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Applying Infrared Thermography
as a Method for Online
Monitoring of Turbine Blade
Coolant Flow
As gas turbine engine manufacturers strive to implement condition-based operation and
maintenance, there is a need for blade monitoring strategies capable of early fault detection
and root-cause determination. Given the importance of blade cooling flows to turbine blade
health and longevity, there is a distinct lack of methodologies for coolant flowrate monitor-
ing. The present study addresses this identified opportunity by applying an infrared ther-
mography system on an engine-representative research turbine to generate data-driven
models for prediction of blade coolant flowrate. Thermal images were used as inputs to
a linear regression and regularization algorithm to relate blade surface temperature distri-
bution with blade coolant flowrate. Additionally, this study investigates how coolant flow-
rate prediction accuracy is influenced by the number and breadth of diagnostic
measurements. The results of this study indicate that a source of high-fidelity training
data can be used to predict blade coolant flowrate within about six percent error. Further-
more, identification of prioritized sensor placement supports application of this technique
across multiple sensor technologies capable of measuring blade surface temperature in
operating gas turbine engines, including spatially resolved and point-based measurement
techniques. [DOI: 10.1115/1.4054814]
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Introduction
The typical failure modes for turbine blades are high cycle

fatigue, oxidation, sulphidation, hot corrosion, creep, and erosion
[1]. Turbine components are more susceptible to damage from
these failure modes when they are operated at elevated tempera-
tures. Therefore, blade metal temperature is a driving factor affect-
ing the longevity of gas turbine blades. Specifically, this
relationship has been approximated as a 50 percent life reduction
when blade temperature increases by 25–40 °C [2–4].
In modern engines, the main gas path (MGP) temperature enter-

ing the turbine can reach 1650 °C (3000 °F). However, turbine air-
foils must be kept well below this temperature to avoid damage via

identified failure modes. To accomplish this task, lower temperature
fluid is diverted from the compressor to cool the turbine hardware
using complex cooling configurations, including internal cooling
passages outfitted with heat transfer augmentation features and film-
cooling holes that deliver cooling flow to the external blade surface.
Together, these internal and external cooling features result in
cooling effectiveness for modern turbine airfoils of about 60%
[5], which shows the reliance of turbine airfoils on cooling flows
for maintaining health and longevity.
Given the importance of cooling flows to the long-term durability

of turbine hardware, there is a substantial opportunity for cost-
savings if online monitoring of coolant flow can be integrated
into a condition-based monitoring approach. For example, this
type of condition-based operation and maintenance (CBOM) strat-
egy can reduce unscheduled downtime, which costs liquefied
natural gas facilities around $25 million per day [6]. In addition
to reducing unscheduled downtime, CBOM can potentially elimi-
nate the need for inspection downtime, which is scheduled to
occur every 12,500 engine hours in some applications [7]. For
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engine manufacturers and operators to realize these potential finan-
cial savings, there is a requirement for the development of novel
methods for online diagnostics and prognostics.

Literature Review
Despite the importance of blade cooling flow to blade health and

longevity, the blade health monitoring methods described in the
open literature do not directly monitor the characteristics of the
blade coolant. Instead, the majority of existing blade health moni-
toring techniques detect geometrical [8,9], structural [10–14], or
aerodynamic performance [15] degradation using blade tip timing
[12,13,15–19], blade tip clearance [15,20], vibration [9,13–15],
high-resolution shaft speed [21], fast-response pressure [8,11,15],
and gas path analysis [22] sensors. In the turbine section, thermal
barrier coatings (TBC) and external film-cooling flows are used to
shield the blade hardware from the hot MGP flow. Therefore, in
the pursuit of early detection and root-cause determination of
blade degradation, there is a need for dedicated monitoring of
TBCs and blade cooling flows.
Although no studies have addressed blade coolant monitoring, a

few studies have shown the capability for TBC monitoring with a
demonstration of operating gas turbine engines. LeMieux [23]
showed a major step forward in blade health monitoring by apply-
ing an infrared thermography camera on a Westinghouse 501FD
power generation gas turbine engine for continuous, real-time
TBC monitoring. The monitoring system was able to successfully
image 85 percent of the blade surface during engine operation at
3600 revolutions per minute (rpm). Furthermore, the system was
successfully operated for over 8000 engine hours. In their report,
LeMieux stated that the TBC monitoring system would be available
on Siemens next-generation gas turbine engines and that retrofits
were being offered to customers with existing Siemens engines.
In a similar study, Markham et al. [24] demonstrated IR blade
imaging capability on a commercial aviation gas turbine engine
operating at over 10,000 rpm for the purpose of TBC performance
monitoring and cooling design evaluation.
In addition to infrared thermography, there are a number of

