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Correlating Time-Resolved
Pressure Measurements With
Rim Sealing Effectiveness for
Real-Time Turbine Health
Monitoring
Purge flow is bled from the upstream compressor and supplied to the under-platform region
to prevent hot main gas path ingress that damages vulnerable under-platform hardware
components. A majority of turbine rim seal research has sought to identify methods of
improving sealing technologies and understanding the physical mechanisms that drive
ingress. While these studies directly support the design and analysis of advanced rim
seal geometries and purge flow systems, the studies are limited in their applicability to
real-time monitoring required for condition-based operation and maintenance. As opera-
tional hours increase for in-service engines, this lack of rim seal performance feedback
results in progressive degradation of sealing effectiveness, thereby leading to reduced hard-
ware life. To address this need for rim seal performance monitoring, this study utilizes mea-
surements from a one-stage turbine research facility operating with true-scale engine
hardware at engine-relevant conditions. Time-resolved pressure measurements collected
from the rim seal region are regressed with sealing effectiveness through the use of
common machine learning techniques to provide real-time feedback of sealing effectiveness.
Two modeling approaches are presented that use a single sensor to predict sealing effec-
tiveness accurately over a range of two turbine operating conditions. Results show that
an initial purely data-driven model can be further improved using domain knowledge of
relevant turbine operations, which yields sealing effectiveness predictions within 3% of
measured values. [DOI: 10.1115/1.4053175]

Keywords: fluid dynamics and heat transfer phenomena in compressor and turbine
components of gas turbine engines, measurement techniques

Introduction
The pursuit of highly efficient gas turbine engines demands high

temperatures at the turbine inlet to improve thermodynamic effi-
ciency. However, these high temperatures present a durability risk
to the engine because the main gas path (MGP) temperature
exceeds the hardware material softening temperature [1]. Internal
and external cooling strategies have been developed for MGP com-
ponents, but under-platform hardware components require a differ-
ent strategy to maintain acceptable material temperatures. To
prevent ingestion into the under-platform region and protect
turbine components, highly engineered rim seal geometries and
purge flows are typically employed.
Due to the complex fluid dynamics associated with rim seal

ingestion and cavity flows, the majority of research into rim
sealing performance has focused on understanding the flow
physics with a goal to improve the design of seal geometries and
purge flow injection configurations. This type of research applies
to the initial design and performance characterization of rim seals,
which does not cover the entire rim seal life cycle. Once a rim
seal and purge flow injection design has been commissioned into
an engine, there is very little research available to inform the

real-time health monitoring of rim sealing performance during
operation.
In their review of condition-based maintenance of gas turbines,

Tahan et al. [2] identified turbine and compressor component
faults as most important due to their critical influence on engine per-
formance and their expense relative to other engine components.
This statement highlights the importance of monitoring rim seal per-
formance because poor sealing effectiveness results in damage to
both rotating and stationary turbine components. Tahan et al. also
classified cooling and sealing faults as an auxiliary subsystem
fault, which is most readily identified using nonperformance-based
identification methods. This type of identification is distinct from
the gas path analysis [3], which monitors engine performance
metrics like efficiency and power.
Based on these assessments, a fault identification methodology

specifically tailored to rim seal performance is necessary to
prevent costly engine failures. This unique study addresses this
need by presenting two data-driven (DD) modeling approaches
that use a single-pressure sensor to predict the sealing effectiveness
in real time.
The remaining structure of this article will be laid out as follows.

First, literature relevant to the quantification of rim sealing effec-
tiveness in an engine environment will be reviewed, followed by
a description of the experimental methods that were employed.
Then, a brief explanation of the unsteady rim flow characteristics
will be given to setup the discussion of the two modelling
approaches. Each modeling approach will be explained in detail,
followed by a discussion of the practical considerations necessary
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for the implementation of the models in a realistic engine applica-
tion. Finally, the results and conclusions will be discussed.

Literature Review
The majority of rim seal studies have focused on developing a

physical understanding of the mechanisms that drive ingestion. In
a comprehensive review, Johnson et al. [4] summarized the physical
mechanisms of rim seal ingestion: disk pumping, vane and blade
pressure field interaction, 3D rim seal geometry, rim seal geometry
asymmetries, turbulent transport, and flow entrainment. More
recently, Scobie et al. [5] further summarized the driving factors
for ingestion as externally induced (EI), rotationally induced (RI),
or combined ingress (CI), which is a combination of EI and RI
ingress.
This physical understanding of rim seal ingestion mechanisms

has largely relied on the measurement of sealing effectiveness for
a variety of experimental setups and flow conditions. The most
widely utilized method for quantifying sealing effectiveness is the
gas concentration method [6–8], which uses a tracer gas, typically
CO2, to differentiate purge flow and MGP flow that has entered
the under-platform region. By using this approach, the sealing
effectiveness is measured at multiple purge flowrates to quantify
the relationship between the two parameters. Using experimental
results and an understanding of rim seal ingestion mechanisms,
researchers have created physics-based models to define a func-
tional relationship between the sealing effectiveness and the purge
flowrate [9–11]. Because these physics-based models require only
a few inputs to model the sealing performance, they can be poten-
tially applied to the real-time monitoring of sealing effectiveness.
Of course, the application of temperature measurements on the

under-platform hardware would be the most direct method for quan-
tifying ingestion. This is feasible when ingestion occurs along the
stationary side of the rim seal hardware, as shown in the study by
Scobie et al. [5]. However, multiple researchers have also shown
that ingestion can occur along the rotating side of the rim seal
[12–15]. Such a flow scenario could cause a stator-side temperature
sensor to measure hardware temperature driven by egressing cooler
flow rather than ingested hot main gas path flow. This scenario
obfuscates the relationship between stator hardware temperature
and sealing effectiveness, which diminishes the robustness of
using a temperature sensor to quantify ingestion in a realistic
engine environment.
Many researchers have presented orifice models to derive a math-

