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Abstract

Loss in the availability of early successional habitat is a threat to pollinator populations.
Given that powerline rights-of-way (ROW) must be managed to maintain early successional
habitat, preventing vegetation from interfering with electrical lines, they have the potential to
provide conservation benefits for wild pollinators. Moreover, it is possible to provide conser-
vation benefits with no additional cost to land managers. We surveyed flower-visiting insects
over two years in different vegetation management treatments in a long-term research
ROW to determine which best promoted pollinator abundance and species richness. We
found that the ROW had stabilized in an early successional state soon after its establish-
ment and that this early successional state could be maintained with low levels of periodic
maintenance. We collected a high diversity of flower-visiting insects (126 bee species and
179 non-bee morphospecies) in six ROW plots. Higher levels of herbicide application had a
negative effect on bee species richness, but low levels of herbicide application were compat-
ible with a high abundance and species richness of flower-visiting insects, including several
rare species. Moreover, this effect was seen only in the bee community, and not in non-bee
flower-visiting insects. Our results suggest further research into the conservation value of
ROW for pollinators is warranted. We demonstrate that there is substantial potential for polli-
nator conservation in ROW, compatible with low-cost vegetation management.

Introduction

The loss of early successional habitat is a threat to biodiversity [1, 2]. For this reason, powerline
rights-of-way (ROW), which are managed to maintain a permanent state of early succession
[3], may provide valuable habitat for many species [4]. Indeed, ROW have high plant species
richness [4], and provide habitat for bees [5, 6], butterflies [3], and birds [7]. ROW comprise a
large amount of land in a corridor-like pattern of continuous lines, enhancing their potential
to connect plant and animal populations [8]. Indeed, ROW comprise approximately 2-3
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million ha in the US and traverse a wide array of habitats and landscapes [9]. For example, in
New York, electric utilities manage 9 times as much early successional habitat as all federal,
state, and non-governmental organizations [7]. Many pollinator species are declining [10-12],
but we know relatively little about these insects, despite the essential services they provide to
agriculture [13] and ecosystems in general [14]. One of the main causes of decline in pollinator
populations is the loss of habitat rich in flowering plants [11]. Thus, ROW have great conserva-
tion potential for populations of pollinators [9].

Because ROW are managed to keep vegetation below a certain height, there is the opportu-
nity to find win-win scenarios for management and conservation. The vegetation management
of ROW maintain the land immediately below powerlines in an unforested state, which has
been shown to relate positively with bee diversity and abundance, particularly for solitary bees
[15]. Moreover, naturally developed vegetation appears to have greater benefits for pollinating
insects than planted crops [16]. Maintenance of early successional habitat simultaneously
addresses electrical transmission safety concerns while, at no additional cost, achieving conser-
vation objectives by providing habitat rich in flowering plants for pollinators [6]. For this rea-
son, we evaluated flower-visiting insect diversity in the Vegetation Research and
Demonstration Project at State Game Lands 33 (SGL33) in Centre County, PA. The study area
has been surveyed continuously for sixty-four years to evaluate the effects of vegetation man-
agement on biodiversity [17, 18]. Previous studies at SGL33 have monitored plant [18], mam-
mal [19], bird [20], reptile, amphibian, and butterfly diversity [21].

Our research objectives were to 1) assess species richness of flower-visiting bee and non-
bee insects in the Vegetation Research and Demonstration Project at SGL33, 2) determine the
effect of increasing herbicide application on flower-visiting insect abundance and species rich-
ness within a powerline ROW, and 3) address how long-term vegetation management affects
the distribution of flower-visiting insects in a powerline ROW.

