST (27
mg/day; solid line) for 26 wk. [Adapted from Bauman et al. (16).]sponse is one where milk yield gradually increases over
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pattern of circulating ST. Studies have demonstrated a using a combination of artificial insemination (semen
from superior sires) and embryo transfer (13).similar milk yield increase regardless of whether the daily

dose of bST was administered as a single bolus, constant
infusion, or as equal episodic pulses at 4-h intervals (17).

IV. MECHANISMS OF SOMATOTROPIN ACTIONThe commercial form of bST presently used in the United
States is a prolonged-release formulation (500 mg methio-
nyl-bST; Monsanto) that is administered every 2 wk (91). The range of biological effects ST has on growth and
The formulations of other companies are currently being lactation is extraordinary (Table 3). Somatotropin orches-
evaluated by the Food and Drug Administration. trates many diverse physiological processes so that more

The gross composition of milk (fat, protein, and lac- nutrients can be used for lean tissue accretion (during
tose) is not altered by treatment with bST (9, 13, 30, 37, growth) or milk synthesis (during lactation). Somato-
172). Thus the daily output of the major milk constituents tropin is a homeorhetic control that affects numerous tar-
is increased by an amount comparable to the increase in get tissues in ways that are highly coordinated to affect
milk volume. The concentrations of fat and protein in marked changes in nutrient partitioning among these tis-
milk normally vary as a result of factors such as genetics,
breed, stage of lactation, season, diet, and nutritional sta-

TABLE 3. Biological effects of somatotropin in farmtus. These same factors also affect the composition of
animals during growth and lactationmilk from bST-treated cows. In addition, proportions of

total milk protein, represented by whey proteins and the
Tissue Physiological Process Affected

different casein fractions, and the fatty acid composition
Skeletal muscle F Protein accretionare not substantially altered. As a result, use of bST has

(growth) F Protein synthesisno impact on manufacturing characteristics of milk (9,
F Amino acid and glucose uptake

116, 172, 190). F Partial efficiency of amino acid utilization
Bone (growth) F Mineral accretion paralleling tissue growthMicroconstituents of milk are also unchanged. For
Mammary tissue F Synthesis of milk with normal compositionexample, milk from bST-treated cows does not differ in

(lactation) F Uptake of nutrients used for milk synthesis
vitamin content or in concentrations of nutritionally im- F Activity per secretory cell

F Maintenance of secretory cellsportant mineral elements (13, 172). Milk also contains
F Blood flow consistent with change in milkmany hormones and growth factors; two that have re-

synthesis
ceived substantial attention are ST and IGF-I. At the bST Adipose tissue f Glucose uptake and glucose oxidation

f Lipid synthesis if in positive energy balancedoses that enhance milk yield, the concentration of bST
F Basal lipolysis if in negative energy balancein milk is unchanged. In fact, the milk concentration of
f Insulin stimulation of glucose metabolism

bST is only increased when provocative doses of exoge- and lipid synthesis
F Catecholamine-stimulated lipolysisnous bST are administered to dairy cows (30, 104). In the
F Ability of insulin to inhibit lipolysiscase of IGF-I, small increases in milk concentrations were
f GLUT4 translocation

observed in the initial studies. As the number of animals f Transcription of fatty acid synthase gene
f Adipocyte hypertrophyand range of situations were expanded, it became evident
F IGF-I mRNA abundancethat milk IGF-I varied widely between cows and was af-

Liver F Glucose output
fected by many factors (e.g., herd, stage of lactation, envi- f Ability of insulin to inhibit gluconeogenesis

Intestine F Absorption of calcium and phosphorusronment), and use of bST has minimal, if any, impact on
required for milk (lactation) or bonethe milk concentration of IGF-I (44, 46, 75, 104). Overall,
(growth)

studies of the macro- and microcomponents of milk indi- F Ability of 1,25-vitamin D3 to stimulate
calcium binding proteincate that composition is unaltered by use of bST.