ematical relationship between sealing flowrate and ingestion [16–
19]. Owen recently presented a model, which simplified the rim
seal to an orifice ring with separate ports for ingress and egress,
and derived a set of equations commonly referred to as the
“orifice equations.” These equations were defined for RI [9]
ingress, as well as EI and CI types of ingress [10]. On the basis
of these equations, Sangan et al. derived the “effectiveness equa-
tions” [8,20]. Critically, these equations have two unknowns, the
ratio of discharge coefficients and the minimum nondimensional
sealing parameter, that must be determined experimentally.
By using these equations, Owen et al. [21] developed a method to

relate engine pressure measurements to the sealing effectiveness.
The instrumentation requirements for this method are relatively
simple; however, implementation requires some key assumptions
and extensive simulation and experimental work.
Specifically, a seal design must be tested in an experimental facil-

ity to determine the ratio of discharge coefficients and gather pres-
sure measurements in the annulus and wheel-space regions. This
ratio of discharge coefficients is assumed to be constant between
rig and engine conditions. Then, unsteady computational fluid
dynamics (CFD) must be performed to determine the precise
axial and circumferential locations (referred to as the “sweet
spot”) at which pressure measurements should be gathered in the
engine. The orifice equations relate the pressure measurements at
this location and the experimentally determined ratio of discharge
coefficients to the sealing effectiveness in the engine. To compute

the sealing flowrate, the pressure measurements from the rig must
be corrected to the sweet spot location to determine the discharge
coefficient for egress. A further correction must be applied to the
pressure coefficient to account for the Mach number ratio
between the experimental facility and the engine [22]. Together,
these experimental, computational, and analytical efforts enable
the calculation of the sealing effectiveness.
Scobie et al. [5] showed good agreement between the orifice

model and experimental data gathered from a variety of test turbines
with differing rim seal geometries, operating environments, and
driving ingestion mechanisms. However, these experimental data
ubiquitously show a smoothly increasing trend that does not
exhibit regions of inflection. While this relationship between
sealing effectiveness and purge flowrate is observed in many sce-
narios, there are also many studies that have shown significant
inflection regions [14,23–29]. Hence, the orifice model lacks wide-
spread applicability to all turbine geometries.
Overall, creating a generalized physics-based model that captures

the inflection region is not currently feasible because the flow
physics that drive the inflection are not well understood. To
address this issue, the present study utilizes a data-driven modeling
approach to relate time-resolved pressure data to the sealing effec-
tiveness measured in an experimental facility. Results shows that
this modeling approach is viable, even in the presence of a
sealing effectiveness curve inflection. In addition, the data-driven
modeling approach is relatively simple in its implementation
because it does not require computational flow simulation. These
characteristics highlight the opportunity for a data-driven model
to be applied as a preferred method for real-time rim seal perfor-
mance monitoring of in-service engines.

Experimental Setup and Testing Procedure
This study was performed at the Steady Thermal Aero Research

Turbine (START) facility at Penn State University [30,31]. The
facility layout is shown in Fig. 1, with arrows highlighting the
various flow paths.
The START facility operates in a continuous-duration mode to

emulate the steady operation of a gas turbine engine. The flow
path is open loop and begins with two industrial compressors that
intake ambient air with a maximum flow capability of 11.4 kg/s
(25 lbm/s) at 480 kPa (70 psia). This process raises the fluid tem-
perature to approximately 380 K (230 °F) at the compressor exit
depending on ambient temperature conditions. Next, the compres-
sor exit flow is split between two distinct flow paths. The majority
of the flow proceeds through an in-line natural gas heater chamber
that provides the high-temperature MGP flow. The maximum capa-
bility of the heater is 675 K (750 °F) at nominal flowrate conditions.
The remainder of the compressor exit flow is diverted through a heat
exchanger to lower its temperature to about 273 K (32 °F). This
fluid stream is further separated into multiple independently
metered coolant flows, which are distributed throughout the turbine.
These MGP and coolant flows ultimately reconvene in the test

section, which consists of a one-stage axial turbine comprising
hardware relevant to the current state-of-the-art for turbine design.
A cross-sectional view of the test article showing qualitatively
equivalent geometry representative of the actual START test
section hardware is shown in Fig. 2.
The purge flow pressure and temperature were measured beneath

the vane, just before the purge flow injection to the rim seal and
under-platform regions. Although the START facility is capable
of supplying the test section with multiple coolant streams, the
purge flow was the sole coolant stream flowing in this experiment.
The MGP and purge flowrates were measured individually
upstream of the test section using Venturi flowmeters. In total,
nine purge flow conditions were used for this study, and the
purge flowrate (ṁP) was normalized by the maximum purge flow-
rate required to fully seal the rim cavity at sensor PA(ṁP,min,A).
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This experiment leveraged an additively manufactured vane with
design features and internal wire routing passages to accommodate
fast-response piezoresistive pressure transducer installations. These
fast-response sensors are labeled PA and PG in Fig. 2. Signals were
sampled at a nondimensional frequency of fs

/
fD≈ 600, where fD

represents the disk rotational frequency, with analog low-pass filter-
ing to prevent aliasing. The nondimensional resonant frequency of
the sensors is represented by at least f

