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Predictive Modeling of Local
Film-Cooling Flow on a Turbine
Rotor Blade

In the turbine section of a modern gas turbine engine, components exposed to the main gas
path flow rely on cooling air to maintain hardware durability targets. Therefore, monitoring
turbine cooling flow is essential to the diagnostic and prognostic efficacy of a condition-
based operation and maintenance (CBOM) approach. This study supports CBOM goals
by leveraging supervised machine learning to estimate relative changes to local film-
cooling flowrate using surface temperature measured on the pressure side of a rotating
turbine blade operating at engine-relevant aerothermal conditions. Throughout the lifetime
of a film-cooled turbine component, characteristics of the film-cooling flow—such as film
trajectory and cooling effectiveness—vary as degradation-driven geometry distortions
occur, which ultimately affects the relationship between the model input and the model
output—film-cooling flowrate predictions. The present study addresses this complication
by testing a data-driven model on multiple turbine blades of the same nominal design,
but with each blade exhibiting different localized film-cooling flow characteristics. By
testing the model in this manner, strategies for mitigating the detrimental effects of film-
cooling flow characteristic variations on model performance were investigated, and the cor-

responding flowrate prediction accuracy was quantified. [DOI: 10.1115/1.4055972]
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1 Introduction

In pursuit of maximizing thermodynamic efficiency, the firing
temperature of modern gas turbine engines can exceed 1600 °C
(2900 °F) in certain applications [1]. To prevent damage caused
by the high-temperature main gas path (MGP) flow, turbine compo-
nents are often highly cooled using a combination of internal and
external methods. The result of these various cooling schemes is
overall cooling effectiveness of approximately 60% for modern air-
foils [2], which shows the critical role that cooling flows play in
enabling the safe operation of gas turbine hardware.

When cooling flow decreases, there is an associated increase in
hardware temperatures. In the hottest sections of the engine, such
as the combustor and first-stage turbine sections, increased hard-
ware temperatures accelerate the mechanisms by which hardware
failures often occur: high cycle fatigue, oxidation, sulfidation, hot
corrosion, creep, erosion [3], and thermal barrier coating spallation.

To monitor degradation and minimize associated repair costs,
condition-based operation and maintenance (CBOM) has become
the ideal strategy for gas turbine engine maintenance. In fact, a con-
sensus report published by the National Academies’ Division on
Engineering and Physical Sciences identified CBOM as a high-
priority research area for the improvement of gas turbine engines
[4]. The number of sensors installed on engines has expanded
over time, so too has the potential condition-monitoring methods
available for improving CBOM. For example, blade tip timing
[5], fast-response pressure [6—8], and temperature [9] sensors
have been applied to monitor certain components and regions of
the engine.

In the turbine section, the application of infrared (IR) thermogra-
phy for monitoring hardware temperatures is becoming increasingly
widespread. In land-based applications, where space and weight
factors are less restrictive, IR thermography has already shown
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the capability for long-term engine integration on the order of
8000 engine hours [10]. For aviation engines, IR camera integration
and high-quality blade temperature imaging were shown by
Markham et al. [11]. While continuous IR camera integration is
likely not yet feasible for on-wing installations, discrete monitoring
via tarmac inspection between flights may be viable. Given the rel-
atively untapped potential of IR thermography for component mon-
itoring in gas turbine engines, this study demonstrates method
development for applying an IR camera to the monitoring of local
blade coolant flowrate—a parameter for which there are currently
no established monitoring techniques.

2 Literature Review

As cooled turbine components are operated over their lifetime, a
number of phenomena can affect their film-cooling performance.
Prior to operation, hole manufacturing [12] and thermal barrier
coating (TBC) application processes [13] can cause various geomet-
rical distortions of the nominal film-cooling hole design. During
operation, the primary drivers of hole surface distortion are oxida-
tion and deposition, with secondary drivers being corrosion,
erosion, and foreign object damage [14]. The present study
focuses on the prediction of changes to film-cooling flowrate
from some nominal condition; as a result, only the effects of TBC
and particulate deposition blockages will be considered because
these hole degradation mechanisms lead to reduced film-cooling
flowrate (for a constant pressure ratio). Furthermore, because the
present study uses diffuser-shaped film-cooling holes, special atten-
tion is directed to studies examining holes of similar design.

The geometric implications of TBC and particulate deposition are
very similar in regard to film-cooling holes; the majority of accumu-
lation occurs at the hole exit with some additional accumulation
extending into the hole [13-16]. This form of blockage leads to a
reduction in the hole exit area, which in turn has a number of impli-
cations on the performance of the film-cooling hole. The relation-
ship between the pressure ratio across the hole and the blowing
ratio is fundamentally altered—the blowing ratio is decreased at
an equivalent pressure ratio [13]. Although the blowing ratio is
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decreased, the exit area reduction causes an associated increase in
jet velocity, resulting in a conservation of momentum flux ratio
(phUh2/pMGPUMGP2) [14]. These flow differences affect both the
area-averaged and local performance of the film cooling, as evi-
denced by adiabatic effectiveness measurements.

Multiple studies have reported adiabatic film-cooling effective-
ness results for partially blocked holes. Bunker [14] reported a
near hole (x/D<20) reduction in laterally-averaged film-cooling
effectiveness of 30% for diffuser-shaped holes with a 15% exit
area reduction. Another study from Sundaram and Thole [17] inves-
tigated a row of vane endwall film-cooling holes and found a 25%
reduction in the exit area of a single hole caused a 10% reduction in
area-averaged adiabatic effectiveness. It is worth noting that these
results were observed for a cylindrical hole shape.