Materials and methods
Plots and data collection

The research plots at SGL33 (Central PA: 40.8512, -78.1422) stabilized into an early succes-
sional state over 50 years ago. Current management involves visiting plots every 4-5 years,
mowing where necessary, and applying herbicide according to four current treatment catego-
ries: 1) hand cutting (no herbicide, HC), 2) low volume basal herbicide (~10 litres/ha, LVB), 3)
low-volume foliar herbicide (<10 litres/ha, LVF), and 4) high volume foliar herbicide (~70-
250 litres/ha, HVF) (S1 Table in S1 Appendix). The high-volume foliar herbicide was a water-
based broad-leaf herbicide broadcast sprayed across vegetation. This treatment was non-selec-
tive and used large amounts of a mixture of Aminopyralid, Imazapyr, Triclopyr, Picloram, and
Glyphosate (see S1 Table in S1 Appendix for concentrations). The low volume basal treatment
was an application of an oil-based herbicide to the root collar and trunk of shrubs and small
trees. This treatment used a mixture of Aminopyralid, Imazapyr, Triclopyr and was applied
selectively directly to non-compatible woody vegetation (i.e. vegetation with the potential to
interfere with the powerlines). This method was known as ’cut and squirt’: cut the wood and
apply the herbicide selectively to the cut. The low volume foliar herbicide applications selec-
tively applied an ultra-low volume of an oil-based herbicide to leaves with a nozzle applicator.
This treatment was still selective, but the entire plant sprayed rather than just the cut area. The
method was to wet the leaves and entire non-compatible plant using a mixture of Glyphosate
and Imazapyr.

The powerline ROW is owned and managed by FirstEnergy, which allowed us access to do
our surveys. We also obtained permits from the PA Game Commission for site visits. We
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Fig 1. A map of the study area within Pennsylvania and the distribution of the plots within the powerline ROW.

https://doi.org/10.1371/journal.pone.0245146.9001

surveyed six 50 m x 25 m plots at SGL33, where herbicide treatments had been applied four
years before our study began in 2012, then again in the autumn of 2016 after our first summer
of collection and prior to our second year of collection. Each of these plots was separated by at
least 167m (greatest distance between two plots = 2.7 km, Fig 1). We surveyed two plots each
of low volume foliar and high volume foliar, and one plot each of hand cut and low volume
basal. However, we ultimately excluded the hand-cut treatments from the analysis of treatment
effects because we felt that we were not able to accurately sample these plots due to overgrowth
of thorny vegetation (see S1 Appendix for more details about hand cut treatments).

Establishing the baseline diversity of insect flower-visitors in the ROW has significant
advantages for determining whether the ROW have conservation value, and moreover may
serve as a comparison to future sampling efforts to determine whether insect populations in
these ROW are stable. By comparing management strategies, on the other hand, we can iden-
tify win-win scenarios between management and conservation objectives for these ROW.
Additionally, we can determine whether certain management strategies lead to lower pollina-
tor abundance and diversity.

We conducted surveys by hand-netting insects visiting flowers on dry, warm (21 - 29C),
and windless (<8kph) days between 10am- 4pm, conditions when most hymenopteran flower
visitors actively forage [22]. In the summer of 2016, we conducted four sample periods, collect-
ing at each plot twice a month (once in the morning and once in the afternoon) from May-
August, and collected all insects found on flowers, as non-bee insects can be important pollina-
tors [23]. We used plot-based sampling methods, where the collector covered the area of each
treatment plot on foot during the sampling event, collecting all visible insects that contacted
the reproductive parts of flowers within the plot. This sampling was not constrained to a tran-
sect within the plot and the collector was able to retrace their steps if they had additional time
after covering the area of the plot once. In the summer of 2017, we conducted a similar sam-
pling regime, but collected only bee specimens. Each sample period (in both years) involved 2
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net-hours of sampling in the morning and 2 net-hours in the afternoon at each plot. Sixteen
net-hours were spent at each plot—8 morning and 8 afternoon collections—across the season
(96 hours each in 2016 and 2017, or 192 total hours). This sampling effort includes handling
time for transferring specimens from the nets to collection jars. Ninety-six percent of bee spec-
imens were identified to species with the help of Sam Droege (United States Geological Survey
(USGS)) and the remaining 4% were identified to genus. From the 2016 collections, most non-
bee specimens were identified to genus, species, or morphospecies with 55 identified to family
and 4 to order [24-28]. Voucher specimens are stored at the Frost Entomological Museum at
the Pennsylvania State University.