F Calcium binding proteinThe major factor affecting the magnitude of milk re-
Systemic effects F Circulating IGF-I and IGFBP-3

sponse to bST is the quality of management (13, 45, 130, f Circulating IGFBP-2
f Amino acid oxidation and blood urea145). Of special importance is the nutritional program.

nitrogenMilk production responses to bST are not dependent on
f Glucose clearance

special diets or unique feed ingredients, but animals must f Glucose oxidation
f Response to insulin tolerance testreceive adequate amounts of a balanced diet. Overall,
F NEFA oxidation if in negative energy balancedaily nutrient requirements are increased by an amount
F Cardiac output consistent with increases in

equal to the increase in milk, and productive efficiency milk output (lactation)
F Enhanced immune response(milk per unit of feed) is improved because a greater

proportion of the nutrient intake is used for milk synthesis
F , Increase; f , decrease; IGF-I, insulin-like growth factor I; IGFBP,

(13, 137). In fact, the gain in productive efficiency ob- insulin-like growth factor binding protein; NEFA, nonesterified fatty
acids. [Adapted from References 15, 19, 62, 65, 68, 146.]tained with bST use would take 10–20 years to achieve
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sues. The biological effects of somatotropin can be Effects of ST on lipid synthesis are of special impor-
tance in growing animals because they generally have sub-broadly classified as either somatogenic or metabolic. The

somatogenic effects are those in which ST stimulates cell stantial rates of fat deposition, especially during the phase
of the growth curve that precedes market weight (68).proliferation. These effects are mediated by IGF-I (155).

Many of the metabolic effects are a direct action of ST For example, in growing pigs between Ç50 and 100 kg
body weight (market weight), there is a precipitous in-that involve a variety of tissues and the metabolism of all

nutrient classes: carbohydrate, lipid, protein, and minerals crease in lipid accretion rate (Fig. 4; Ref. 70). During this
period,Ç120–350 g/day of lipid is synthesized and depos-(see Table 3). These coordinated changes in tissue metab-

olism alter nutrient partitioning and thus play a key role ited daily in adipose tissue (66–68). Because pigs typically
consume diets that are quite low in fat (Ç9% of calories vs.in increasing growth performance or milk yield.

The principal effect of ST is on partitioning of ab- Ç34% of calories for human diets), the majority (Ç80%) of
lipid in the body is derived from de novo fatty acid synthe-sorbed nutrients. In lactating cows or growing cattle

treated with bST, digestibilities of dry matter, carbon, ni- sis (141), and adipose tissue is the major site of conversion
of excess energy to fatty acids in both pigs and cattle (12,trogen, and energy are not altered (15, 26, 37, 61). The

energy expenditure for maintenance or the partial effi- 141). The extent of this is illustrated by isotope kinetic
studies that have shown thatú40% of whole body glucoseciency of milk synthesis is not altered in dairy cows

treated with bST (108, 170). Likewise, studies with grow- turnover is being used by adipose tissue for de novo lipo-
genesis in 80-kg pigs (57).ing pigs and cattle have shown that the energetic effi-

ciency of specific processes is not altered. However, main- One mechanism by which somatotropin alters nutri-
ent partitioning is to modulate tissue responsiveness totenance costs at a given body weight are increased by

pST administration in pigs that is consistent with the fact insulin. Somatotropin treatment reduces whole body glu-
cose response when insulin tolerance tests are conductedthat pST-treated animals have a greater proportion of lean

tissue (27, 32, 176, 177). (56, 84, 158). This effect of ST is frequently referred to as
insulin resistance, but this is somewhat misleading sinceThe remainder of this review discusses the mecha-

nisms by which ST exerts its biological effects. The objec- the effect is clearly tissue specific and relates to only
tive is to provide an overview of the mechanisms; many
previous reviews have addressed more specific aspects of
ST action in domestic animals (19, 62, 65, 137).