Wang et al. [16] reported a 34% reduction in area-averaged adi-
abatic effectiveness for a 20% hole blockage. Perhaps, the most
comprehensive set of results was reported by Whitfield et al. [13],
who studied multiple exit area reductions, hole shapes, density
ratios, pressure ratios, and blowing ratios. Their results indicated
that the percent reduction of area-averaged effectiveness for all
cases collapsed onto a single curve when measurements were ana-
lyzed as a function of the corrected momentum flux ratio. In
general, these studies cumulatively show a strong detriment to area-
averaged adiabatic effectiveness when hole exit blockage occurs.

In addition to these area-averaged effectiveness trends, the vari-
ations in downstream effectiveness distribution are also important
to consider. Wang et al. [16] found that a hole exit blockage resulted
in a stronger counter-rotating vortex pair, which caused an associ-
ated decrease to film effectiveness and coolant coverage. Decreased
coolant coverage was also observed by Whitfield et al. [13]. Speci-
fically, when comparing a partially blocked hole to an unblocked
hole at an equivalent blowing ratio, the partially blocked hole exhib-
ited further downstream propagation of low centerline effective-
ness, but with a narrowing effect that diminished film coverage.

However, the commonalities in these studies lead to two basic
conclusions. First, decreased area-averaged film-cooling perfor-
mance is expected when hole blockage occurs. Second, even for
equivalent blowing ratios, the presence of a blockage will change
the effectiveness contours relative to the unblocked case. The inter-
action of these two conclusions, along with the myriad of additional
parameters influencing blade cooling effectiveness distribution,
creates a challenge for predictive modeling of blade film-cooling

flow variations. The present study addresses this challenge by
developing a data-driven film-cooling flow prediction model that
maintains high accuracy as degradation-driven changes to cooling
effectiveness distribution occur. This unique approach has not
been previously reported in the literature and opens many possibil-
ities for CBOM.

3 Experimental Methods

Experiments for this study were performed at the Steady Thermal
Aero Research Turbine (START) Laboratory. The facility was
introduced in detail by Barringer et al. [18], and a shortened descrip-
tion is given here.

3.1 Test Facility Description. The START test turbine is inte-
grated within an open-loop continuous-duration facility that oper-
ates at engine-relevant aerothermal conditions. A facility-level
view is shown in Fig. 1 with major components highlighted. The
colored flow arrows indicate the direction and relative temperature
of the flow.

Two large compressors (1.1 MW, 1500 hp) draw ambient air into
the system and pressurize the flow to approximately 480 kPa
(70 psia) at a maximum combined mass flowrate of 10.4 kg/s
(25 1by/s). This pressurization causes an associated temperature
increase up to a nominal compressor exit temperature of 110 °C
(230 °F). Flow exiting the compressors is split into two streams:
the MGP and cooling streams. The MGP flow progresses through
an in-line natural gas combustion chamber, which provides temper-
ature control of the flow prior to its entrance to the test section. At
the nominal MGP flowrate, the combustor can achieve temperatures
up to 400 °C (750 °F), although MGP temperatures were lower in
this particular study. Table 1 presents various nondimensional
parameters for the turbine operating point used in this study.

The coolant stream bypasses the combustion chamber and
instead passes through a shell-and-tube heat exchanger to bring
its temperature down to 0 °C (32 °F). The facility has the capability
to independently control three turbine cooling and sealing flows:
purge flow, vane trailing edge flow, and blade coolant flow. In
this study, the purge and vane trailing edge flows were held cons-
tant, while the blade coolant flow (s1.) was varied between four
mass flowrate set points.

Fig. 1 START laboratory facility view
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Table 1 Turbine operation non-dimensional parameters

Parameter Value
Vane inlet Mach number 0.1
Vane inlet axial Reynolds number 8.8x10*
Blade inlet axial Reynolds number 8.6x10*
Rotational Reynolds number 27x10°
Density ratio, pp/ppce 1.7

These MGP and coolant flows reconvene in the turbine test
section, which is shown in Fig. 2 with relevant instrumentation
labels. The main diagnostic measurement collected in this study
was the blade surface temperature (not shown in Fig. 2), so it was
important to control the flowrate and temperature of the MGP and
blade cooling flows. The MGP flowrate and temperature were
held constant, and measurements were collected upstream of the
test section. Specifically, the MGP flowrate was measured using a
Venturi flowmeter upstream of the turbine stage, and MGP temper-
ature was measured by six circumferentially distributed thermocou-
ple probes located at the midspan upstream of the vane. Similarly,
blade coolant flowrate was measured using a Venturi flowmeter
upstream of the test section, and the temperature was measured
using four circumferentially distributed thermocouple probes posi-
tioned just before the pre-swirler vanes, which prepare the blade
coolant for injection to the rotor assembly.

The rotor blades used in this study are representative of a modern
first-stage high-pressure turbine blade with complex internal and
external cooling features. The cooling flow enters the blades
through the disk attachment and subsequently progresses through
internal passageways before exiting film-cooling holes on the
pressure-side surface. The resulting blade surface temperature dis-
tribution was measured using an IR camera system. The calibration,
integration, operation, and post-processing methods used with the
IR camera were described in detail by Knisely et al. [19], and an
abbreviated description is provided here.