methods available for quantifying blade surface temperature in an
engine environment. Understanding the capabilities of each mea-
surement technique is important for interpreting their respective
utility to blade coolant monitoring. In general, blade temperature
measurement technology can be separated into two groups:
contact and non-contact methods. Contact methods, like thermo-
couples [25,26], thin–film resistance temperature devices [27–30],
and fiber optic sensors [31], are typically used in research and
engine development environments and therefore are not currently
applicable to long-term blade health monitoring in the hot section
of operating engines. Non-contact measurement methods are
more feasible for long-term use in the hot section of engines
because they can be installed outside of the hot MGP on stationary
hardware. Non-contact measurement methods that have been used
in engine-relevant environments include thermographic phosphors,
pyrometry, and IR thermography.
The thermographic phosphor measurement method involves

coating the target surface with a phosphorescent layer. By exciting
the phosphors with ultraviolet light, the temporal rate of decay of
luminescence can be related to the surface temperature [32]. This
method has been used for blade temperature measurement in an
operating engine [33], and it is well suited for use with TBC-coated
surfaces because the phosphorescent particles can be integrated
directly into the TBC layer [34].
Radiation pyrometry measures radiant energy emitted from a

surface. The target surface temperature can be accurately measured
based on a known target surface emissivity, assuming contributions
of reflected radiation can be minimized or accounted for in the
pyrometer calibration. Fundamentally, pyrometers are point mea-
surements, although in some applications the focal area can be
scanned across a surface to capture spatial temperature variation

[35,36]. Given their simplicity and durability, there are numerous
examples of pyrometer utilization in realistic engine environments
[37–39].
IR thermography is a two-dimensional form of pyrometry by

which radiant energy is directed onto a focal plane array. The
result is a thermal image with a resolution equal to the matrix
size of the focal plane array. Despite the increased complexity of
IR thermography systems relative to pyrometers, there are numer-
ous examples of IR imaging of rotating blades [24,40–42].
Results from Markham et al. [24], Christensen et al. [41], and
Knisely et al. [42] specifically show that state-of-the-art thermal
imaging systems can reliably capture small features on the blade
surface.
Cumulatively, the list of methods available for quantifying blade

surface temperature for long-term blade health monitoring applica-
tions comprises these three methods. Their differences in cost, com-
plexity, and capability dictate their applicability to the blade coolant
monitoring technique developed in the subsequent sections, which
relates the blade temperature distribution to the blade coolant
flowrate.

Factors Affecting Blade Surface Temperature
One of the difficulties associated with relating cooling flowrate

(ṁcool) to blade surface temperature (T ) is the large number of
parameters that affect the surface temperature of a modern, highly-
cooled gas turbine blade. To illustrate this point, Fig. 1 shows a
one-dimensional (1D) approximation of the heat transfer through
a film-cooled turbine blade wall with negligible radiative heat trans-
fer. This 1D analysis informs the identification of the numerous
independent parameters that affected the blade surface temperature,

Fig. 1 Simplified one-dimensional analysis of film-cooling heat
transfer

Fig. 2 Distribution of TMGP and ṁcool conditions at which blade
temperature measurements were collected for predictive model-
ing of ṁcool
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which is relevant to the determination of the data sets required for
training the diagnostic model.
In the presented analysis, the major difficulty is determining the

internal and external heat transfer coefficients, which ultimately
depend on numerous geometric, thermal, and fluid dynamic param-
eters. The functional relationship between blade surface tempera-
ture and the parameters from Fig. 1 is shown in Eq. (1)

T = f
TMGP, Tcool, ṁMGP, ṁcool, geometry, rotation
thermal state, material and fluid properties

( )
(1)

where TMGP is the temperature of the main gas path flow, Tcool is the
blade coolant temperature, ṁMGP is the main gas path flowrate, and
ṁcool is the blade coolant flowrate. This functional relationship was
used to guide both the experimental design and the modeling strat-
egies used for the prediction of ṁcool.
Because the effects of each parameter are complex, this study has

implemented a data-driven modelling approach. Using this
approach, the breadth of parameters captured in the training data
roughly determines the limitations of the model. For this reason,
each parameter in Eq. (1) is discussed here in terms of its inclusion
or exclusion as an independent variable in the data set used to train
and test the model. The consequences of these decisions on the
model application are described as well.
The two primary independent variables in this study were TMGP