A. Effects on Lipogenesis and Lipolysis

Somatotropin has dramatic effects on adipose tissue
and lipid metabolism (Table 3). Both lipogenesis and lipol-
ysis are altered by ST treatment, with effects on lipid
synthesis being of major importance if animals are in posi-
tive energy balance, whereas effects on lipolysis predomi-
nate when animals are at an energy balance near zero or
negative. In addition, the effects of ST on lipid metabolism
are chronic rather than acute. An acute insulin-like effect
of ST has been reported in laboratory animal studies with
adipose tissue from ST-deficient animals or animal treated
with ST antiserum (77, 82, 157, 161). However, this is an
experimental paradigm that requires a complete absence
of ST as a prerequisite (58). Acute lipolytic effects of ST
were also reported in earlier studies (47, 81, 83). Such
effects are never observed in domestic animals using
more highly purified preparations of ST (19, 26, 68, 99).
Rather, ST effects are chronic and predominately involve
alterations in the ability of acute homeostatic signals to
alter rates of lipogenesis and lipolysis. Furthermore, these
effects appear to be a direct action of ST on adipose
tissue, because essentially all effects that occur with in
vivo ST treatment can be mimicked when adipose tissue FIG. 4. Changes in protein and lipid accretion that occur during

growth of pigs. [Adapted from Shields et al. (160).]explants are cultured chronically with ST (19, 68).
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certain insulin-responsive processes. Kinetic studies have Recent evidence suggests that there may be apprecia-
ble specificity in the ST signal pathway(s) that mediate thedemonstrated that the alteration in glucose response to

insulin is almost exclusively related to effects on lipogen- anti-insulin-like effects on glucose utilization. This point is
illustrated by the observation that the effects of pST onesis in adipose tissue (57). In contrast, ST treatment does

not reduce the ability of insulin to inhibit lipolysis in adi- GLUT4 gene expression are different than observed for
expression of the fatty acid synthase (FAS) gene in pigpose tissue (56, 158), stimulate rates of protein synthesis

in adipose tissue (174), or stimulate glucose uptake and adipose tissue (51). Specifically, the effects of pST to re-
duce FAS gene expression are of much greater magnitudeprotein synthesis in muscle (56, 186). This exquisite or-

chestration of glucose partitioning by ST reduces glucose than observed for expression of the GLUT4 gene. There
is other evidence that corroborates this observation. Por-use for fat deposition in adipose tissue, thereby allowing

sufficient glucose to support the increase in muscle pro- cine ST selectively affects the activity of certain lipogenic
enzymes more than others (90, 125). For example, pSTtein synthesis in growing animals or the increase in milk

synthesis in lactating animals. markedly reduces FAS and acetyl-CoA carboxylase en-
zyme activities in adipose tissue; however, the reductionSomatotropin administration dramatically reduces
in activity of enzymes in the pentose cycle is considerablyfatty acid synthesis in adipose tissue as illustrated by re-
less (see Table 4). Further evidence to support the ideasults from both in vitro (178–180) and in vivo kinetic
that pST exerts differential effects is based on metabolicstudies (57). In growing pigs, rates of de novo synthesis
studies that have been recently conducted (51). Thesecan be decreased by ú90%, whereas effects on rates of
data revealed that the antagonistic effect of pST on insulinlipolysis are minimal. The reduced ability of insulin to
action is more potent when glucose transport is max-stimulate lipogenesis in adipose tissue involves a change
imized (5 mM glucose) than when glucose concentrationin the sensitivity (increased ED50) with no change in the
limits glucose entry into the cell (i.e., at 1 mM glucose).maximum response (Fig. 5; Refs. 68, 69). This leads to a
This suggests that the effects of pST on lipogenesis aremarked decrease in insulin-regulated events such as glu-
manifested predominantly subsequent to glucose trans-cose transport, lipogenic enzyme activities, expression of
port. This does not mean that pST does not decrease glu-lipogenic enzyme genes, and lipid synthesis (see Refs. 51,
cose transport, since pST clearly reduces glucose uptake90, 115, 121, 125, 133, 174, 179).
in pig adipocytes (125). However, it appears that the ef-
fects of pST on glucose transport are secondary to
changes in glucose utilization that occur at key metabolic
regulatory points subsequent to transport.