/
fD≈ 120, which provides a

usable bandwidth that far exceeds the range of interest for this
study. The calibration of the sensors is given by Siroka et al. [32].
Measurements from these sensors were collected over 500 revo-

lutions at nine purge flowrates, with nine data sets collected at each
purge flowrate to facilitate model training and testing procedures.
Although not shown here, a separate analysis showed 100 revolu-
tions was a critical value below which model accuracy decreased
substantially. Between 100 and 500 revolutions, there were slight
improvements to model performance with increased revolution
count, but it is assumed that including additional data beyond 500

revolutions would offer negligible benefits to the predictive
model accuracy.
The gas concentration-based sealing effectiveness was used in

this study to quantify the rim sealing performance. The sealing
effectiveness is calculated according to Eq. (1):

ε =
cA − cMGP

cP − cMGP
(1)

which relates CO2 concentration measurements to the sealing effec-
tiveness. The concentration sampling locations are labeled in Fig. 2.
The uncertainties of these pressure, temperature, mass flowrate,
speed, and sealing effectiveness measurements are presented in
Table 1. Prime notation indicates a value that is nondimensionalized
by the nominal operating condition (OP1). These uncertainties were
computed according to the procedure outlined by Figliola and
Beasley [33].

Unsteady Rim Flow Characteristics
As the purge flow injected into the under-platform region is

varied, the characteristics of the unsteady flow field change as

Fig. 1 START facility layout with major components highlighted and arrows indicating the direc-
tion of fluid flow

Fig. 2 Cross-section view of one-stage turbine test article
showing flow configuration instrumentation locations

Table 1 Measurement uncertainties

Parameters Total uncertainty

Main gas path flowrate, (ṁMGP)′ ±0.007
Shaft rotational speed, RPM′ ±0.001
Inlet pressure, P′

in ±0.002
Inlet temperature, T ′

in ±0.001
1.0 stage pressure ratio, (Pin/Pout)′ ±0.01
Sealing effectiveness, ɛ ±0.015 to ±0.025
Fast-response pressures, P* [32] ±0.00005

Normalized purge flowrate,
ṁP

ṁP,min,A
±0.018

Journal of Turbomachinery JUNE 2022, Vol. 144 / 061004-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/turbom

achinery/article-pdf/144/6/061004/6830589/turbo_144_6_061004.pdf by The Pennsylvania State U
niversity user on 28 February 2022



well. Monge-Concepción et al. [34] provide a detailed investigation
of the unsteady fluid mechanics in the under-platform region mea-
sured at the START facility, and Siroka et al. [32] describe how
the dominant unsteady flow features affect ingestion. Because the
present study relies upon modeling the relationship between the
time-resolved pressure signals and the sealing effectiveness, it is
important to first understand the unsteady characteristics of the
rim cavity flow. These topics are briefly summarized here, and
readers are directed to referenced studies for further details.
The variation of sealing effectiveness at location A with normal-

ized purge flowrate is shown in Fig. 3(a). There is an inflection in
the sealing effectiveness curve that appears at approximately half
the purge flowrate required to fully seal rim cavity location A.
The time-resolved pressure was measured throughout the range

of purge flowrates using fast-response pressure sensors at locations
A and G. A fast Fourier transform (FFT) was applied to these pres-
sure signals to create frequency spectra from the time-domain
signals. The pressure amplitude was normalized for presentation
in this article according to Eq. (2):

P∗=
P − Pmin

Pmax − Pmin
(2)

where Pmax and Pmin represent the maximum and minimum pres-
sure amplitude across all purge flowrates and sensors. The fre-
quency domain was nondimensionalized with respect to the disk
rotating speed.

The frequency spectra from fast-response pressure sensors A and
G are shown in Figs. 3(b) and 3(c) for the normalized purge flowrate
corresponding to the maximum unsteadiness. The time-domain
pressure signal was digitally filtered at a cutoff frequency of
f
/
fD = 30 to remove the blade passing frequency, so none of the

peaks in the frequency domain correspond to blade passing
events. Figure 3(b) shows a dominant frequency at approximately
five times the disk rotating frequency ( f

/
fD≈ 5). This dominant

frequency is created by rotating flow structures, as described in
detail by Monge-Concepción et al. [34], and similar behaviors
have been identified by a broad community of researchers using
both experimental and numerical methods [11,13–15,24–27,
32,34–55].
Notably, the pressure fluctuations from these rotating flow struc-

tures propagate radially outward through the MGP and are mea-
sured at the outer casing wall by pressure sensor PG. The pressure
fluctuations are significantly attenuated as they propagate to the
casing, which decreases the pressure amplitude to about 8% of
the pressure amplitude measured in the rim seal. While this attenu-
ation is suboptimal for measuring rim seal pressure fluctuations at
the casing, location G is likely a more accessible position for
sensor installation than location A.
The amplitude of the dominant frequency at location A is shown

as a function of purge flowrate alongside the sealing effectiveness
curve in Fig. 4. As the purge flowrate increases toward a normalized
value of about 0.55, the strength of the rotating flow structures (indi-
cated by the amplitude of the dominant frequency component) also
increases. As the flow structures associated with the identified fre-
quency content form and strengthen, they drive additional inges-
tion, which subsequently creates the inflection in the sealing
effectiveness measurements [32]. For normalized purge flowrates
greater than 0.55, the flow structures begin to weaken and dissipate,
which results in an associated increase of sealing effectiveness. The
relationship presented in Fig. 4 forms the foundation through which
the time-resolved pressure data are related to the sealing effective-
ness in this study.

Data-Driven Model and Results
Two modeling approaches were used in this study to relate the

measured time-resolved pressure to the measured sealing effective-
ness. Although both approaches inherently utilize measured data to
create the models, the initial modeling approach presented in this
section is purely data driven (i.e., with no knowledge of the appli-
cation); as a result, it is referred to herein as the DD modeling
approach.