To better understand background diversity of bees in the ROW not found in our net collec-
tions, we also conducted one bowl survey in the ROW, but not in the treatment plots from July
26-27, 2016 [29]. The bowl survey was conducted in the approximate halfway point between the
two farthest plots (Fig 1). They are included here to better describe the potential for ROW to be
habitat for bees, as pan trapping sometimes collects species not found in net collections [30]. We
placed 36 plastic bowls (blue, yellow, and white) containing 300mL water with unscented soap in
a30m x 25m plot in the ROW (S1 Fig in S1 Appendix) to provide a similar background plant
community (Stout, unpub. data). These bowls were left out for 24 hours before being retrieved,
and were placed on bare ground. Bowl sampling can act as a complement to hand-netting, as it
attracts a distinct bee community, and various pollinator taxa prefer different bowl colors [31,
32]. However, bowl sampling is not reliable for sampling within small areas, so we did not deem
it adequate for comparing the separate plots. Moreover, bowl sampling has been shown to collect
only specific bee species, and is therefore not appropriate measure of background bee abundances
[33, 34]. Specimens from the bowl survey were identified to better describe the baseline insect
diversity in the ROW and described in the supplemental tables (S2 Table in S1 Appendix), but
were not included in analyses as they were not collected within our treatment plots.

The plots are all surveyed for plant diversity once a year during peak bloom (July). These
surveys involved determining the species richness of native flowering plants under 2 m in
height compatible with ROW maintenance (e.g., forbs or plants with shrubby-growth form).
Plant species within a 5-m radius plot placed in the center of each transect were identified and
counted [35]. Although this annual survey does not constitute a complete measure of plant
species richness across the year, we used these data here as a proxy for plant diversity in the 6
treatment plots.

Data analysis

To determine whether management affected pollinator abundance and species richness on a
per-sample basis (i.e. for each collection), we used general linear mixed effects models
(GLMM) with the R package “lme4” [36]. These models handle uneven sampling and can par-
tition variation to fixed and random effects. We used time of day and year as random effects.
Then we tested for correlations between the following treatment variables: litres/hectare herbi-
cide applied in 2012, litres/hectare herbicide applied in 2016, and a plant species richness sur-
vey conducted in July 2016 (S3 Table in S1 Appendix). We compared the management
treatment as a categorical (treatment type) or continuous (litres of herbicide/hectare) as fixed
effects, comparing model fit between these two ways of coding the management. We also used
GLMMs to determine whether time of day or month of year had a significant effect on the
abundance or richness of bees (2016 & 2017) or non-bees (2016) when we assigned the plot
identity and year as random effects.

To test the hypothesis that the herbicide treatments would have a greater effect on less com-
mon bees, we repeated these analyses after removing the two most common bee species (Apis
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mellifera and Bombus impatiens, together comprising 25% of the bee abundance) from the
analysis.

For each GLMM that we built, we tested for overdispersion. Where there was overdisper-
sion, we attempted a Laplace approximation, using a Poisson distribution. In many cases,
these models were still overdispersed, and so we log-transformed the response variable (abun-
dance or species richness), to alleviate the overdispersion where necessary.

To compare diversity in the different plots, we used a rarefaction analysis. Rarefaction anal-
yses account for the relative abundances of insects in the different treatment plots by providing
observed and estimated species diversity measures [37]. We used the “INEXT” package in R
[37] to standardize based on sampling effort and completeness. For the purposes of comparing
the different treatments, we compare the asymptotic confidence intervals for species richness,
Shannon diversity, and Simpson diversity in bees and non-bee insects with the maximum ref-
erence sample as our base sample size. Where these extrapolated confidence intervals do not
overlap, there are significant differences at an alpha level of 0.05 [37].

Finally, to visualize whether insect community structure in treatment plots differed, we
used non-metric multidimensional scaling (NMDS) [38]. This ordination method is used to
visualise multivariate data; in this case, we use NMDS to analyse the rank orders of the abun-
dance of each species found in each treatment plot to determine whether there were differ-
ences in community composition (i.e. differences in both the number and identity of flower-
visiting species). The variation in the rank orders of all the different species are collapsed into
two axes for visualisation purposes, and the polygons are drawn based on the environmental
variables (treatment, time of day, and month). NMDS requires a distance matrix, for which we
used a Bray-Curtis dissimilarity calculation. We used the package “vegan” in R for this analysis
[38].