3.2 Infrared Imaging Methods. The IR camera used in this
study measures radiant energy in the long wave IR spectrum
(8 um< A< 15 um). The calibration of the IR detector was per-
formed using a calibration plate at a range of surface temperatures,
following the process detailed by Mori et al. [20]. The camera optics
were integrated into a probe installed through an additively manu-
factured vane, as shown in Fig. 3(a). The vane featured a cutout
along the suction side to allow optical access to the blades. The
camera image collection was phase-locked to the rotor revolution,
which enabled consistent imaging of the single cooling hole
shown in Fig. 3(a).

Main Gas Path
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Fig. 2 Representative cross-sectional view of the one-stage
turbine test article with relevant flows labelled
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Prior to testing, a high emissivity coating with an emissivity of
0.92 was applied to the blades. During data collection, the camera
was operated with an integration time of 2 us, which minimized
the combined effects of image blur and spatial noise for the partic-
ular turbine rotating speed in this experiment [19]. To further reduce
measurement noise, 200 consecutive images were collected and
subsequently averaged. Finally, the images were post-processed
using binning and 3 x 3 median filterings, which reduced measure-
ment errors associated with striping and nonresponsive pixels [19].
Figure 3(b) shows an example thermal image—expressed in terms
of overall cooling effectiveness (¢p)—that results from these pro-
cesses. The overall effectiveness was computed using Eq. (1)

_ Tucp — T )

" Tugp — T,

where Tygp, T., and T are the main gas path, coolant, and surface
temperatures, respectively.

The marker in Fig. 3(b) indicates the approximate location of the
lower left edge of the cooling hole, and the dashed line marks the
trajectory of the line of maximum effectiveness, which is
assumed to indicate the film-coolant trajectory along the blade
surface. The method of determining the location of these features
was initially introduced by Knisely et al. [21], and a shortened
description is provided here.

First, the maximum effectiveness at all x locations was deter-
mined to identify the coolant trajectory. A moving average filter
was applied to the identified trajectory to capture the migration of
the coolant while suppressing the z-direction variability caused by
pixel-to-pixel variability. Then, the edge location of the cooling
hole was identified by the point of maximum slope in effectiveness
along the line of maximum effectiveness. In Fig. 3(b), the segment
of the line of maximum effectiveness upstream of the cooling hole

(a)

(b)

X  Hole location
= = = Coolant path

Low

Fig. 3 IR camera (a) integration and blade view and (b) overall
effectiveness contour corresponding to the training blade at
the nominal bulk blade cooling flowrate condition
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was removed for clarity. Critically, this method of identifying a
common location for all blade cooling holes and coolant trajectories
is both objective and repeatable, which is important for establishing
consistency on a case-by-case basis.

3.3 Training and Test Cases. This study utilizes a data-
driven approach to generate a model that takes inputs of overall
effectiveness and outputs predictions of single-hole blade coolant
flowrate. The flowrate predictions extend the usefulness of an
engine-integrated IR camera by contributing to root cause analysis
of blade degradation and high-temperature blade failures. As dic-
tated by the data-driven approach, data were separated into training
and testing sets. The training data were collected exclusively for a
single film-cooling hole on a single blade. The testing data
consist of four cases: one case using the same blade as the training
data (B1), and three cases using different blades (B2, B3, and B4).
For brevity, the test cases will be referred to by the blade they rep-
resent (e.g., “B1”). Each test case exhibits variations in overall
effectiveness distribution, which are analogous to the variations
caused by degraded film-cooling holes. With this training and
testing setup, this study is leveraging blade-to-blade manufacturing
variations [21] as a method for simulating film-cooling degradation
over time.

To quantify the differences between the training and testing data,
the single-hole flow parameter and coolant trajectory differences
were computed. Using a benchtop flow rig, the flow parameter
(FP) was calculated using Eq. (2)

_ /Ty [kg«/i]

Pous Pa-s

FP

(@)

where my, is the single-hole mass flowrate, T;, is the inlet tempera-
ture boundary condition measured just upstream of the blade root,
and P,,, is the ambient room pressure boundary condition. Note
that the flow parameter measurements were collected using a bench-
top flow rig, so flow parameter measurements for each blade were
collected across a range of pressure ratios, with pressure ratio calcu-
lated according to Eq. (3)

P in
Pout

PR =

3

Importantly, the blade-to-blade ratio between the measured flow
parameter values is consistent across all pressure ratios, meaning
flow comparisons between each blade can be expressed as a
single constant value. Furthermore, at equivalent pressure and tem-
perature boundary conditions, the flow parameter ratio is equivalent
to the ratio of single-hole film-cooling mass flowrates. The FP
uncertainty, which is a function of s, T},, and P,,,, nondimensio-
nalized by the FP of the training case (FPy) is equal to 2.35% [21].

Coolant trajectory differences with respect to the training case
were quantified using the z-axis offset between each trajectory.
The z-offset was nondimensionalized by the hole diameter (D),
such that trajectory differences can be interpreted by the number
of hole diameters of offset. In Fig. 4, this difference is shown at a
single x/D location for the training blade and B4 trajectories corre-
sponding to the nominal bulk blade flowrate condition (7it¢ yom)- By
computing the root-mean-square (RMS) of the path differences at
all x/D locations, a single path difference value for each blade
was curated. Similarly, the uncertainty in the coolant path identifi-
cation was determined by computing the RMS difference between
the smoothed and un-smoothed lines of maximum effectiveness.
This method returns a different uncertainty for each case, with the
minimum uncertainty occurring for B3 at 0.21 hole diameters and
the maximum uncertainty occurring for B4 at 0.52 hole diameters.