The decrease in insulin sensitivity caused by pST in
pig adipose tissue is not associated with any change in
insulin receptor number or tyrosine kinase activity of the
insulin receptor (125). This is consistent with the fact that
some effects of insulin in the adipocyte are not diminished
by ST treatment (e.g., insulin inhibition of lipolysis). Little
is known, however, about the postreceptor events that
mediate the effects of pST on the insulin signal pathway(s)
to antagonize the stimulatory effect of insulin on expres-
sion of lipogenic enzyme genes. Because of this, studies
have been undertaken to use the FAS gene as a model to
study how ST reduces insulin signaling. This gene is useful
to study, since changes in enzyme activity are the result
of changes in enzyme protein mass that reflect changes in
FAS mRNA abundance (reviewed in Ref. 94). In addition,
changes in enzyme activity (reflecting changes in gene
transcription) are quite sensitive to alterations in insulin
status (94). Because FAS is under exquisite insulin regula-
tion, it is amenable to investigate whether ST affects insu-
lin signaling to the gene. On the basis of the evidence
presented previously, it is not surprising that treatment of

FIG. 5. Dose-response curves for insulin-stimulated lipogenesis in growing pigs with pST dramatically decreases FAS mRNA
adipose tissue explants from pigs treated daily with vehicle (A) or pST

levels and FAS enzyme activity in adipose tissue (51, 90,(70 mg/kg body wt; B) for 0 (s) or 7 days (l). [Adapted from Walton
and Etherton (178).] 125) (see Table 4). Recently, we have found both in rat
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TABLE 4. Effect of pST on various lipogenic enzyme cile how tyrosyl phosphorylation of IRS-1 by ST can atten-
activities in pig adipose tissue uate insulin signaling when many of the insulin signaling

events seem to be associated with insulin receptor-depen-
Study Control pST

dent tyrosyl phosphorylation of IRS-1 and subsequent IRS-
1 (and IRS-2)-dependent transmission of insulin signalingMagri et al. (125)

Fatty acid synthase 4.9 õ0.1 to downstream components of the insulin signal transduc-
Glucose-6-phosphate dehydrogenase 157 80 tion pathways (136). It is interesting to note, however,6-Phosphogluconate dehyrdrogenase 117 105

that another member of the cytokine family (of which STMalic enzyme 173 66
Harris et al. (90) is a member), tumor necrosis factor-a (TNF-a), has been

Acetyl-CoA carboxylase 8.5 1.8 shown to induce insulin resistance in obesity (95, 105).Fatty acid synthase 27 9
The particularly intriguing aspect of these results is thatGlucose-6-phosphate dehydrogenase 142 67

6-Phosphogluconate dehyrdrogenase 160 84 TNF-a induces serine phosphorylation of IRS-1 that seems
Malic enzyme 303 184 to interfere with insulin-induced tyrosine phosphorylationLiu et al. (121)

of IRS-1 and, hence, attenuate insulin receptor signalingAcetyl-CoA carboxylase 2.0 0.9
(105). Whether ST mimics the effects of TNF-a remains

Data presented are expressed in different units depending on the to be determined.
study. Reader should look at original papers for further details.

Somatotropin affects lipolysis indirectly through alter-
ations in adipose tissue response to acute homeostatic sig-
nals that regulate lipolysis. This allows for greater mobiliza-liver and cultured 3T3-F442A adipocytes that ST reduces
tion of reserves in ST-treated animals when energy is inFAS mRNA abundance as the result of a decrease in gene
short supply (Table 3). This is especially important duringtranscription (52, 187), indicating that the reduction in
ST treatment of lactating cows, because animals are gener-FAS mRNA in pig adipocytes also is due to a decrease in
ally near zero energy balance when bST treatment is initi-transcription. We are unaware of studies, however, that
ated, and voluntary intake does not match the enhancedhave addressed this question in porcine or bovine adipo-
milk energy output during the initial phase of the treatmentcytes. In large part, this reflects the difficulties of isolating
(18, 170). However, ST effects on lipid mobilization arenuclei from these adipocytes to conduct the run-on tran-
also observed in growing animals when energy intake isscription analyses and that to date no studies have been
restricted (59, 123, 148). Isotope kinetic studies have dem-reported in which these cells have been transfected with
onstrated that the extent of the increase in fatty acid mobili-a chimeric gene containing the FAS promoter linked to a
zation with ST treatment is highly correlated with net en-reporter gene. Nonetheless, it seems reasonable to specu-
ergy balance and circulating concentrations of nonesteri-late that FAS transcription in pig adipocytes may respond
fied fatty acids (NEFA) (18, 59). Elevated circulating NEFAto ST in a similar manner.
concentrations are occasionally observed when ST-treatedA fundamentally important question that needs to be
animals are in positive energy balance. In this case, theanswered is, How does ST interfere with insulin signaling?
elevated NEFA concentrations relate to the enhanced lipo-With the use of FAS as a model enzyme gene and with
lytic response to homeostatic signals in ST-treated animalsthe presumption that this is applicable to the other key
and represent a transitory increase relating to the mildinsulin-regulated lipogenic enzyme gene, acetyl-CoA car-
stress associated with blood sampling (25).boxylase, the following hypotheses emerge: 1) the reduc-