Fig. 3 Measured (a) sealing effectiveness versus purge flowrate
at location A and frequency spectra from pressure sensors, (b)
PA, and (c) PG. The box in (a) identifies the condition correspond-
ing to the frequency spectra in (b) and (c).

Fig. 4 Dominant frequency amplitude as a function of purge
flowrate. The flow structures form and disappear as purge flow
is increased to the fully sealed flowrate.
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The DD modeling diagram is shown in Fig. 5. This diagram out-
lines the steps taken to relate the input (time-resolved pressure data)
to the output (the predicted sealing effectiveness). In this diagram,
as well as in subsequent diagrams, the training route is always com-
pleted before the testing route. A detailed description of each mod-
eling step is given here.

Data Preparation. The time-resolved pressure data were pre-
pared for feature extraction by filtering and centering. As docu-
mented in previous studies [24,27,41,46,49], the frequency
content of interest appears between the disk frequency and the
blade passing frequency, so the filtering step reduces processing
time by removing unnecessary information; this step could also
be accomplished in the feature extraction step. It is expected that
the cutoff frequency of the low-pass filter could be varied
between the frequency content of interest and the blade passing fre-
quency in pursuit of minor improvements to model accuracy or pro-
cessing time.
The pressure data were also centered by subtracting the mean

value. This centering ensured that only the fluctuations of the pres-
sure about the mean were used in the model. The pressure data were
centered to remove unnecessary information, but it is assumed that
this process contributes negligibly to model accuracy and
generality.

Feature Extraction. The goal of the feature extraction step was
to isolate the information or quantities that would be most useful for
modeling. In addition to adequately describing the pressure signal,
the feature extraction also seeks to utilize a minimum amount of
signal content (features) to reduce computational time. Although
an exhaustive optimization process was not included in this study,
three separate feature extraction techniques were investigated for
comparison.
Due to the fast-response nature of the pressure sensors used in

this study and the previously identified trends with specific fre-
quency content, spectral analysis was an effective method for gen-
erating features from the time-domain pressure signal. For this
reason, the three methods of feature extraction investigated were
the FFT, short-time Fourier transform (STFT), and the discrete
wavelet transform (DWT).
For the FFT extraction method, an averaging process was com-

pleted after the FFT was computed to reduce the number of features.

Without averaging, the total number of features is equal to the
number of frequencies output from the FFT (N), which is equal
to half the number of samples in the time-series pressure signal
(2N ). Due to the fast-response nature of the sensors and the high
sampling rate of the data acquisition hardware used in this study,
the number of pressure data points is large. If these N features
are used for regression, then an N×N system of linear equations
must be solved. The computational complexity of solving this
system of equations scales with N3, so it is advantageous to charac-
terize the signal in as few features as possible to minimize compu-
tational requirements. For this reason, frequency bins were
established with a width of f

/
fD= 1, and all spectral content

within each bin was averaged. The first frequency bin extends
between 0.5≤ f

/
fD< 1.5 and the second between 1.5≤ f

/
fD< 2.5,

and this pattern was continued up to f
/
fD= 29.5. This process effec-

tively reduced the number of features from approximately 1.6 × 105

to 29.
For the STFT extraction method, the time domain was partitioned

into 35 overlapping time intervals. Following this step, the peak
amplitude, which corresponds to the large-scale rotating structures
(Fig. 3(b)), was extracted from each time interval to form the
feature set.
Like STFT, DWT is also able to capture time-domain variations

in frequency content. However, DWT differs from STFT in that its
time-frequency resolution varies when analyzing the signal at dif-
ferent frequencies, whereas the time-frequency resolution for the
STFT is fixed upon selection of time and frequency windows.
A thorough explanation of DWT and its application to fault diag-
nostics in gas turbines was given by Aretakis and Mathioudakis
[56]. To motivate the investigation of DWT and aid in the compar-
ison between DWT and the two Fourier transform methods, a short
explanation of DWT is given here.
For a signal of length 2N, a full wavelet decomposition breaks the

signal into J sets of detail coefficients, where J= log2(2N ), and one
set of approximation coefficients. Each set of detail coefficients cor-
responds to a specific range of frequencies, whereas the approxi-
mate coefficients represent the signal average. The DWT provides
high-frequency resolution and low time resolution at low frequen-
cies and low-frequency resolution and high time resolution at
high frequencies. This characteristic of DWT is unique from
STFT, which has fixed time-frequency resolution upon selection
of time and frequency windows. To reduce the number of features,
the sum of squares of each coefficient set was computed to represent
the amount of energy in each frequency range.
After feature selection, the features from FFT, STFT, and DWT

were further standardized for comparison using Eq. (3):

P̂
∗
=
P∗ − P∗

σP∗
(3)

where σP∗ and P∗ are the standard deviation and mean of P∗,
respectively.