The flow parameter and trajectory differences between the train-
ing and testing blades are shown in Fig. 5. The non-hatched bars
correspond to the left ordinate, which expresses FP as a percentage
difference with respect to the training case. For example, a bar
height of 25% indicates the test blade exhibits a 25% increase in
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Fig. 4 Z-Offset between the training blade (B1) and B4 coolant
trajectories

flow parameters relative to the training blade. The hatched bars cor-
respond to the right ordinate, which shows the nondimensional
coolant trajectory variation relative to the training blade.

The B1 test case examines the same blade as the training blade,
which is why its FP difference in Fig. 5 is equal to zero. Although
not comprehensive, testing the model on a second data set collected
for the same blade provides information regarding model stability.
Despite the flow parameter equivalence, a coolant trajectory offset
of 0.26 hole diameters was observed, as indicated by the blue
hatched bar in Fig. 5.

The B2 test case introduces a new blade to the analysis with
minimal changes to flow parameters and coolant trajectory. The
flow parameter is within 4% of the training blade, and the coolant
trajectory is only 0.33 hole diameters offset from the training blade.

The B3 test case introduces a more substantial flow parameter
difference, while still exhibiting a similar coolant trajectory. For
this case, the flow parameter was increased by 18%, but the
coolant trajectory is still within 0.50 hole diameters of the training
blade. Although perhaps less common than the decreased flow sce-
nario, this case enables the investigation of model accuracy when
film-cooling flowrate increases as a result of degradation—a phe-
nomenon that can occur from excessive blade erosion [14] or
when deposits liberate from the blade and peel-off a section of
TBC [17] at the hole exit.

Finally, the B4 test case represents a heavily distorted film-
cooling hole, with a flow parameter decrease of nearly 50%. This
decrease in flow parameter dictates that, for the same pressure
and temperature boundary conditions, the B4 cooling hole flows
only half as much compared to the training blade. This substantial
decrease in flowrate is accompanied by a heavily-modified
coolant trajectory of nearly two hole diameters.

In addition to the differences identified for flow parameters and
coolant trajectory, the test cases also exhibit local changes to
overall cooling effectiveness. To quantify these changes, the pitch-
wise effectiveness profile at x/D=2 was compared between the
training and test cases. Definitions of the parameters used to
compare the profiles are shown in Fig. 6 with respect to an
average effectiveness profile. The peak-to-trough effectiveness
amplitude (A) was calculated between the local minimum and
maximum effectiveness, and the peak width (W) was determined
based on the peak width at A/2. In addition to these two parameters,
pitchwise-averaged cooling effectiveness (¢) was also computed.

These three parameters are compared in Fig. 7 relative to the
training case (%, A,, and W,). The relative bar heights between
each test case are different in each plot, which shows the uniqueness
of each case. As expected, B1 results are most similar to the training
case because the geometry has not changed. Additionally, the sub-
stantial flow decrease through the hole on B4 has resulted in corre-
sponding reductions of ¢ and A, as would be expected.
Interestingly, B2 and B3 exhibit increased A and W relative to the
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Fig. 5 Flow parameter (solid bars) and coolant trajectory (hatched bars) differ-
ences between the training and testing blades

training case, yet their ¢ values are relatively low. It is these noted
differences that, along with coolant trajectory variations, create the
difficulty in relating inputs of cooling effectiveness to flow
parameters.

Thus far, all results have been presented for the nominal bulk
blade coolant flowrate. To provide an additional variation to single-
hole flowrates, the bulk blade coolant flowrate boundary condition
was varied to three additional set points. The effects of bulk flow
changes were combined with the flow parameter variations noted
in Fig. 5 to compute the single-hole mass flowrate using Eq. (4)

= ) ) @
mh,O,nnm FPO mc,nam

where 71, 0 5o 15 the training blade single-hole flowrate correspond-
ing to the 71,0, bulk flow condition. Equation (4) was generated by
assuming that a film-cooled blade acts similarly to a simple mani-
fold system, meaning any changes to bulk blade coolant flowrate
results in a proportional change to single-hole flowrate [22]. The
computed single-hole flowrates are presented in Fig. 8 for all cases.

Figure 8 shows that only the B1 and B2 single-hole flowrates fall
almost entirely within the training data range. The highest two flow-
rates for B3 and the lowest three flowrates for B4 represent extrap-
olations of the model above and below the training range,
respectively. These data enable the analysis of accuracy detriments
associated with model extrapolation. Altogether, the flowrate and
overall cooling effectiveness variations captured in the test cases
provide a diverse set of data that facilitates the investigation of

-0.25 0
z/P

Fig. 6 Definitions of the parameters used to characterize the
overall effectiveness profiles at x/D =2

0.25 0.5
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techniques for accurate predictive modeling in the presence of
various degrees of hole degradation.