Results

We net-collected 2,344 bee specimens representing 126 species over the course of the two
study years (S4 Table in S1 Appendix). The most abundant species across the surveys was
Bombus impatiens, which alone comprised 14.5% of the bee abundance, followed by Apis melli-
fera (10.5%) and Ceratina dupla (7.6%). All other bee species individually represented less
than 5% of the sample. The bowl survey collected 36 bee specimens of 19 species (4 not found
in the hand-netting survey, S2 Table in S1 Appendix). We found representatives of all six bee
families present in North America, including one melittid (Macropis ciliata), and several other
specialists, including Colletes validus (Colletidae), Megachile pugnata (Megachilidae), and
Melissodes trinodis (Apidae). We also had two new state records for PA: Heriades leavitti
(Megachilidae) and Melissodes apicatus (Apidae) (pers. comm. S. Droege, J. Ascher) (S4
Table in S1 Appendix). Compared to a recently published state list of the bee species of Penn-
sylvania (Kilpatrick et al 2020), we found roughly 28.8% (126 of 437) of the bee species of
Pennsylvania in our powerline survey, including 34.8% (8 of 23) of the non-native bee species
recorded in the state. Results including the abundance and species richness of bees in the
hand-cut plots are in the supporting information (S2 Fig in S1 Appendix). The months did not
differ significantly in bee abundance (P > 0.05), however, there was a significantly greater
abundance of bees in the afternoon, relative to the morning (Table 1). There was also a signifi-
cantly higher bee species richness in the afternoon, relative to the morning. In addition, July
had a significantly higher bee species richness than May, although the other months did not
differ significantly (Table 1).

The plant survey yielded a total of 49 species or morphospecies in the research sites (S3
Table in S1 Appendix). The basal low volume treatment had the highest total plant species
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Table 1. Results of GLMM:s on the effects of time of day and month of collection on bee abundance and species richness.

Response Variable Fixed Effect Contrast Random Effect Effect Size t value p value

Log(Abundance) Time, Month AM—PM Year, Plot 0.4 2.05 0.04
AUG—JULY -0.01 -0.04 0.97
AUG—JUNE -0.14 -0.52 0.61
AUG—MAY 0.04 0.16 0.87
MAY—JULY -0.05 -0.19 0.85
MAY—]JUNE -0.18 -0.68 0.5
JULY—JUNE -0.13 -0.46 0.63

Log(Species Richness) Time, Month AM—PM Year, Plot 0.34 2.5 0.01
AUG—]JULY -0.2 -1.03 0.3
AUG—]JUNE 0.02 0.1 0.92
AUG—MAY 0.28 1.49 0.14
MAY—JULY -0.48 -2.48 0.01
MAY—]JUNE -0.26 -1.39 0.16
JULY—JUNE 0.22 113 0.26

Significant effects are bolded.

https://doi.org/10.1371/journal.pone.0245146.t001

richness (30 plant species) as well as the highest number of plant species found only at that site
(10 species). The lowest plant species richness was found at the two high volume foliar sites (16
and 17 species) and one of the low volume foliar sites (16 species). Eight plant species or genera
were found at all sites: Dennstaedtia punctilobula (Hayscented fern), Gaultheria procumbens
(Teaberry), Hamamelis virginiana (Witchhazel), Lysimachia quadrifolia (Whorled Loose-
strife), Poaceae (grasses), Pteridium (Bracken ferns), Rubus (Blackberries), and Solidago (Gold-
enrods). Oil-collecting bees of the genus Macropis are thought to specialize on Lysimachia
species, so the presence of Lysimachia quadrifolia may help to explain the presence of Macropis
ciliata (Melittidae) in the ROW. One M. ciliata was recorded in a high volume foliar and one
in a low volume foliar site. Colletes validus (Colletidae) is a specialist on Vaccinium (Blueber-
ries), which were recorded in 5 of 6 sites, though the bee was only collected in a high volume
foliar site. Megachile pugnata and Melissodes trinodis specialize on Asteraceae; 6 of 7 Astera-
ceae species in the plots were found only in the low volume basal and one of the low volume
foliar sites and these are also where the bees were found. The seventh Asteraceae species (Soli-
dago) was found in all sites. The bowl surveys collected other specialist bees for which we did
not record the plant hosts (e.g. Eucera pruinosa and Melissodes apicatus) and it is possible they
were attracted to the bowls as they were passing through the habitat.

Bee response to herbicide treatments

There was a total of 78 sampling events at the 5 plots (excluding the hand-cut plot) across 2
years (2016 & 2017) and 2 times of day (morning and afternoon). Bee abundance and richness
were correlated [39]) on a per sample basis (S5 Table in S1 Appendix). When using a Poisson
distribution, the count data (response = abundance) were overdispersed, so we log-trans-
formed the response. The variables of litres/hectare herbicide (treatments applied in 2016) and
plant species richness (surveyed in July 2016) were significantly negatively correlated (S4
Table in S1 Appendix), and so could not be included in the same model. Plant species richness
was the best overall predictor of bee abundance (Table 2). Models including the categorical
treatments as a fixed effect were more parsimonious than the continuous litres/ha herbicide
usage as a fixed effect. Because the herbicide applications were in 2016, we also tested for
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Table 2. Results of the GLMMs on the effect of treatment on bee abundance.