Randomized Data Grouping. After feature extraction, the data
were split into training and testing groups. As the names indicate,
the model was developed using the training data and subsequently
implemented for performance analysis using the testing data. Two
of the nine replications at each purge flowrate were isolated for
testing, while the remaining seven replications were used to train
the model. Because measurements were collected at nine different
purge flowrates, a total of 18 sealing effectiveness predictions
were generated. To quantify prediction error, the root-mean-square
error (RMSE) of each set of sealing effectiveness predictions with
respect to the sealing effectiveness measurements was computed
using Eq. (4):

RMSE(ε) =

�����������������������∑n
i= 1

(ε pred,i − εmeas,i)2

n

√
(4)

Fig. 5 Data-driven (DD) modeling diagram
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where n is equal to 18 total sealing effectiveness predictions for
each data grouping iteration.
Although the data were randomly grouped, there is a potential for

some data groupings to perform better or worse than others. To
ensure that the grouping did not affect the interpretation of the
results, the grouping, training, and testing processes were repeated
250 times. While 250 repetitions examines only a subset of all pos-
sible combinations of the data, it is assumed that 250 repetitions is
sufficient to accurately capture the median RMSE(ɛ) and RMSE(ɛ)
range. To investigate this assumption, the aforementioned quanti-
ties were examined for various grouping repetition counts.
Results showed negligible sensitivity of median RMSE(ɛ) and
RMSE(ɛ) range to additional grouping repetitions above 160 repeti-
tions, with the maximum variation in median RMSE(ɛ) equal
to 9 × 10−4 and the maximum variation in RMSE(ɛ) range equal
to 2.7 × 10−3. Therefore, 160 grouping repetitions are sufficient to
capture the model performance. However, the full 250 grouping
repetitions were used because additional repetitions did not add sig-
nificantly to the model processing time.

Feature Selection and Prediction Modeling. After partitioning
the data into training and testing groups, a subset of informative fea-
tures important for predicting sealing effectiveness were selected.
This process, called variable selection, is important because it sepa-
rates the sparse informative features of the dataset from the nonin-
formative features that only contribute noise. This variable selection
step prevents model overfitting and improves prediction accuracy.
Least absolute shrinkage and selection operator (LASSO) regres-
sion was implemented for variable selection by setting the regres-
sion coefficients of noninformative features to zero [57]. This is
performed by solving the optimization problem:

min
β0 ,β

1
2n

∑n
i=1

(εi − β0 − xTi β)
2 + λ‖β‖1 (5)

where ɛi is the ith sealing effectiveness of the training set, xi is the
ith set of predictors, β0 is the intercept term, β is the vector of regres-
sion coefficients, and λ is the tuning parameter. The tuning param-
eter penalizes the sum of the magnitudes of the regression
coefficients. Therefore, predictors that contribute noise to the
model have their coefficients reduced to zero.
The tuning parameter was selected using K-fold cross-validation.

The n observations are broken into K equally sized groups called
folds. For a given fold, the optimization problem was solved
using the other K–1 folds, and the associated error in predicting
the sealing effectiveness was recorded. This process was then
repeated for all folds, and the errors are averaged over all folds.
The tuning parameter λ was then selected as a value that minimizes
the average prediction error and was subsequently held constant
throughout the remainder of this study.

Feature Extraction and Modeling Results. The modeling
steps shown in Fig. 5 are completed for each of the three feature
extraction methods (FFT, STFT, and DWT). The median and
range, excluding outliers, were computed from the 250 RMSE(ɛ)
quantities for each feature extraction method. Outliers were deter-
mined using the 1.5 × IQR (interquartile range) rule, which dictates
that any predictions 1.5 × IQR above the third quartile or below the
first quartile are outliers. These results are shown in Fig. 6. The bar
height indicates the median RMSE(ɛ), and the range bars indicate
that the range with outliers removed.
A few observations can be made from the results shown in Fig. 6.

First, for these data, the FFT feature extraction method is preferred
because it results in the lowest RMSE(ɛ). Furthermore, the relation-
ship between the feature extraction methods is consistent between
the two sensor locations, A and G. To further investigate these
observations, the time-domain and time-frequency domain pressure
signals were investigated in Fig. 7 to relate the feature extraction

performance results to the physical characteristics of the pressure
signal.
The time-domain pressure signal, shown in Fig. 7(a), is periodic

and resembles a combination of sine waves. By definition, a wavelet
is not a periodic function, which makes it ill-suited to describe the
pressure signal with the aforementioned characteristics. Further-
more, the DWT and STFT are uniquely capable of representing
signals that exhibit time-domain variations in the frequency
content. This utility is not applicable to the pressure signals
because they are stationary across many revolutions, as shown in
Fig. 7(b). This stationary behavior is expected from the steady oper-
ating mode of the START facility. For these reasons, it is logical
that the FFT feature extraction method results in lower prediction
errors than the STFT and DWT feature extraction methods.
Referring back to Fig. 6, a general trend is observed that the

RMSE(ɛ) is higher at location G than at location A. This result
was expected because sensor PA is located in the rim seal, which

Fig. 7 Pressure signal PA shown as a function of (a) time and (b)
time and frequency. Note that the time axis in (b) is presented as
revolutions.

Fig. 6 Comparison of feature extraction methods based on
RMSE(ɛ). These results are shown for OP1 conditions.
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allows the pressure fluctuations associated with the fluid dynamics
in the rim seal region to be measured with less attenuation.
However, the partial attenuation of the rim seal pressure fluctuations
did not prohibit the development of a model that used sensor PG to
predict rim sealing effectiveness.
Based on the preference for FFT predictions shown in Fig. 6, the

relative performance of predictions from measurements at locations
A and G are compared in Fig. 8. Figure 8(a) shows the predicted
sealing effectiveness from each sensor across a range of flowrates
using both sensors, and the FFT results from Fig. 6 are isolated in
Fig. 8(b). Specifically, Fig. 8(a) shows the predictions correspond-
ing to the median RMSE(ɛ), which is shown by the bar height in
Fig. 8(b).
Figure 8(a) shows the ability of the model to resolve the local