The regulation of lipolysis involves cAMP and a signaltion in FAS gene transcription is the result of ST interfer-
transduction system that includes stimulatory G proteinsing with insulin signaling at some point between the insu-
(Gs) and inhibitory G proteins (Gi). Catecholamines affectlin receptor and the gene; 2) there is a ST response
lipolysis through the Gs system, and ST treatment dramati-element in the FAS gene promoter that acts as a negative
cally increases the lipolytic response to catecholaminescontrol element to repress insulin-regulated transcription
in lactating cows (126, 158) and growing cattle and pigsand interacts with key transcription factors that are ST
(25, 140, 148). This is most evident by the increase inregulated (in this case there is a ST signal pathway to the
circulating NEFA when a catecholamine challenge is ad-gene); or 3) both of these regulatory scenarios occur. At
ministered, and the enhanced response involves an in-this juncture, it is not possible to clarify which of these
crease in the maximum response (Rmax) to catecholaminesalternatives account for the suppressive effects of ST on
with no change in the sensitivity (Fig. 6). A similar changeinsulin stimulation of lipogenesis. Recently, Argetsinger
in the dose-response curve occurs in humans receivinget al. (5) reported that ST stimulates tyrosyl phosphoryla-
ST treatment (20). This change in the response to cate-tion of insulin receptor substrate (IRS)-1, which is a key
cholamines is evident within 15 h after the initiation ofmolecule in insulin signal transduction pathways (136).
ST treatment (100) and is observed regardless of whetherSome have interpreted these findings to suggest that ST

signaling involves IRS-1; however, it is difficult to recon- animals are in a positive or negative net energy balance.
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(54, 97, 181). Studies with adipose tissue from lactating
cows and growing sheep also demonstrated that ST treat-
ment did not alter the abundance of the a-, b-, or
g-subunits or the heterotrimeric Gi proteins that bind to
the adenosine receptors (54, 96). However, the functional-
ity of the Gi proteins, as assessed by their ability to be
ADP-ribosylated by pertussis toxin, was significantly re-
duced with ST treatment (96). Chronic exposure to ST
also prevented the inhibitory effect of low concentrations
of guanosine 5*-(bg-imido)triphosphate, suggesting that
the ability of the a-subunit of Gi to interact with adenylyl
cyclase was impaired (173). Prostaglandins are additional
local controls with the E series known to be antilipolytic
via the Gi system in rats and humans. Just as with adeno-
sine, ST treatment causes a decreased antilipolytic re-
sponse to PGE and also decreased PGE2 production in
studies involving microdialysis of subcutaneous adipose
tissue of sheep (54). Overall, results demonstrate that a
major mechanism by which ST alters lipolysis centers
on the G inhibitory system of adipose tissue. Thus the
enhanced lipolytic response to catecholamines observed
in vivo in ST-treated animals is in large part related to a
relief in the tonic inhibition of lipolysis via changes in the

FIG. 6. Response of plasma nonesterified fatty acid (NEFA) and Gi signaling cascade.
glycerol concentrations to varying doses of epinephrine during bST (s)
or excipient (l) treatment periods. Epinephrine challenges were admin-
istered intravenously twice each day (1000 and 1400 h) on days 6–

11 of bST treatment (total 12-day treatment period). Response was B. Effects on Carbohydrate Metabolism
determined over 20 min postinfusion. [Adapted from Sechen et al. (158).]