Response Variable Fixed Effect Contrast Random Effect Effect Size t value p value AIC
Log(Abundance) 2012 application (continuous) NA Year, Time < 0.001 -0.16 0.87 215.01
2012 application (categorical) HVF—LVEF Year, Time -0.23 -1.11 0.27 213.81
2016 application (continuous) NA Year, Time -0.001 -1.34 0.18 213.24
2016 application (categorical) LVB—HVF Year, Time 0.57 2.14 0.03 213.16
LVF—HVF Year, Time -0.04 -0.18 0.86
LVF—LVB Year, Time -0.61 -2.26 0.02
2016 plant species richness NA Year, Time 0.04 2.76 0.006 207.73

Significant effects and the most parsimonious model are bolded.

https://doi.org/10.1371/journal.pone.0245146.t002

interactions between the year (2016 or 2017) and the categorical treatments, but there were no
significant interactions (P > 0.05).

The low volume basal (LVB) herbicide treatment had a significantly higher log transformed
bee abundance per sample than the high or low volume foliar, which did not differ from one
another (Fig 2, Table 2). The higher abundance in LVB is probably driven by the most abun-
dant bee species in our study plots. For example, Bombus impatiens was 3.24 and 4.28 times
more abundant in LVB than in HVF and LVF, respectively. Indeed, when we removed the two
most abundant bee species (Apis mellifera and B. impatiens) from the dataset and repeated the
analysis, there was no significant effect of the herbicide treatments (S6 Table in S1 Appendix).
Interestingly, when we removed B. impatiens and A. mellifera, the effect of plant species rich-
ness on bee abundance was also no longer significant, suggesting those abundant species were
also driving the relationship between plant species richness and bee abundance, despite the
fact the most abundant bee species were both generalist species.

Using a similar process for log-transformed bee species richness, models with plant species
richness as a fixed effect and litres/hectare herbicide as a fixed effect (continuous) were similar,
but both more parsimonious than the fixed effect of categorical treatment. Plant species rich-
ness was significantly positively associated with bee species richness (Table 3), while litres/
hectare herbicide (treatments applied in 2016) was negatively associated with bee species rich-
ness (Table 3, Fig 3).

For bee species richness, we based our rarefaction analysis on the categorical herbicide
applications (S7 Table in S1 Appendix). Low volume foliar had the highest Shannon and Simp-
son diversity indices; for these diversity indices, low volume basal also had a significantly
lower value than the high volume foliar (Fig 4). The bee species collected in our surveys con-
sidered by expert opinion to be rare included: Bombus fervidus, Bombus sandersoni, Macropis
ciliata, Melissodes apicatus, Nomada xanthura, and Heriades leavitti. Among these bees, there
were not strong patterns in their abundance across the treatment plots. Melissodes apicatus
was only found in a bowl sample, and the other five species were distributed across the treat-
ment plots (S3 Table in S1 Appendix).

Our NMDS plots of bee communities showed overlap in the different treatment plots (Fig
5, S3A Fig in S1 Appendix). There was also substantial overlap in time and year (S3C, S3D Fig
in S1 Appendix). However, months clustered into visibly different groups, suggesting the com-
munity composition of bee species changes over the summer (Fig 5, S3B Fig in S1 Appendix).

Non-bee flower-visiting insect response to herbicide treatments

We net-collected 744 non-bee specimens representing 179 morphospecies (S8 Table in S1
Appendix). GBIF records of insect species in Pennsylvania include more than 9200 species,
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Fig 2. Boxplots showing the relationship between three categorical treatment variables relating to the herbicide
application at the ROW and the log-transformed bee abundance in each sample. The boxplots represent the first to
third quartile of the data (box), the median value (horizontal bar), with whiskers representing the quartiles + 1.5 * the
interquartile range. The outliers here are data points that lie beyond the range of the whiskers.

https://doi.org/10.1371/journal.pone.0245146.9002
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Table 3. Results of GLMM:s of the treatment effect on bee species richness.