and ṁcool. Figure 2 shows the data set used in this study for model-
ing in terms of TMGP (abscissa) and ṁcool (ordinate), where each
point indicates conditions at which IR measurements were col-
lected. As the high-temperature driver of heat transfer to the
blade, TMGP is expected to have a substantial influence on the
blade surface temperature distribution. For this reason, large
TMGP variations were included in the data set, enabling the predic-
tive model to account for TMGP and adjust ṁcool predictions accord-
ingly; this process reduces errors caused by TMGP volatility in a
real-world application. In total, four TMGP set points were measured
spanning 14% of the maximum TMGP across all cases. As the
primary parameter of interest, large variations in ṁcool were also
included in the data set. Five distinct flowrates were investigated
between 25% and 100% of the maximum ṁcool across all cases.
To illustrate the dependence of blade temperature on these two
driving parameters, each point in Fig. 2 is colored to reflect the area-
averaged blade temperature—as measured by the IR camera—with
dark blue and dark red representing the low- and high-temperature
extrema, respectively. Generally, point colors transition from
blue in the top left corner—where TMGP is lowest and ṁcool is
highest—to red in the bottom right corner—where TMGP is
highest and ṁcool is lowest.
In addition to the selected primary parameters, small variations in

some of the other parameters in Eq. (1) were included to mimic real-
world engine operation. Specifically, Tcool, dTID/dt, and dTOD/dt
were allowed to vary slightly amidst the larger variations to TMGP

and ṁcool. The variation of these secondary parameters mimics
boundary condition and engine operating mode variability typically
experienced in real-world engine operation. In Fig. 2, the depen-
dence of blade temperature on the secondary parameters is evi-
denced by color variations within point clusters. The remainder of
the parameters in Eq. (1) were either held constant across the exper-
imental data set or not controlled directly. In particular, ṁMGP,
geometry, and rotating speed were held constant across all cases.

Table 1 describes the non-dimensional parameters relevant to the
operation of the turbine.
In summary, by setting the turbine parameters as indicated, the

turbine is operated at or near a single aerodynamic condition,
which inherently tailors the resulting model to a discrete monitoring
application. In discrete monitoring, predictions are generated only
at a single operating point. The model in this study can predict
ṁcool and TMGP, and any changes to these parameters outside of
their healthy range can be recognized, which indicates the root
cause of changes to blade surface temperature as occurring in
either the secondary air or combustion systems, respectively.

Experimental Methods
The training and testing data sets were generated at the Steady

Thermal Aero Research Turbine (START) Laboratory at Penn
State University. This facility operates continuously at engine-
relevant aerothermal conditions using turbine geometries that are
representative of the current state-of-the-art of a commercial avia-
tion gas turbine engine. A detailed description of the START facil-
ity was given by Barringer et al. [43], and an abbreviated
description is provided here.
The main components of the system relevant to this study are the

two industrial compressors, a natural gas combustion chamber to
heat the MGP flow, a heat exchanger to lower the temperature of
the cooling flows, the one-stage turbine test section, and a water-
brake dynamometer for speed control and power extraction. The
two compressors (1.1 MW, 1500 hp) continuously draw in
ambient air at a combined flowrate of up to 10.4 kg/s (25 lbm/s).
Flow exits the compressors at approximately 480 kPa (70 psia)
and 110 °C (230 °F). The majority of the compressor exit flow
enters the MGP and is directed into the inlet of the in-line natural
gas heater chamber. The MGP temperature can be raised to a
maximum temperature of 400 °C (750 °F), although the MGP tem-
peratures in this study were lower. The remainder of the compressor
exit flow is diverted through a shell-and-tube heat exchanger to
reduce its temperature to about 0 °C (32 °F). This cold flow is sep-
arated into three individual flows: blade cooling flow, vane trailing
edge cooling flow, and purge sealing flow. In this particular study,
only blade cooling flow was used. These MGP and cooling flow
reconvene in the test section, which is a true-scale single-stage
turbine. After the test section, an in-line torque meter and a laser
tachometer measure shaft torque and speed, respectively. Finally,
a shaft-end water-brake dynamometer extracts power and controls
turbine rotating speed to within ±10 rpm of the desired set point.
A representative cross-section view of the turbine test section is

shown in Fig. 3. Stationary hardware is shown in light grey, and
rotating hardware is shown in dark grey. The MGP travels from
left to right through the turbine vanes and blades. The blade