3.4 Modeling Approaches. The two approaches used to gen-
erate the predictive models are described in this section. First, the
Baseline (BL) modeling approach is explained and the associated
feature selection is shown. Second, a modified approach—the
Coolant-Relative (CR) modeling approach—is introduced and
effects on feature selection are shown relative to the BL model.
The BL modeling approach was first introduced by DeShong
et al. [23], and the process implemented here is nearly identical.
Any deviations from the original process are noted.

3.5 Baseline Model. In the BL modeling approach, a rectan-
gular domain encompassing the target film-cooling hole and
coolant trajectory was utilized. This domain is shown in Fig. 9
for the training case at the nominal bulk blade coolant flowrate.

1.00

— 095}

*

bo 0.90 |
0.85

(b) 15}

A

A_o 1.0t
0.5}

c

(@) 1.6

W 14}

Wo

12

1.0

B1 B2 B3 B4

Fig. 7 Effectiveness profile quantification of (a) laterally-aver-
aged effectiveness, (b) peak-to-trough effectiveness amplitude,
and (c) peak effectiveness width at x/D =2
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Fig. 8 Calculated single-hole flowrate variations for all training
and testing cases. The abscissa shows the bulk blade coolant
flowrate set points, and the ordinate shows the resulting single-
hole flowrates, both nondimensionalized by the nominal value.

For consistency, the size and position of this rectangular domain rel-
ative to the identified cooling hole location were held constant
across all training and testing cases. The cooling effectiveness
values corresponding to each pixel within this domain comprise
the set of candidate features that may be used for modeling.

This baseline modeling approach contains only two differences
with respect to the process introduced by DeShong et al. [23].
First, a single cooling hole was isolated, whereas DeShong et al.
isolated a larger domain consisting of four cooling holes. The four-
hole domain could lead to prediction errors if single-hole flowrate
variations are not consistent between each hole in the domain.
For this reason, the current study examines only a single hole.
Second, model inputs of cooling effectiveness were used in this
study, as opposed to blade surface temperature. This change was
made to account for the effects of case-to-case Tygp and T,
variations—a process that was previously accomplished via the
inclusion of covariate parameters in the data-driven model.

The candidate feature set—the entire set of features sourced from
the IR images—was passed to LASSO (Least Absolute Shrinkage
and Selection Operator) for regularized regression [24] to generate
the model for predicting film-cooling flow variations. The optimiza-
tion equation for LASSO is shown in Eq. (5)

2
1 n FP
min— P —bo =i | +a :
Bof 2n i=1 |:(FP0>meas,i ﬂO lﬂ:| ﬂl ”
High
X  Hole location +
= == =Coolant path
=+ Feature selection ++
B L =

Low

Fig. 9 BL model feature selection shown relative to cooling
effectiveness contours for the training case at the nominal bulk
blade coolant flowrate
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Fig. 10 Comparison of feature selection locations relative to
coolant trajectories in the training data set

FP . . . .
where (—) is the ith measured flow parameter ratio, ®; is the
0/ meas,i

ith set of features, n is the number of training cases (n =4), a is the
tuning parameter, and f is the set of model coefficients. Note that f,
is simply the offset term in the linear model and therefore does not
specifically apply to the training case. Through the minimization of
Eq. (5), the model coefficients are identified by their ability to
reduce the sum-squared-error relative to the flow parameter ratio
measurements. This process is modified by the second term in
Eq. (5)—often referred to as the penalty term—which increases
as the magnitude of the coefficients increase. In doing so, the
second term causes the optimization process to return lower coeffi-
cient values, with some coefficients shrinking to zero. Due to the
large size of the candidate feature set in this study consisting of
about 3000 features, this shrinkage capability of LASSO—which
effectively eliminates less informative features—was advantageous
for minimizing the number of features in the model. The extent of
regularization (prevention of overfitting) and feature selection is
determined by the numerical value of the tuning parameter ().
The tuning parameter (@) was determined objectively using the
K-fold cross-validation technique, which selects the optimal «
that reduces overfitting across the entire training data set.

The four features selected by LASSO are shown in Fig. 9 by the
markers. The markers are sized relative to their corresponding coef-
ficients in the model, meaning the largest markers correspond to the
most influential features. There are two main observations from
Fig. 9. First, the feature selection is fairly sparse with only four
selected features. This result is consistent with DeShong et al.
[23], which showed accurate predictions could be obtained from
models with as few as four features. Second, the two most important
features lie just above the line of maximum effectiveness, relatively
far downstream of the film-cooling hole. To understand why these
features were selected, Fig. 10 shows the feature selection relative to
the coolant trajectories for each flowrate included in the training set.

Figure 10 shows that as the coolant flowrate is decreased, the
coolant jet trajectory exhibits less z-direction propagation. This
effect is likely due to the decreasing momentum flux ratio
between the film-cooling and MGP flows, which causes the
coolant to be more easily swept in the direction of the MGP flow
(along the x-direction). It is this variation in the coolant trajectories
that causes the two most influential features in Fig. 9 to stand out
from the rest of the features in the candidate feature set. As the tra-
jectory in the z-direction decreases for the cooling jet, the spacing
between the selected features and the point of maximum effective-
ness increases. This relative motion causes the selected feature to
“fall down” the cooling effectiveness profile, as illustrated in
Fig. 11. This effect provides a secondary mechanism by which
cooling effectiveness decreases with film-cooling flowrate, which

Transactions of the ASME
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Fig. 11 Example positioning of a single selected feature relative
to the typical cooling effectiveness profile

0.25 0.5

supplements the primary effect of an area-averaged decrease in
effectiveness as flowrate decreases.