Response Variable Fixed Effect Contrast Random Effect Effect Size t value p value AIC
Log(Species Richness) 2012 application (continuous) NA Year, Time < 0.001 -1.39 0.17 159.61
2012 application (categorical) HVF—LVF Year, Time 0.09 0.58 0.56 161.19
2016 application (continuous) NA Year, Time -0.002 -2.21 0.03 156.73
2016 application (categorical) LVB—HVF Year, Time -0.18 -1.42 0.16 161.15
LVF—HVF Year, Time -0.18 -1.1 0.27
LVF—LVB Year, Time 0.1 0.5 0.62
2016 plant species richness NA Year, Time 0.03 2.34 0.02 156.18

Significant effects and the most parsimonious model are bolded.

https://doi.org/10.1371/journal.pone.0245146.t003

however these include many species that would never be found on flowers. When we restrict
the GBIF records to an example group of non-bee flower visitors, Syrphidae, our surveys
found roughly 8% of the species in the state (13 of 165 species) [40]. The bowl survey collected
49 non-bee specimens of 27 morphospecies (15 not found in the net survey). Excluding the
hand-cut plot, we conducted 39 collections, at two times of day (morning and afternoon) and
across four months (May-August). Non-bee abundance correlated significantly with mor-
phospecies richness. There was no correlation between non-bee abundance or richness and
our proxy of plant richness (measured in July 2016) (S5 Table in S1 Appendix). Month of the
year, but not time of day, was a strong predictor of non-bee abundance, where August had sig-
nificantly more non-bee insects than any other month (S9 Table in S1 Appendix). In addition,
June and July had significantly more non-bee insects than May, but did not differ from one
another. There were similar effects for non-bee morphospecies richness (S9 Table in S1
Appendix).

With log-transformed non-bee abundance as a response variable and month of sampling as
arandom effect, the model with the lowest AIC value was one with the fixed effect of litres/ha
herbicide (applied in 2016). However, the litres/ha herbicide was not a significant predictor of
non-bee abundance (S10 Table in S1 Appendix). For non-bee morphospecies richness, the
model with the lowest AIC was also one with the fixed effect of litres/ha herbicide, but it simi-
larly was not a significant predictor of non-bee morphospecies richness (S10 Table in S1
Appendix).

Discussion
Species richness of flower-visiting bee and non-bee insects

We found approximately 29.7% (130 of 437) of the bee species of Pennsylvania in a relatively
small powerline ROW, as well as 179 non-bee morphospecies of flower-visiting insects [41].
We also found rare species, such as Macropis ciliata (Melittidae), and new state records, Her-
iades leavitti (Megachilidae) and Melissodes apicatus (Apidae) (pers. comm. S. Droege, J.
Ascher). The diversity in our samples is partially due to the fact that we sampled in both the
morning and afternoon across the active season of pollinating insects. Other studies of bees in
ROW have also found high species richness (163 species) and rare bee species [6]. It is there-
fore clear that ROW can be valuable habitat for pollinators, even for rare species. Powerline
ROW represent corridors that connect diverse habitat and landscape types, and comprise
approximately 2-3 million ha in the US [9]. Ecologically, powerline vegetation management
keeps the plant community in early succession to prevent the establishment of tall woody spe-
cies [3] and, once arrested into an early successional state, ROW can be managed with little
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additional effort. At SGL33, land managers found that the establishment management treat-
ments were no longer required after the plant communities stabilised and were able to adapt
in their management of the ROW. For this reason, most of the plots we surveyed were main-
tained with small applications of herbicide once every 4-5 years.
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Effect of increasing herbicide usage on flower-visiting insect abundance
and species richness

Our results showed that the strongest effect on bee abundance and species richness was driven
by plant species richness in our study site, though lower, and more selective, levels of herbicide
application had significantly higher abundances of common bee species, such as Apis mellifera
and Bombus impatiens. It is possible that these species were more abundant in plots with lower
herbicide application because of higher plant species richness. Increasing herbicide application
also had a small negative effect on bee species richness.