Somatotropin has numerous tissue effects related to
Initial studies to examine the mechanism made the carbohydrate metabolism (see Table 3). This is of particu-

surprising observation that the chronic treatment with ST lar importance in the dairy cow in which glucose origi-
in vivo had no effect on the response of subcutaneous nates almost exclusively from gluconeogenesis and typi-
adipose tissue to catecholamines in vitro. Although differ- cally 60–80% of the glucose turnover is used for milk
ences between adipose tissue depots represented a possi- synthesis. Treatment of cows with bST increases the rate
ble partial explanation (175), it became clear that the basis of glucose irreversible loss and reduces whole body glu-
for this paradox lay elsewhere. Somatotropin treatment, cose oxidation (18). These adaptations in glucose produc-
in vivo or in vitro, resulted in only modest changes in
b- and a2-adrenergic receptor numbers (53, 54, 97, 181).
Furthermore, examination of the Gs proteins and other
downstream components of the lipolytic signal transduc-
tion cascade demonstrated no differences in adipose tis-
sue from bST-treated and control animals (54, 97). These
results raised the possibility that the major mechanism by
which ST altered lipolysis might involve the antilipolytic
system of adipocytes. Adenosine was a likely candidate
because it is an autocrine/paracrine factor that exerts an
acute antilipolytic effect via the Gi system. Indeed, chronic
treatment with ST decreases the antilipolytic effects of
adenosine in adipose tissue (53, 54, 96, 115).

The diminution of adenosine’s ability to inhibit lipoly-
FIG. 7. Inhibition of isoproterenol-stimulated lipolysis by the adeno-sis in ST-treated animals involved a substantial change in

sine analog phenylisopropyladenosine (PIA). Cows received daily injec-the sensitivity (ED50) and a reduction in the Rmax (Fig. 7;
tions (40 mg) of bST (h) or excipient (j) for two 8-day periods. Adipose

Refs. 96, 115). However, the mechanism did not involve tissue was biopsied on day 8, and tissue explants were incubated for 3
h in presence of 1005 M isoproterenol. [Adapted from Lanna et al. (115).]a change in binding affinity or adenosine receptor number
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tion and oxidation in bST-treated cows are quantitatively Somatotropin treatment of growing domestic ani-
mals results in a dramatic improvement in the efficiencyequal to the extra glucose required for the increased milk

synthesis (18). Hepatic rates of gluconeogenesis are in- of amino acid utilization for protein accretion (27, 31).
This is frequently referred to as the biological efficiencycreased with ST treatment of dairy cows as demonstrated

by in vivo (42) and in vitro studies (109, 149) (Table 3). or partial efficiency of amino acid use. An increase in
partial efficiency of amino acid utilization of 25–50%Mechanisms include a decreased ability of insulin to in-

hibit gluconeogenesis (42) (Table 3). Thus the reduction has been reported for pST treatment of pigs (27, 33, 35,
112, 139) and bST treatment of growing cattle (98) andin hepatic response to insulin in bST-treated cows allows

the liver to sustain an increased rate of gluconeogenesis lambs (21, 124). Thus ST both increases the maximal
capacity for protein accretion and increases the partialthat is critical to support the increase in the synthesis of

milk components. In contrast, ST treatment had no effect efficiency by which amino acids are used for protein
deposition.on liver glycogen concentration in lactating cattle in posi-

tive energy balance (149), although ST treatment did in- Consistent with the improved efficiency of amino
acid use, a decrease in blood concentrations of ureaduce a small decrease in cows in negative energy balance

(109). Liver glycogen reserves are too limited to sustain nitrogen is consistently observed, demonstrating that
whole body oxidation of amino acids is reduced withincreased glucose output by the liver in lactating cows.