Table 1 Turbine operation non-dimensional parameters

Parameter Value

Vane inlet Mach number 0.1
Vane inlet axial Reynolds number 8.8 × 104–1.0 × 105
Blade inlet axial Reynolds number 8.5 × 104–9.9 × 104
Rotational Reynolds number 2.7 × 106–3.4 × 106
Coolant-to-MGP density ratio 1.5–1.7 Fig. 3 Single-stage turbine cross section with identified mea-

surement locations
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coolant is pre-swirled prior to entering the disk, where it is routed
through the blade-disk attachment into the blade root. The blade
coolant continues through internal passageways in the blade
before ejection through film-cooling holes onto the blade surface
(not shown in Fig. 3). It should be noted that a small portion of
the supplied blade coolant flow leaks into the wheelspace cavity
and eventually egresses through the rim seal into the MGP fluid
stream. However, due to the measured thermal state of the rim
seal hardware in this study, it is expected that the split of supplied
cooling flow between the rim seal and the blade row was constant
across all data collected and used for modeling. Measurements of
ṁMGP were collected using a Venturi flowmeter, and TMGP was
measured just prior to the vanes by six circumferentially distributed
temperature probes. Measurement of ṁcool was executed using a
Venturi flowmeter located upstream of the test section, and Tcool
was measured by circumferentially distributed thermocouples
located immediately upstream of the pre-swirler vanes. The uncer-
tainty of these temperature and flowrate measurements can be
sourced from Berdanier et al. [44].
As shown in Eq. (1), the thermal state of the turbine hardware has

an effect on the blade surface temperature, which necessitated the
use of additional temperature measurements to quantify the hard-
ware temperature over time. Therefore, thermocouples were
installed on the outer-diameter hardware (TOD) and on the inner-
diameter hardware (TID) to approximate the cumulative tempera-
tures of the test-section hardware. The time rate-of-change for
these temperatures (dT/dt) was calculated at instances correspond-
ing to IR blade temperature measurements, and the resulting
outputs were used as potential covariate features for model develop-
ment. Here, a covariate describes any parameter that has a non-
negligible effect on model performance, but is neither the main
diagnostic measurement nor the target of predictive modelling.
The main diagnostic parameter used in this study was the spa-

tially resolved blade surface temperature measured using an IR ther-
mography system. The camera integration, calibration, and

operation were introduced in detail by Knisely et al. [42], and the
specific information relevant to this study is given here.
The IR camera in this study utilizes a Sofradir MiTIE MARS LW

camera engine that contains a HgCdTe (MCT) IR detector, which
measures radiant energy in the long wave IR spectrum. The integra-
tion time (response time), which is the amount of time required for
the camera to capture an image, is adjustable down to 0.6 µs. For
this particular study, the integration time was set at 2 µs, which
was the optimal time that minimized the combined detrimental
effects of spatial noise and image blur caused by blade rotation
during image capture. With this short integration time, it was nec-
essary to collect and then average consecutive images of the same
blade to reduce measurement noise; fifty images were averaged to
generate a single blade temperature distribution for this study.
Average images were further processed with binning and 3 × 3
median filtering, which were shown by Knisely et al. [42] to
reduce measurement errors due to striping and nonresponsive
pixels.
A calibration plate was used to perform external calibration of the

IR system [42] across a range of surface temperatures following the
procedure detailed by Mori et al. [45]. After calibration, the camera
was installed on the test turbine and used to measure rotating blades.
For this study, only one location on one blade was measured for
consistency. The target blade was prepared with a high emissivity
coating, which helped to improve measurement accuracy by reduc-
ing the contributions from background sources of radiant energy.
The target surface of the blade was imaged by the IR camera at
approximately a 25-deg viewing angle relative to the surface
normal direction. The temperature measurement uncertainty of the
IR camera, when non-dimensionalized by TMGP,max, was deter-
mined to be 0.62% for the conditions examined in this study.
The probe access and a representative view of the IR camera onto

the blade surface are shown in Fig. 4(a). The camera optics were
integrated through the body of an additively manufactured vane,
which enabled imaging of the pressure side of the blades. Although
the system was able to image the entire pressure side of the blades,
only a small region downstream of four diffuser-shaped film-
cooling holes was selected for this study. An example of a post-
processed thermal image, Fig. 4(b), shows the pitchwise
(z-direction) periodic temperature variation caused by the row of
film-cooling holes. The amplitude of these periodic temperature
fluctuations is greatest immediately downstream of the film-cooling

Fig. 4 IR camera: (a) integration and blade view and (b) example
thermal image

Table 2 Predictive modeling features
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holes and decreases with increasing downstream distance as the
coolant becomes more evenly distributed along the blade surface.
There is also a slight pitchwise temperature gradient, likely
caused by the internal coolant temperature increasing in the
z-direction from the blade root toward the blade tip. The z-direction
temperature gradient is observed consistently across all images col-
lected for this study, so it can be considered a result of the blade
design that will be inherently captured by the data-driven modeling
process.