Ideally, we would have compared these herbicide treatments to a hand-cut only treatment
with no herbicide application, but the hand-cut plot was overgrown with briars and dense,
thorny vegetation and more difficult to survey with hand nets. This meant that we were not
able to fairly sample the flower-visiting insects of this plot. However, there was a good range of
herbicide application in the other plots we sampled, from as low as 2.32 litres/ha (LVF) to as
high as 249.66 litres/ha (HVF), and we did not see large differences in the abundance of bees
between the two extremes of this large range. Instead, the low volume basal treatment (LVB)
had significantly higher abundance than low volume foliar or high volume foliar, which did
not differ significantly from one another (Fig 2). It is likely the observed higher abundance in
LVB plots was driven by the relative abundance of the most common bee species in our study
plot, B. impatiens and A. mellifera, and removing them from the analysis did eliminate the sig-
nificant effects of both treatment and plant species richness. Indeed, the rarefaction analysis
showed that the LVF treatment had the highest value for Shannon and Simpson diversities,
while the LVB and HVF did not differ (Fig 4). The LVB treatment had a significantly lower
Shannon and Simpson diversity, likely because of lower evenness due to the dominance of B.
impatiens in samples at those plots.

Effect of long-term vegetation management on the distribution of flower-
visiting insects

In the NMDS plots, month of the year was the factor that lead to the largest separation of the
bee communities, while there was substantial overlap in the bee communities among the dif-
ferent treatments. This suggests that the phenological trajectory of the community composi-
tion is stronger than the treatment effects. Indeed, because many bee species have short active
periods, it is important to monitor plots across the season [42]. Furthermore, insect communi-
ties, and bee communities in particular, are highly variable from year to year [43]. Thus, ROW
should be monitored for bee diversity continuously for several years before final management
conclusions are drawn. Finally, the methods of herbicide application and the mixtures used
differed between our different plots. In future research, it would be interesting to compare
how herbicide formulations specifically affect the pollinator fauna in the ROW.

Plant species richness was the best predictor of bee abundance, but the best model for the
treatment effect was the categorical treatment applications, which did not have a clear, direct
effect on bee abundance. The plant species also corresponded well with the distribution of spe-
cialist bee species in the plots. For example, the aster specialist Melissodes trinodis was found in
the plot with the highest Asteraceae species richness. These specialist bee species did not
appear to be more sensitive to herbicide usage, and were present in the high volume applica-
tion sites. On the other hand, there was a significant negative correlation between the litres/ha
herbicide application and overall bee and plant species richness. Out of 130 bee species, 36
were represented by a single specimen across all our sampling. The distribution of these single-
tons in the treatment plots showed that 53% of singletons were found in LVF, 28% in LVB,
and 17% in HVF plots. This may suggest less common bee species were more sensitive to the

PLOS ONE | https://doi.org/10.1371/journal.pone.0245146  January 6, 2021 13/17


https://doi.org/10.1371/journal.pone.0245146

PLOS ONE

Pollinator diversity in powerline cuts

increasing herbicide applications, possibly because the herbicides may remove less common
plant species [44]. It is relatively difficult to rank bee species abundance, as the population
sizes of most bees is unknown [45]. However, we had six bee species that were considered rare
by expert opinion and there were no clear patterns in the distribution of these rare bee species
among the treatment plots.

There was no effect of treatment on the abundance or diversity of non-bee flower-visiting
insects on a per sample basis, but their abundance was affected by month (highest in August).
Because we were focused on flower-visiting insects, this should only be considered a superficial
survey of non-bee insect groups, some of which may visit flowers inconsistently. Most of the
non-bee insects we collected were visiting flowers for nectar, or consumed pollen without act-
ing as pollinators [46], and are included here because some can also be effective pollinators
[23].

Conclusions

On the basis of these surveys, judicious usage of herbicides is not necessarily detrimental to the
abundance of pollinating insects, especially when used in low volumes and in a selective man-
ner. In other words, we did not see a consistent negative effect of the herbicide applied at these
ROW plots on bee abundance, although there was a significant negative effect of increasing
litres/ha herbicide application on bee species richness, and a negative correlation between
plant species richness and herbicide application on a per plot basis. Perhaps more importantly,
our study shows without any additional cost or effort to land managers, maintaining ROW in
an early successional state can result in a high diversity of flower-visiting insects. Across the six
survey plots and in two summers, we found 126 bee species and 179 non-bee morphospecies.
These plots also had representatives of all six bee families of North America, including several
specialists and two new state records. These findings encourage continued monitoring of
ROW to determine optimal management recommendations for pollinating insects.

Supporting information
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(XLSX)
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