In growing pigs treated with pST, glucose utilization ST treatment. This has been directly demonstrated in
isotope kinetic studies with heifers and steers (59, 60)by adipose tissue is markedly reduced as discussed

earlier, but use by nonadipose tissues is unaffected (57). and from nitrogen balance studies with pigs and rumi-
nants (137). Especially impressive is that the reducedIf treated pigs are in a postabsorptive state, there is an

increase in hepatic output of glucose (84). As with lactat- oxidation of amino acids occurs even when protein and
amino acid intake are inadequate to meet requirements.ing cows, the ability of insulin to decrease gluconeogene-

sis is attenuated in growing pigs and cattle receiving ST Although cellular aspects have not been elaborated, a
decrease in hepatic capacity for amino acid catabolismtreatment (56, 84).
has been observed in bST-treated rats (23).

The effects of ST on muscle histochemistry andC. Effects on Protein Metabolism
morphology have been well characterized (143, 144,
156, 163, 167, 184). Most studies have observed thatConsiderably less is known about the effects of ST on
ST treatment enhances hypertrophy of skeletal muscleprotein metabolism of domestic animals than for either lipid
fibers without changing muscle fiber number. In re-or carbohydrate metabolism. It is clear that ST treatment
sponse to pST, nuclei proliferation is increased to theincreases muscle protein accretion in growing animals and
same extent as muscle fiber hypertrophy. This event ismilk protein synthesis in lactating cows (Table 3). However,
important because postnatal accretion of DNA is a keythe precise mechanisms are not clear, and the extent to
factor in regulating muscle growth (3). This increasewhich the effects of ST on protein metabolism are direct or
occurs because of proliferation of satellite cells thatmediated by IGF-I remains unclear. There is some informa-
reside between the sarcolemma and basement mem-tion that suggests IGF-I may mediate the effects of pST on
brane of myofibers. These cells have the ability to fuseprotein accretion (Fig. 2). These results indicate that there
with the myofiber and thereby contribute their nucleusis a reasonably good relationship between the changes in
to the cell. Thus, during postnatal muscle growth, thecirculating IGF-I level and protein accretion rate in pST-
increase in muscle DNA is coordinated with the in-treated pigs fed diets varying in dietary protein (Fig. 2). It
crease in muscle protein. In addition to the effects ofmust be emphasized, however, that these results are associa-
ST on protein metabolism, changes also occur in thetive data and do not provide any insight as to whether the
rate of satellite cell proliferation. Although little infor-effects of ST on protein accretion are mediated totally or in
mation is known for domestic animals, it is clear thatpart by IGF-I.
satellite cell proliferation is critically regulated by IGF-The enhanced growth rate with ST treatment of rumi-
I. There is considerable information about the effectsnants and pigs is due to a more efficient use of absorbed
of IGF-I in laboratory animals and cell culture, and theamino acids that is accompanied by a reduction in circu-
effects of ST and IGF-I on myogenesis are discussed inlating urea nitrogen concentrations and in urinary nitro-
depth by Florini et al. (74).gen loss. The increase in protein accretion is largely the

result of increased protein synthesis, whereas protein deg-
radation remains unaltered (24, 59, 60, 80, 147, 159). How- D. Effects on Mammary Gland Metabolism
ever, some have suggested rates of degradation are
decreased (168), and this difference may relate to the Treatment with bST causes a dramatic increase in the

uptake and utilization of nutrients for the synthesis of milkmethods used to assess degradation.
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(Table 3). However, it has proven to be difficult to document des(1–3)-IGF-I stimulate IGFBP production in bovine
mammary epithelial cells (128).specific mechanisms. At the cellular level, the magnitude of

the biochemical changes would likely be small, and mam- There are abundant type I and type II IGF receptors
in bovine mammary tissue, and IGF-I addition to bovinemary epithelial cells, which are actively secreting milk com-

ponents, are difficult to maintain in vitro because of their cell culture systems increases casein synthesis (30, 43, 49,
86). In contrast, attempts to detect ST receptors in bovinehigh rates of metabolic activity. Nevertheless, the pattern of

response to exogenous bST and the change in the shape of mammary tissue have been unsuccessful (2, 78, 106), and
only a very low level of expression of ST receptor mRNAthe lactation curve (Fig. 3) indicate that bST effects involve

both an increase in the rates of milk component synthesis can be detected (79, 88). Close arterial infusion of the
mammary gland with bST had no effect on milk yieldper cell and an improved maintenance of secretory cells.