characteristics of the sealing effectiveness curve, and Fig. 8(b)
emphasizes the superior performance of sensor PA relative to
sensor PG. Critically, the inflection region, located in the range
0.4 < ṁP/ṁP,min,A ≤ 0.7, is captured well by both predictions
from both sensor locations. However, near the purge flow
extrema, the predictions are not well centered on the sealing effec-
tiveness measurements. This characteristic is important because
engines are typically designed to operate at or close to fully
sealed conditions [22]. With this range in mind, some statements
can be made about the applicability of the observed prediction
accuracy.
There are two primary goals for implementing a diagnostic

model: fault diagnosis and health monitoring. Fault diagnosis is
the less stringent of the two goals because it only requires the detec-
tion of sealing effectiveness that has dropped below some critical
value. If that critical sealing effectiveness were set to the
minimum of the design range, then an RMSE(ɛ) of about 0.05 or
0.06 (as shown in Fig. 8(b)) would be sufficient to identify when
the sealing effectiveness drops below the critical value. However,
accuracies shown in Fig. 8 are likely insufficient to provide distinct
sealing effectiveness predictions within the design range. This issue
is central to the goal of health monitoring, which strives to relate the
cumulative time history of sealing effectiveness predictions to the
health of the under-platform components. Therefore, the sealing
effectiveness prediction error must be further minimized to
improve health monitoring accuracy.

Two-Step Modeling With Domain Knowledge
The DD modeling approach presented in the previous section

was naive in its approach by neglecting to account for any physical
understanding of the relationship between the pressure signal and
the rim sealing effectiveness. As confirmed in the study by Siroka
et al. [32], the presence and the strength of the rotating flow struc-
tures in the under-platform region significantly influences the
sealing effectiveness. While the DD modeling approach was suc-
cessful, it is likely that leveraging the specific frequency or

frequencies corresponding to the rotating flow structures could
result in lower prediction error.
To examine how the DD model utilized the dominant frequency

corresponding to these rotating flow structures, the model coeffi-
cients (β) were examined, as shown in Fig. 9. The coefficient
values from all 250 modeling iterations were averaged to yield a
single representative coefficient value for each frequency bin
(feature). The magnitude of each coefficient indicates the relative
degree to which the pressure amplitude is correlated with the
sealing effectiveness. Here, the various forms of the term “correla-
tion” are used in accordance with their statistical definition, which is
a measure of the interdependency between two variables. Most
notably, the coefficients corresponding to the dominant frequency,
typically in the range 3.5 < f

/
fD < 6.5, are nearly zero, which shows

that the dominant frequency was not used. Therefore, a two-step
(2S) modeling approach was developed to investigate a potential
added benefit of utilizing the dominant frequency. This new meth-
odology employs an understanding of the fluid dynamics to create a
better model—an approach commonly referred to as the inclusion
of “domain knowledge.”
As shown in Fig. 4, the trend of dominant frequency amplitude

represents a nonmonotonic relationship with purge flow. Based
on this relationship, the use of the dominant frequency amplitude
on its own yields a nonunique solution for sealing effectiveness.
To address this limitation, the 2S modeling approach applies one
model where the sealing effectiveness and amplitude of the domi-
nant frequency are positively correlated and applies a second
model where the sealing effectiveness and amplitude of the domi-
nant frequency are negatively correlated. By separating the data
in this way, linear regression is able to relate the pressure features
to the sealing effectiveness.
The 2S model diagram is shown in Fig. 10. The first three boxes

of the 2S model are identical to the DD model. FFT was used as the
feature extraction method because of its superior performance
shown with the DD model. The upper and lower paths of the
model diagram denote the training and testing procedures, respec-
tively. Within these paths, the two steps that differentiate the 2S
approach from the DD approach were implemented.
The first step of the 2S approach utilizes a binary regime model to

identify the sealing effectiveness within either the increasing or
decreasing regions of the sealing effectiveness curve. This step is
nearly identical to the DD model through its use of all spectral fea-
tures to predict sealing effectiveness. However, instead of perform-
ing LASSO regression to obtain a continuous prediction of sealing
effectiveness, the binary regime model uses logistic regression to

Fig. 8 DD model performance results for sensors PA and PG,
showing (a) prediction comparison to measurements and
(b) RMSE(ɛ) across all 250 grouping repetitions

Fig. 9 Model coefficients from the LASSO regression, which
relate the grouped spectral features of the pressure signal to
the sealing effectiveness. The dashed box indicates the approx-
imate frequency range associated with the dominant frequency.
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obtain an output corresponding to the sealing effectiveness regime
relative to a sealing effectiveness value of 0.5 (as dictated by trends
in Fig. 4).
The second step of the 2S approach implements an additional

grouping to isolate a subset of features corresponding to the
large-scale rotating structures and associated harmonics ( f

/
fD=

5,10,…25). The isolated features, along with their logarithm trans-
forms, were sorted based upon their measured sealing effectiveness
regime (greater or less than 0.5), and then LASSO regression was
used to create the sealing effectiveness prediction models. Model
performance was evaluated with and without the logarithm contrib-
utors. Although 2S improvements relative to DD were identified
both with and without logarithms, the addition of relevant feature
logarithms helped capture the inherent nonlinearity of the dominant
frequency amplitude trend (Fig. 4), which resulted in additional 2S
model benefits.
In total, three models were trained for 2S implementation—one ɛ

regime model and two ɛ prediction models, as shown in the black
boxes in the top right of Fig. 10. During the 2S model testing
phase, the binary ɛ regime model predicts the approximate range
of the sealing effectiveness, which then informs the prediction
model to apply to acquire a final sealing effectiveness prediction.
The accuracies of the DD and 2S model predictions are compared