The BL model trained in this section was applied to the test cases
to generate film-cooling flowrate predictions. The accuracy of these
predictions will be compared with the CR model in the Prediction
Results section of the paper.

3.6 Coolant-Relative Modeling Approach. The goal of the
CR modeling approach is to define candidate features relative to
the line of maximum effectiveness to maintain their relative posi-
tioning across all cases. The hypothesis is that, by defining the fea-
tures in this way, the model accuracy will be improved for cases that
have deviated greatly from the training data. To accomplish this
goal, the feature domain was redefined using the identified
coolant trajectory as a datum. As shown in Fig. 12, features
within +0.5 pitch of the coolant trajectory were included in the
domain. The features outside of this single pitch domain were not
included in the set of candidate features.

While this method accounts for case-to-case variations in coolant
trajectory, the additional differences noted in Fig. 7 are still present.
Critically, any discrepancies in effectiveness peak locations
(W) between the training and testing cases will affect the
coolant-relative positioning of selected features, similar to the
effect shown in Fig. 11. Therefore, image registration, which is

High

Low

X

Fig. 12 CR model domain definition relative to the identified
coolant trajectory
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Fig. 13 CR model feature selection shown relative to the
cooling effectiveness contours for the training case at the
nominal blade coolant flow condition

an image processing tool that automates the alignment of similar
images, was performed to adjust W, while largely maintaining ¢
and A. The image registration was given the freedom to translate,
rotate, scale, and shear the test set images to minimize grayscale
intensity differences with respect to the training images. An
added benefit of performing this registration was the correction of
any errors in identifying the line of maximum effectiveness,
which causes the peak effectiveness to shift away from z=0 in
Fig. 11. The downside of implementing this process is it extends
the duration of model implementation because every image must
undergo registration. However, when performed on a standard
desktop computer, the registration step only added about 30 s to
each image, so it does not significantly extend the overall process-
ing time.

With this isolated and registered domain, LASSO was used to
generate the predictive model and perform feature selection. The
selected features are shown in Fig. 13 with respect to the training
case cooling effectiveness contours at the nominal bulk blade
coolant flow condition. Selected features are indicated by grey
markers to differentiate them from the red markers (BL model fea-
tures) shown in Fig. 9. The marker size indicates the relative mag-
nitude of the feature coefficients in the model.

Due to the coolant-relative feature definitions used in this model-
ing approach, the phenomenon illustrated in Fig. 10 was not
present. For this reason, the feature selection for the CR model is
very different from the BL model, with selected features located
near the cooling hole. This feature selection is qualitatively
similar to the selection shown by DeShong et al. [23] when only
the features most correlated with blade coolant flowrate are consid-
ered. Additionally, the CR model uses one less feature than the BL
model, although this difference is fairly insignificant when consid-
ering both selected feature sets are a sparse down-selection of the
much larger candidate feature sets.

To highlight the differences between the CR features relative to
the BL features, both sets of features are shown relative to the B4
coolant trajectories in Fig. 14. B4 was chosen because it exhibits
the greatest coolant trajectory deviation from the training data, as
quantified in Fig. 5.

Figure 14 shows the benefit of the CR features relative to the BL
features for coolant trajectories that are drastically different from the
training case. The CR features move with the coolant to maintain
their relative positioning, while the BL features remain in the
same absolute position for all bulk blade coolant flowrate condi-
tions. For the training blade, the BL features were located near
the coolant trajectories (Fig. 10), but for B4, the BL features fall
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Fig. 14 BL and CR feature selection is shown relative to B4
coolant trajectories. Note that multiple marker types were not
used for the BL features because their location is constant for
all m¢/me nom conditions.

extremely far from the coolant trajectory—about three hole diame-
ters of separation. This discrepancy will likely cause an increased
prediction error when the BL model is applied to B4.

4 Prediction Results

To analyze model performance, the flow parameter predictions
were compared to their corresponding flow parameter measure-
ments to compute the error (E). The error was quantified using

Eq. (6)
FP FP
“E @
FPO pred FPO meas

where subscript “pred” indicates the predicted value, and subscript
“meas” indicates the measured value. These error results are shown
in Fig. 15 for the BL and CR models.

In Fig. 15, the bar height indicates the mean of the absolute
valued error, and the range bars indicate the range of absolute
value error across the four bulk blade coolant flowrate boundary
conditions. The non-hatched bars (first bar in each group) corre-
spond to the BL model, and the forward-hatched bars (second bar
in each group) correspond to the CR model. The reverse-hatched
bars (third bar in each group) indicate the error improvement of
the CR model relative to the BL model, where a positive value indi-
cates the CR model has outperformed the BL model, and a negative
value indicates the CR model has performed worse than the BL
model. Note that the flow parameter ratios in Eq. (6) are expressed
as percentages, so the error in Fig. 15 represents a difference of per-
centages, not a percent error calculation.