Predictive Model Development Methods
For diagnostic measurements that exhibit high temporal or spatial

resolution, it is common to perform feature extraction to reduce the
overall size of the candidate feature set with minimal loss of infor-
mation. The thermal images analyzed in this study represent 756
individual pixel temperature measurements. These individual tem-
peratures can be used directly as features, or statistical representa-
tions of the temperature measurements can be used as unique
features with reduced dimensionality and complexity. In the end,
three types of features were investigated to assess the tradeoff
between feature dimensionality and prediction accuracy. Each
type of feature is shown in Table 2 for the example image shown
in Fig. 4(b).
The first type of feature in Table 2 is generated by computing the

two-dimensional average of the IR image, T , which results in a
single scalar feature. This type of feature is analogous to the
blade temperature measured by a pyrometer with a focal area equiv-
alent to the spatial domain of the IR image shown in Fig. 4(b). The
second type of feature was generated by calculating the pitchwise
average of the IR image, �T(x), which yields a one-dimensional
array of features. This second approach is correlated to the
pitchwise-averaged cooling effectiveness, which is typically used
in the study of film-cooling performance to understand cooling as
a function of downstream distance. The third and last type of
feature examines individual pixels in the IR image as unique poten-
tial predictors of ṁcool, which makes this type of feature truly two-
dimensional. In Table 2, the grid overlay for the two-dimensional
data, T(x,z), shows the image resolution, where each grid intersec-
tion corresponds to a pixel temperature measurement.
After each type of feature set was curated, predictive modeling

was performed using the Least Absolute Shrinkage and Selection
Operator (LASSO) [46] regression. LASSO was selected for this
application because it has the ability to generate sparse and easily
interpretable models from large and complex data sets [47–50].
Equation (2) shows the optimization problem for LASSO regression
for this application

min
β0,β

1
2n

∑n
i=1

(ṁcool,i − β0 − xTi β)
2 + λβ1 (2)

where ṁcool,i is the ith measured blade coolant flowrate in the train-
ing set, xi is the ith set of predictors from the IR images, λ is the
tuning parameter, and β is a set of model coefficients. The second
term in Eq. (2) is the penalty term that performs both regularization
and feature selection, where the selected features correspond to
non-zero β coefficients. The tuning parameter, λ, which determines
the extent of regularization, was determined using K-fold cross-
validation with ten-folds. The performance of the models generated
by LASSO was compared based on their prediction
root-mean-square error (RMSE)

RMSE(y) =

����������������������∑n
i= 1

(ypred,i − ymeas,i)2

n

√
(3)

where ypred is the predicted parameter of interest, ymeas is the mea-
sured parameter of interest, and n is the number of predictions.
RMSE results will be reported separately for predictions of both
ṁcool and

T
MGP.

For purposes of addressing predictive model stability in the pres-
ence of turbine operability variations, two separate data sets were
used for model generation. These two data sets were used to eval-
uate the importance of including covariates in the model, where
potential covariate parameters in this study are TMGP, Tcool, dT/
dtID, and dT/dtOD. These covariate parameters were selected
because they can influence the blade temperature at constant
MGP temperature and coolant flowrate conditions, which in turn
can lead to increased prediction error. The ISOLATED data set is rep-
resentative of data generated in an idealized environment at near
steady-state conditions (dTID/dt= dTOD/dt≈ 0) with tightly con-
trolled Tcool. Aside from ṁcool, TMGP was the only parameter exhib-
iting large variations in the isolated data set, meaning there was an
option to manually include TMGP in the model as a covariate param-
eter. The secondary parameters were not included as covariates
when modeling with the ISOLATED data set because they were
tightly controlled during test operations.
The ISOLATED data set was then expanded to include additional

data with larger fluctuations of Tcool, dTID/dt, and dTOD/dt to facil-
itate the consideration of including secondary parameter covariates
in the model; this larger data set is referred to as the EXTENDED data
set. Figure 5 shows the range of Tcool, dTID/dt, and dTOD/dt for the
two data sets, where the range is calculated as the difference
between the maximum and minimum parameter value across all
measured conditions. Here, the range is important to consider
rather than the absolute value of each covariate parameter because
the breadth of variation is what leads to increased prediction error
when training and testing the model. The EXTENDED data set repre-
sents nearly a 5 × increase in range for Tcool, as well as a nearly
2 × increase in range for dT/dtID and dT/dtOD.