in Fig. 11. The predictions shown in Figs. 11(a) and 11(b) corre-
spond to the median RMSE(ɛ) data grouping iteration predictions.
In Fig. 11(c), the bar height corresponds to the median RMSE(ɛ)
and the range bars indicate the variation in RMSE(ɛ) across 250
grouping repetitions, excluding outliers. Overall, Fig. 11(c) shows
the 2S modeling approach reduced RMSE(ɛ) by 48% at location
A and 37% at location G relative to the DD approach. Furthermore,
Fig. 11(c) supports the previous conclusion that PA predictions are
superior to PG predictions. The accuracy improvement of the 2S
model is most notable at the highest purge flowrates, as indicated
in Figs. 11(a) and 11(b).
To investigate this relationship between purge flowrate and

model performance in greater detail, Fig. 12 shows RMSE(ɛ) as a
function of purge flowrate. For the DD modeling approach,
RMSE(ɛ) grows as the purge flowrate nears its maximum value
for both sensors. However, the 2S modeling approach RMSE(ɛ)

does not suffer from this issue. Instead, the RMSE(ɛ) of the 2S
approach is consistently low at high purge flowrates. Furthermore,
when examining a single sensor, the 2S approach RMSE(ɛ) is typi-
cally lower than or equal to the RMSE(ɛ) of the DD approach across
all purge flowrates.

Fig. 10 Two-step (2S) modeling diagram

Fig. 11 DD and 2S model performance comparison of predic-
tions relative to measurements for (a) sensor PA and (b) sensor
PG, as well as (c) RMSE(ɛ) results across all 250 grouping
repetitions
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Based on knowledge that engines typically operate near the fully
sealed condition, the low errors at high purge flowrates exhibited by
the 2S approach is especially useful. As an example, if an engine
were designed to operate with sealing effectiveness between 0.8
and 1.0 (the highest three purge flowrates studied), the 2S model
RMSE(ɛ) is approximately one order of magnitude less than the
design intent sealing effectiveness range. As a result, the
RMSE(ɛ) of the 2S modeling approach is likely sufficiently low
to be implemented in a true health monitoring application. Further-
more, the prediction errors from sensor PG, at the casing, are nearly
equivalent to the prediction errors from sensor PA, in the rim seal,
which supports the viability of using sensor PG for its easier instal-
lation access.

Practical Considerations
To this point, two modeling approaches have been presented to

relate time-resolved rim seal pressure to rim sealing effectiveness.
Both modeling approaches have shown the ability to predict
sealing effectiveness with low error at one turbine operating
point. However, it is important to consider the applicability of
these models to other operating conditions and additional geome-
tries, as well as to consider the practical aspects of training and
implementing the models in a real-world scenario. The investigation
of additional turbine operating points will primarily focus on the 2S
modeling approach because of its superior performance.
Turbine monitoring models can be applied continuously at all

operating points, or they can be applied at a subset of operating con-
ditions. The former application requires full model flexibility at all
operating points and returns monitored information continuously.
The latter application can be valid only when the turbine operating
conditions match the training conditions, which diminishes the
monitoring frequency.
To examine the model sensitivity to turbine operating conditions,

measurements were collected at a second turbine operating point
(OP2). The relationship between the two sets of operating condi-
tions is presented in Table 2 using the prime notation introduced
in Table 1. Results at OP2 are shown for sensor PG due to the

preferred installation accessibility and because location G repre-
sents an upper bound for error from which to examine model predic-
tion sensitivities.
In Fig. 13, the OP1 and OP2 bars represent the median prediction

RMSE(ɛ) when the 2S model is separately trained at OP1 and OP2,
respectively. The comparison shows OP2 median error is nearly
double the OP1 median error—an observation that could be
caused by increased variability in the amplitude of the dominant fre-
quency at a given sealing effectiveness for different turbine operat-
ing conditions.
The bar labeled “Both” represents the prediction error when a

single model is generated based on the cumulative pressure and
sealing effectiveness inputs from both operating conditions. The
error of this combined model is nearly equivalent to the OP2 predic-
tion error, which suggests the viability of applying a single model to
a broad range of operating conditions. This observation also shows
that the relationship between the standardized pressure amplitude of
the dominant frequency and the sealing effectiveness is largely
invariant across the range of evaluated operating conditions.
These results indicate that the 2S model can be trained at two oper-
ating points with minimal losses in accuracy, which enables real-
time rim sealing effectiveness monitoring at two operating points.
While these results do not present a comprehensive view of the per-
formance of a single model across all possible on and off-design
operating conditions, Fig. 13 indicates capability of the modeling
approach to function across a range of operating points, which sup-
ports continuous monitoring of rim sealing effectiveness.
Another important practical consideration for these data-driven

models is their applicability to various turbine geometries.
Although this question cannot be explicitly answered without
testing alternate turbine geometries, some instructive statements
can be made by examining the working principles of the models
themselves. Foremost, the 2S model relies on an instability-driven
dominant frequency that follows amplitude variations as a function
of the sealing effectiveness. Many researchers with differing turbine
geometries and purge flow injection methods have observed low-
frequency peaks in the rim seal pressure that are also dependent
on purge flowrate [14,24,25,27,32,37,38]. Although many of
these studies do not present results at as many purge flowrates as
the present study, it is assumed that the 2S model (Fig. 10) can
be modified to accommodate each individual relationship between
rim seal time-resolved pressure and sealing effectiveness by modi-
fying the extent and number of regimes corresponding to each pre-
diction model.
While many turbines fit into this category, there are likely many

turbine geometries that either do not show a dominant frequency in
the rim seal pressure or do not exhibit a modulation of the pressure
spectral content by purge flowrate variation. For example, Julien
et al. [15] showed minor changes to rim seal pressure content