Baldwin and Knapp (8) demonstrated that bST-treated cows (127), whereas close arterial infusion of IGF-I or IGF-II
stimulates milk yield (150, 152, 154). A role for IGF-I ishad increased protein synthetic capacity as indicated by an

increased RNA per gland. Furthermore, Knight et al. (110) also consistent with observations that IGF-I dramatically
increases blood flow to the mammary gland (150, 153),observed that the decline in mammary cell numbers that

normally occurs during lactation was prevented in goats that and this effect appears to be mediated by local production
of nitric oxide (114, 151). The lactational response to closereceived ST for 22 wk.
arterial infusion with IGFs is arguably the strongest evi-Several studies have measured the effect of in vivo
dence that this is the mechanism for the bST effects onST treatment on the activity of key mammary enzymes
the mammary gland. Nevertheless, lactational responsesassociated with milk synthesis. Anticipated differences
to close arterial infusion of the IGFs are much less thanare difficult to detect because methods require using a
obtained with systemic supply of bST. Thus considerabletissue biopsy, and the mammary glands of ruminants are
work remains in establishing the mechanism of actionrather heterogeneous in tissue and cell types. However,
whereby bST increases milk synthesis and secretion, andstudies with cows and goats have reported trends or sig-
the specific roles for the IGFs, the IGFBPs, and their pro-nificant increases in several key enzymes such as acetyl-
teases remain to be delineated.CoA carboxylase, acetyl-CoA synthetase, and FAS (8, 110,

111, 138). More clear-cut evidence demonstrating the ef-
fects of ST on the activity and mRNA level of mammary

V. SUMMARYenzymes comes from studies of rats (10, 11).
Maintaining higher rates of milk synthesis requires a

greater nutrient support. Some have suggested that the Somatotropin treatment of domestic animals mark-
increase in mammary rates of milk synthesis was merely edly enhances the efficiency of nutrient use and perfor-
the consequence of ST effects on nonmammary tissues mance. Effects are on postabsorptive use of nutrients and
that allowed for a greater supply of nutrients to the mam- involve an orchestration of many physiological processes
mary gland (102, 107, 132). However, it is clear that simply in different tissues and organs to enable more nutrients
increasing nutrient availability by itself does not mimic to be used for lean tissue accretion (during growth) or
the effect of bST on lactational performance (30, 146); milk synthesis (during lactation). The mechanism by
rather, bST is a homeorhetic control that results in a coor- which ST causes these coordinated effects involves tissue-
dinated series of changes involving both nutrient supply specific changes in key metabolic pathways as well as
and mammary utilization (Table 3). This coordination in- alterations in tissue response to homeostatic signals. In
cludes a diversion of cardiac output and an increase in many cases, the cellular sites of the alterations in meta-
blood flow to the mammary gland that parallels the magni- bolic pathways and signal transduction have been identi-
tude of the milk response to exogenous bST (48, 76). fied, and it is clear that the biological effects of ST are

The mechanism by which ST affects mammary gland dependent on multiple changes. However, the molecular
function is still uncertain but appears to be indirect, involv- bases of the intracellular ST signal transduction pathways
ing the IGF system. As with nonlactating animals, the ad- that alter other signaling pathways that are responsible
ministration of exogenous bST increases circulating con- for the homeostatic responses and the mechanisms that
centrations of IGF-I and IGF binding protein (IGFBP)-3 and account for the tissue-specific effects are obscure. Never-
decreases circulating IGFBP-2. Furthermore, the magni- theless, it is clear than the overall effects of ST are to
tude of changes in circulating IGF-I and the IGFBP closely both enhance the ability of muscle (growth) or mammary
parallels the biological events and the magnitude of the tissue (lactation) to utilize nutrients while simultaneously
milk responses that occur with bST treatment of dairy coordinating other physiological processes and tissues
cows (see reviews in Refs. 19, 29, 130, 131). In studies with (such as adipose tissue), in a manner that supports this
transgenic mice, IGF-I appeared to prevent mammary gland enhanced performance. Although we have learned much

about the biology of ST in domestic animals during theinvolution after lactation (87). In addition, both IGF-I and
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