Fig. 5 Range comparison of coolant temperature and thermal
state parameters between the ISOLATED and EXTENDED data sets

Fig. 6 Comparison of coolant flowrate prediction accuracy with
and without a priori knowledge of TMGP for each type of feature
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Analysis of Feature Extraction and Predictive Modeling
Methods
To simplify the analysis, the ISOLATED data set was analyzed first

to separate the effects of the primary covariate, TMGP, from the sec-
ondary covariates, and the learnings from this idealized test were
subsequently applied to the EXTENDED data set. Figure 6 shows the
prediction error for ṁcool when applying LASSO to the ISOLATED

data set in the solid blue bars. The cross-hatched bars show the pre-
diction error when TMGP is measured by the vane inlet thermocou-
ples and used as a covariate in the model. Figure 6 includes three
sets of bars corresponding to the three feature types discussed in
Table 2. The height of each bar indicates the median prediction
error from 250 modeling iterations non-dimensionalized by the
maximum ṁcool across all cases. The modeling iterations were per-
formed to desensitize the interpretation of the results from the ran-
domized data grouping. The range of error results from the
individual iterations is indicated by range bars bounding the
median, which excludes outliers in accordance with the 1.5 × inter-
quartile range rule.
Two key observations can be drawn from Fig. 6. First, the �T(x)

and T(x,z) features result in comparable prediction error that is
notably lower than the T features. This result is expected due to
the increased information available for modeling when using the
higher-dimension features. Second, there is a large improvement
in prediction accuracy when using the T features if TMGP is mea-
sured and used as a covariate during modeling. This drastic
improvement—a nearly 50% reduction of prediction error—is not
observed for either the �T(x) or T(x,z) features. Rather, these higher-
dimensional features show marginal changes in predictive error
magnitude on the order of the iterative range.
The observations associated with Fig. 6 raise the question of

whether similar improvements to ṁcool prediction accuracy can be
realized when using T features by first using the IR data to
predict TMGP and then subsequently using the TMGP prediction as
a covariate when predicting ṁcool. To address this curiosity, the
accuracy of predicting TMGP using only the IR data was examined,
and the resulting modeling error is presented in Fig. 7. In this sce-
nario, TMGP is the output of the predictive model, rather than a
covariate input. The TMGP predictions are highly accurate for all
three feature types with errors of less than 3% of TMGP,max. The
�T(x) and T(x,z) features resulted in TMGP prediction errors of less
than about 1% of TMGP,max. For reference, the reported error for
the higher-dimension feature sets is only about two times greater
than the typically quoted error of an uncalibrated K-type thermo-
couple.2 The ability to predict ṁcool and TMGP solely using inputs
of blade temperature measurements demonstrated in Fig. 7 offers

noteworthy utility; specifically, it enables root-cause determination
of turbine blade degradation by decoupling faults associated with
secondary air and combustion systems.
Next, the TMGP predictions were carried forward to the ṁcool pre-

diction by including them as a covariate parameter. These ṁcool pre-
diction error results are shown in Fig. 8 alongside the corresponding
results for an unknown TMGP. Figure 8 shows there is no benefit
to using TMGP predictions as an input to the ṁcool prediction
model, and it is actually slightly detrimental when using the �T(x)
or T(x,z) features. Fundamentally, the cause for this result is
likely that there is no new information being supplied to the
model. The IR data are the root source of all inputs, whether
ṁcool is predicted independent from or in conjunction with TMGP.
Therefore, it is likely that the original model was already accounting
for TMGP without explicitly outputting a TMGP prediction.
To this point, the ISOLATED data set has been used to draw two

main conclusions: (i) the �T(x) and T(x,z) features result in the
lowest ṁcool prediction errors, and (ii) TMGP should only be used
as a covariate if it is known or measured from a sensor other than
the main diagnostic measurement source. With these initial conclu-
sions in mind, the analysis approach was translated to the EXTENDED

Fig. 7 Comparison of TMGP prediction error for each type of
feature

Fig. 8 Comparison of coolant flowrate prediction error when
modeling is done without TMGP as a covariate, and when TMGP
predictions are used as a covariate input to the model