As suggested by Fig. 14, B4 exhibits the largest mean prediction
error for the BL model at 36%, which is over four times greater than
the next highest error using the same model. When considering the
CR model for this case, the prediction error was decreased to 7%—
an improvement of nearly 30%. This vast improvement is attributed
to the flexibility of the CR features, which allows them to conform
to any coolant trajectory, as highlighted in Fig. 14. B1 also
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Fig.15 Comparison of prediction errors between the BL and CR
models for each test blade

exhibited a slight improvement for the CR model relative to the
BL model, although this improvement was far less substantial. B2
and B3 show a slightly increased prediction error when applying
the CR model, as signified by the negative heights of their reverse-
hatched bars. Cumulatively, the prediction error results for B1, B2,
and B3 show that the CR model may not be preferable to the BL
model for cases that do not exhibit large variations in coolant trajec-
tory. However, as degradation occurs and coolant trajectory varia-
tions become more significant, the substantial improvement noted
for B4 shows that the flexibility of the CR model is necessary to
minimize prediction error. To leverage the benefits of both model-
ing approaches, a selection could be made between the two models
based on differences in the film-cooling flow relative to the training
case. For example, with additional investigation, a critical trajectory
offset value could be established below which the BL model would
be applied, while the CR model would be reserved for the cases
exhibiting greater trajectory offsets relative to the training case.
Such a process would be reasonable to implement in practice
given that the trajectory offsets can be sourced directly from the
thermal images, meaning no additional information would be
required.

5 Conclusions

This study investigated approaches for data-driven modeling of
single-hole film-cooling flowrate given inputs of cooling effective-
ness measured on the pressure side of a highly cooled first-stage
turbine rotor blade. In particular, this study focused on the effects
of degradation, which was simulated using blade-to-blade manufac-
turing variability within a set of four blades of the same nominal
design. One blade was set aside as the training case and therefore
represented the zero-degradation condition. The testing cases,
which consisted of the remaining three blades and one repeated
data set using the training blade, represented varying levels of film-
cooling hole degradation.

Using a single film-cooling hole as the target for predictive mod-
eling, the differences in single-hole flow parameters and local
cooling effectiveness were compared between the training and
testing cases. The most extreme case (B4) exhibited nearly a 50%
reduction in flow parameters, which caused the coolant trajectory
to shift by nearly two hole diameters. Additionally, when examining
the pitchwise profile of effectiveness at x/D =2, B4 exhibited a 12%
decrease in average effectiveness, a 47% decrease in peak-to-trough
effectiveness variation, and a 60% increase in the width of the effec-
tiveness peak.

With these differences quantified, two modeling approaches were
applied to the testing set and single-hole flowrate predictions were
generated. The first modeling approach—the Baseline Model—
implemented a rectangular domain surrounding the target cooling
hole to define features in absolute space. The second modeling
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approach—the Coolant-Relative Model—defined features relative
to the coolant trajectory in each case. This method allowed the
Coolant-Relative Model to adjust to changing film conditions,
making it more flexible than the Baseline Model.

Predictions of single-hole film-cooling flowrate were presented
as the flow parameter ratio relative to the training case, and errors
were quantified relative to the flow parameter ratio measured
using a benchtop blade flow apparatus. The lack of flexibility for
the Baseline Model resulted in a high prediction error for B4 of
about 36%, while the Coolant-Relative Model resulted in a much
lower prediction error of 7%. For the less extreme test cases (B2
and B3), slight increases in prediction error were observed when
applying the Coolant-Relative Model, although the magnitudes of
these changes were much lower than the improvement noted for
B4. This observation suggests that the Coolant-Relative Model
may be best applied only in scenarios when substantial changes
to film-cooling have occurred, which can be determined directly
from analysis of the IR images and subsequent comparison with
the training case.

The models investigated in this study provide an important
avenue for improving CBOM of gas turbine engines by enabling
film-coolant flow monitoring during operation. Importantly, the
same process shown in this study for a single film-cooling hole
can be repeated for additional holes, enabling distributed flow mon-
itoring across multiple areas on the blade. This information supports
comprehensive monitoring of film-cooling hole degradation,
meaning preventative maintenance can be executed prior to the
occurrence of high-temperature blade failure. Additionally, when
examining film-cooling flow variations in multiple regions of the
blade, the distribution of ingested particulate matter can be inferred,
which provides real-time feedback that can be applied to future
designs. Altogether, the ability to monitor blade film-cooling flow
enables engine manufacturers and operators to make more informed
maintenance decisions, which supports the main goals of CBOM to
reduce costs and increase engine availability.
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Nomenclature

= streamwise coordinate

cooling hole pitchwise coordinate
peak-to-trough effectiveness variation
cooling hole diameter

prediction error
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Greek Symbols

LASSO tuning parameter

= model coefficient

wavelength

array of cooling effectiveness features
= overall cooling effectiveness
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Superscripts and Accents

0 = training case
BL = baseline model
¢ = bulk blade coolant
CR = coolant-relative model
h = single-hole value
in = inlet quantity
meas = measured value
MGP = main gas path
nom = nominal condition
out = outlet quantity
pred = predicted value
s = blade surface

Q = pitchwise-averaged quantity

References

[1] Bogard, D. G., and Thole, K. A., 2006, “Gas Turbine Film Cooling,” J. Propuls.
Power, 22(2), pp. 249-270.

[2] Koff, B. L., 2004, “Gas Turbine Technology Evolution: A Designer’s
Perspective,” J. Propuls. Power, 20(4), pp. 577-595.

[3] Meher-Homji, C. B., and Gabriles, G., 1998, “Gas Turbine Blade Failures—
Causes, Avoidance, and Troubleshooting,” Proceedings of the 27th
Turbomachinery Symposium, College Station, TX, pp. 129-180.