Table 2 OP2 operating conditions

Parameters OP2

Inlet absolute total pressure, P′
in 0.9

Total pressure ratio, (Pin/Pout)′ 0.82
Mass flowrate, ṁ′

MGP 0.88
Rotating speed, RPM′ 0.88
Inlet temperature, T ′

in 1

Fig. 12 Prediction error of DD and 2Smodeling approaches as a
function of purge flowrate

Fig. 13 Comparison of 2S model prediction error when trained
individually at two operating points (OP1, OP2), and when
trained on data combined from the two operating points. These
results are shown exclusively for sensor PG.
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using CFD, and Darby et al. [26] hypothesized that co-swirled
purge flow weakens the shear layer driven instability that creates
a dominant frequency in the rim seal pressure. In these cases
when dominant frequency content is not present, the DD modeling
approach can still be applied because it does not rely on the pres-
ence of a dominant frequency to predict sealing effectiveness, as
shown in Fig. 9.
Another challenge of applying the 2S and DD modeling

approaches to an engine is the extreme temperatures in the
turbine, which many sensing technologies cannot accommodate.
Furthermore, the models presented in this study specifically
require a pressure sensor capable of resolving fast-response pressure
data up to approximately f

/
fD= 30. For large turbines typical of

power generation applications, the rotating speeds are relatively
low, meaning the required sensor bandwidth is reduced and is there-
fore increasingly attainable. For example, a sensor applied to a
turbine operating at 3600 rpm would require a sampling rate of
3.6 kHz to resolve f

/
fD= 30= 1.8 kHz, which is a reasonable sam-

pling rate considering the existing technology for engine applica-
tions. Based on higher bandwidth requirements of smaller engines
used in aerospace applications, the modeling approaches presented
in this study may be most readily applied to large power generation
engines. However, new sensor technologies are continuing to be
developed that address this need for higher sensor bandwidth in
engines with higher operating speeds.
Finally, it is important to consider the environment in which these

models are trained and the relevance of the resulting model to the
engine environment. Ideally, a gas turbine manufacturer would
execute the training procedure with a pressure sensor installed on
the exact engine to which the model would be applied; however,
this poses several challenges including independent control require-
ments of cooling flow supplies, separate quantification of sealing
effectiveness, and temperature controls to prevent component
failure at low purge flowrates. Instead, test facility experimentation
and CFD predictions present two potential alternatives to the
engine for generating training data. Critically, the training data
must closely match the relationship between time-resolved rim
seal pressure and rim sealing effectiveness in the engine. Although
great progress has been made recently in predicting rim seal flow
characteristics using CFD [58–60], the authors are not aware of
any studies in the open literature that have shown exact, or nearly
exact, matches between CFD predictions and experimental results
for time-resolved rim seal pressure and rim sealing effectiveness.
Therefore, in pursuit of the highest fidelity source of training data,
it is likely that the model would need to be trained in a test facility
using turbine geometry that matches the engine. Continued develop-
ment and utilization of turbine research facilities operating with
true-scale engine hardware and engine-relevant operating conditions
will help ensure the feasibility of such ex situ training methods.

Conclusions
This study developed models to predict real-time turbine rim

sealing effectiveness using input data from a time-resolved pressure
sensor with relatively low-bandwidth requirements. Fast-response
pressure measurements were gathered in a one-stage test turbine
operating at engine-relevant conditions with engine-representative
hardware. Two pressure sensors were installed to examine the trade-
off between ease of installation and model performance. Because
unsteady rim seal flows are not yet fully understood, data-driven
modeling approaches were used to relate the pressure signals to
the sealing effectiveness.
These efforts resulted in the generation of two data-driven mod-

eling approaches relating broadband pressure features to measured
rim sealing effectiveness: a purely data-driven approach and a more
complex approach integrating domain knowledge from known
turbine rim seal behaviors. The first data-driven approach showed
median sealing effectiveness predictions within approximately 6%
of the measured value. The second approach incorporated domain

knowledge using a two-step approach and reduced median predic-
tion errors to approximately 3% of the measured sealing effective-
ness. For engines designed to operate at sealing effectiveness values
above 0.8, these errors were found to be further reduced to below
2%—low enough to reasonably apply the model to real-time under-
platform hardware health monitoring.
A comparison of the two sensor mounting locations showed

the rim seal pressure sensor resulted in more accurate sealing effec-
tiveness predictions than the casing pressure sensor. However,
slight increases of prediction accuracy identified for the casing
sensor location are likely outweighed by the preferable sensor
accessibility.
Performance of the two-step model with domain knowledge was

further assessed for different turbine operating conditions. Success-
ful model integration showed that it is possible to train a single
model for a range of turbine operating conditions, and the associ-
ated performance debits were quantified. Ultimately, the results
from this study show the viability of a real-time health monitoring
system for accurate predictions of turbine rim sealing behavior
using a data-driven approach.
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Nomenclature
c = CO2 concentration
f = frequency
t = time
P = pressure
T = temperature
ṁ = mass flowrate

RMSE(ɛ) = root-mean-square error of ɛ prediction
β = model coefficient
ɛ = sealing effectiveness
σ = standard deviation

Subscripts

2S = two-step modelling approach
A = rim seal location
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D = relating to the disk rotation
DD = data-driven modelling approach
G = casing location
in = inlet parameter

max = maximum value
meas = measured using gas concentration method
MGP = pertaining to the main gas path
min = minimum value
out = outlet parameter
P = pertaining to pressure or purge flow

pred = predicted quantity

Superscripts and Operators

Q′ = nondimensionalized by operating point OP1
Q∗ = globally normalized across all data
�Q = mean quantity
Q̂ = standardized quantity
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