Fig. 9 Coolant flowrate prediction error comparison between
the ISOLATED and EXTENDED data sets2https://www.omega.com/en-us/thermocouple-types
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data set to understand implications of more significant variations in
Tcool, dTOD/dt, and dTID/dt parameters.
Figure 9 shows the comparison of the ṁcool prediction error

results from the ISOLATED and EXTENDED data sets. Similar to
Fig. 6, the cross-hatched bars indicate there is a priori knowledge
of TMGP included in the model as a covariate. Given the similar per-
formance of the �T(x) and T(x,z) features noted in Figs. 7–9, the
remainder of the results will compare only T and T(x,z) features
for brevity. The preference for T(x,z) features instead of similar
�T(x) features was driven by the potential opportunity for sparse
feature selection, which is important for reducing model and mea-
surement system complexity.
As expected, Fig. 9 shows that the increased variability of Tcool,

dTID/dt, and dTOD/dt has a negative effect on the prediction accuracy
of the model—an observation that holds regardless of whether or not
TMGP is used as a modeling covariate. This trend is represented by a
nearly uniform increase of approximately 2% error for all models.
Also from Fig. 9, an accuracy improvement is observed for each
data set when the TMGP measurement is included as a covariate in
the modeling, which agrees with Fig. 6. This improvement was
more significant for T features than T(x,z) features, with prediction
error decreasing by a factor of two for each data set.
In the pursuit of higher accuracywhen using the EXTENDED data set,

models with additional covariates were generated to capture Tcool,
dTID/dt, and dTOD/dt variability. Understandably, any benefits of
including these parameters as covariates come at the cost of requiring
their measurement in the engine, which can be costly and technically
challenging. Figure 10 shows the effect of including these covariate
parameters in comparison to the previously reported results.
Figure 10 shows that, when compared to the model with no covar-

iates, the prediction error of theT features is greatly reduced by includ-
ing the additional parameters in the model as covariates. This
improvement equates to a reduction of the prediction error of about
5% of the maximum coolant flowrate across all cases. When applying
the same approach to theT(x,z) features, a negligible improvementwas
observed. For both data sets, the minimum prediction error, about 6%
for T features and 4% for T(x,z) features, was achieved by modeling
with all covariates. However, the high accuracy of these models
comes at the cost of requiring the most physical measurements to
serve as model inputs—one for each covariate parameter.
Given the information in Fig. 10, it is important to consider the

tradeoff between prediction accuracy and sensor requirements to

determine which approach is preferable. For the T features, the pre-
diction error was decreased by a factor of approximately four when
all the covariates were used. Even for engine applications where
very few sensors are available and additional sensors are costly,
the noteworthy decrease of prediction error may warrant the inclu-
sion of the covariate parameters. For the T(x,z) features, there was
only about a 1% decrease in prediction error when using all the
covariates. This small improvement to model performance may
not warrant the significant effort and investment necessary to
measure all the covariate parameters. For this reason, the remainder
of the paper will focus on the modeling approach that solely uses
T(x,z) features without covariates because it represents the best
combination of high accuracy and minimal sensor requirements.

Analysis of Selected Features
Although every pixel of the image was available to LASSO for

training the model, only a subset of the pixels were used to generate
ṁcool predictions. The number and location of the selected features
are important to consider because they dictate the spatial resolution
requirements of the sensor used to quantify the blade surface tem-
perature. For example, if the model only uses a few regions in the
IR image, then it could be reasonable to use single-point sensors
as inputs for the predictive model instead of a two-dimensional
measurement like IR thermography or thermographic phosphors.
Figure 11 shows the feature selection for the modeling approach

in which no covariates were used. Figure 11(a) shows the value of
the LASSO model coefficients, β, where non-zero values of β

Fig. 10 Improvement to blade coolant flowrate prediction error
when including coolant temperature and thermal state parame-
ters in the model as covariates

Fig. 11 Spatial locations of selected features identified from the
(a) model coefficients and shown with respect to (b) the original
IR image
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identify selected features in the two-dimensional image space.
Within each modeling iteration, the value of the coefficients is cons-
tant across all conditions examined in this study (Fig. 2). The black
lines in Fig. 11(a) outline the areas with non-zero coefficients, and
the same areas are superimposed on the temperature data contours
in Fig. 11(b). The connection of model features with spatially
resolved temperature data in Fig. 11(b) highlights portions of the
image that contain informative content for predicting ṁcool; the
remainder of the IR image is disregarded by the model. Interest-
ingly, the feature selection is sparse, and only two regions are iden-
tified as significant with non-zero model coefficients. The relative
locations of the two informative regions are also noteworthy;
LASSO independently selected the hottest and coldest locations
in the image. These hot and cold regions are close to the trailing
edge of the film-cooling holes, where the coolant jets are most dis-
tinct from the remainder of the blade boundary layer flow.
The selection of hot and cold locations in Fig. 11(b) is logical