[4] Crow, D. E., Tresa, P. M., Bradshaw, S., Foust, M. J., Graham, B., Gulen, J.,
James, A., et al., 2020, Advanced Technology for Gas Turbines, The National
Academies Press, p. 5.

[5] 2017, “Agilis,” Agilis Measurement System Inc., https:/agilismeasurementsystems.
com/

[6] Mathioudakis, K., Papathanasiou, A., Loukis, E., and Papailiou, K., 1991, “Fast
Response Wall Pressure Measurement as a Means of Gas Turbine Blade Fault
Identification,” ASME J. Eng. Gas Turbines Power, 113(2), pp. 269-275.

[7] Kestner, B., Lieuwen, T., Hill, C., Angello, L., Barron, J., and Perullo, C. A.,
2015, “Correlation Analysis of Multiple Sensors for Industrial Gas Turbine
Compressor Blade Health Monitoring,” ASME J. Eng. Gas Turbines Power,
137(11), p. 112605.

[8] Hee, L. M., and Leong, M. S. “Improved Blade Fault Diagnosis Using Discrete
Blade Passing Energy Packet and Rotor Dynamics Wavelet Analysis,”
GT2010-22218.

[9] Liu, J., Liu, J., Yu, D., Kang, M., Yan, W., Wang, Z., and Pecht, M. G., 2018,
“Fault Detection for Gas Turbine Hot Components Based on a Convolutional
Neural Network,” Energies, 11(8), p. 2149.

[10] LeMieux, D. H., 2005, On-Line Thermal Barrier Coating Monitoring for Real-
Time Failure Protection and Life Maximization, U.S. Department of Energy,
DE-FC26-01NT41232.

[11] Markham, J., Cosgrove, J., Scire, J., Haldeman, C., and Agoos, 1., 2014, “Aircraft
Engine-Mounted Camera System for Long Wavelength Infrared Imaging of
In-service Thermal Barrier Coated Turbine Blades,” Rev. Sci. Instrum., 85(12),
pp. 124902-1-124902-7.

[12] Jovanovic, M. B., de Lange, H. C., and van Steenhoven, A. A. “Influence of Laser
Drilling Imperfection on Film Cooling Performances,” Paper No. GT2005-68251.

[13] Whitfield, C. A., Schroeder, R. P., Thole, K. A., and Lewis, S. D., 2015,
“Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical
and Shaped Cooling Holes,” ASME J. Turbomach., 137(9), p. 091004.

APRIL 2023, Vol. 145 / 041014-9



[14] Bunker, R. S. “Effect of Partial Coating Blockage on Film Cooling
Effectiveness,” Paper No. 2000-GT-0244.

[15] Bogard, D. G., Schmidt, D. L., and Tabbita, M., 1998, “Characterization and
Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated
Heat Transfer,” ASME J. Turbomach., 120(2), pp. 337-342.

[16] Wang, F. Q., Pu, J., Wang, J. H., and Xia, W. D., 2021, “Numerical Investigation
of Effects of Blockage, Inclination Angle, and Hole-Size on Film Cooling
Effectiveness at Concave Surface,” ASME J. Turbomach., 143(2), p. 021007.

[17] Sundaram, N., and Thole, K. A., 2007, “Effects of Surface Deposition, Hole
Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film
Cooling,” ASME J. Turbomach., 129(3), pp. 599-607.

[18] Barringer, M. D., Coward, A., Clark, K. P., Thole, K. A., Schmitz, J., Wagner, J.,
Alvin, M. A, Burke, P., and Dennis, R. “The Design of a Steady Aero Thermal
Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil
Heat Transfer,” Paper No. GT2014-25570.

[19] Knisely, B. F., Berdanier, R. A., Thole, K. A., Haldeman, C. W., Markham, J. R.,
Cosgrove, J. E., Carlson, A. E., and Scire, J. J., 2021, “Acquisition and Processing

041014-10 / Vol. 145, APRIL 2023

Considerations for Infrared Images of Rotating Turbine Blades,” ASME
J. Turbomach., 143(4), p. 041013.

[20] Mori, M., Novak, L., and Sekavcnik, M., 2007, “Measurements on Rotating
Blades Using IR Thermography,” Exp. Therm. Fluid Sci., 32(2), pp. 387-396.

[21] Knisely, B. F., Berdanier, R. A., Wagner, J. H., Thole, K. A., Aurisi,
A. N., and Haldeman, C. W. “Effects of Part-to-Part Flow Variations on
Overall Effectiveness and Life of Rotating Turbine Blades,” Paper No.
GT2022-83216.

[22] Hassan, J. M., Mohamed, T. A., Mohammed, W. S., and Alawee, W. H., 2014,
“Modeling the Uniformity of Manifold With Various Configurations,”
J. Fluids, 2014, pp. 1-8.

[23] DeShong, E. T., Peters, B., Paynabar, K., Gebraeel, N., Thole, K. A., and
Berdanier, R. A., 2022, “Applying Infrared Thermography as a Method for
On-line Monitoring of Turbine Blade Coolant Flow,” ASME J. Turbomach.,
144(11), p. 111009.

[24] Tibshirani, R., 1996, “Regression Shrinkage and Selection Via the Lasso,”
J. R. Stat. Soc. Ser. B, 58(1), pp. 267-288.

Transactions of the ASME