when considering the main factors affecting blade temperature in
this experiment. The parameters with the largest variations in the
training data (ṁcool and TMGP) have competing effects on blade tem-
perature. Increasing TMGP will drive up blade temperature, while
increasing ṁcool will tend to decrease blade temperature. Therefore,
the non-zero coefficient region that is associated with TMGP will
contain positive coefficients, while the region associated with
ṁcool will contain negative coefficients. In other words, the cold
zone directly behind a film-cooling hole is highly correlated with
ṁcool and minimally correlated with TMGP, whereas the hot zone
between film-cooling jets is highly correlated with TMGP and mini-
mally correlated with ṁcool.
Although LASSO only identified two regions with informative

features, the model uses all pixels contained within those regions,
which means the model uses many more than two features. Based
on this observation, a final analysis focused on minimizing the
number of features in the identified regions was performed. For
this analysis, LASSO was forced to select feature sets of decreasing
size.
Figure 12(a) shows the ṁcool prediction error as a function of

feature count between one and ten features. Substantial reductions
in the median and range of prediction errors are observed up to

a feature count of four, beyond which there are diminishing
returns for including additional features. Figure 12(b) shows the
selected feature positions relative to the IR image for a feature
count of four, as identified by the boxed case in Fig. 12(a). This
low feature count expands the possibilities for sensor options that
could be used in the engine to measure these four temperatures.
Single-point sensors, like a non-contact pyrometer, could be used
to focus on each individual location.

Conclusions
This study utilized measurements of blade surface temperature

collected from an IR camera installed in a one-stage turbine research
facility to demonstrate the feasibility of a data-driven model for the
prediction of blade coolant flowrate. Ultimately, the ability to
predict coolant flowrate was demonstrated with a root-mean-square
modeling error better than six percent of the maximum flowrate. A
further reduction of prediction errors associated with the coolant
flowrate model to four percent was achieved by including measure-
ments of TMGP, Tcool, dTID/dt, and dTOD/dt as covariate parameters
in the model. As an added benefit, the direct correlation of TMGP

with measured blade temperature supported an independent pre-
diction of TMGP with less than one percent error relative to the
maximum TMGP across all cases. Cumulatively, these results
indicate the predictive capability that can be achieved when a two-
dimensional measurement technology, such as infrared thermogra-
phy, is used as the main diagnostic measurement.
To investigate the accuracy tradeoff when using a single-point

sensor, such as a pyrometer, various averaging and feature selection
techniques were utilized. First, the thermal images were spatially
averaged to generate a scalar feature representing a pyrometer mea-
surement of the equivalent focal area. Using these scalar tempera-
ture features, coolant flowrate prediction errors of about nineteen
percent were observed without covariates, and prediction errors of
about six percent were observed with covariates. Second, to inves-
tigate the use of multiple point-based sensors, the feature selection
from the thermal images was forced to successively smaller feature
counts. Through this approach, a coolant flowrate prediction error
of about seven percent was demonstrated using four temperature
measurements as the sole inputs to the model (no covariate param-
eters required). These results indicate that a data-driven model can
accurately predict ṁcool and TMGP in a discrete turbine monitoring
application using inputs of blade surface temperature. Ultimately,
knowledge of ṁcool and TMGP allows for early detection and root-
cause determination of temperature-induced degradation; these
tasks are central to the efficacy of a condition-based operation
and maintenance approach.
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Nomenclature
h = heat transfer coefficient
k = thermal conductivity
t = time
x = streamwise direction on the blade pressure-side surface
z = pitchwise direction on the blade pressure-side surface
L = material thickness
T = temperature (blade temperature when not accompanied by

a subscript)
R = thermal resistance
ṁ = mass flowrate
β = model coefficient
λ = LASSO tuning parameter

Subscripts

aw = adiabatic wall
cond = conduction heat transfer
conv = convection heat transfer
cool = pertaining to the blade coolant

f = external (hot) side of blade wall
ID = pertaining to the hardware radially inward from the MGP
int = internal (cold) side of blade wall

max = maximum quantity across all measurements
meas = measured value
MGP = main gas path
OD = pertaining to the hardware radially outward from the MGP
pred = predicted value
wall = blade wall

Operators
�Q = pitchwise-averaged quantity
Q = pitchwise- and streamwise-averaged quantity
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