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ABSTRACT
Pin fins are imperative in the cooling of turbine blades. The

designs of pin fins, therefore, have seen significant research in
the past. With the developments in metal additive manufactur-
ing, novel design approaches towards complex geometries are
now feasible. To that end, this article presents a Bayesian op-
timization approach for designing inline pin-fin arrays that can
achieve low pressure loss. The pin-fin shape is defined using
featurized (parametrized) piecewise cubic splines in 2D. The
complexity of the shape is dependent on the number of splines
used for the analysis. From a method development perspec-
tive, the study is performed using three splines. Owing to this
piece-wise modeling, a unique pin fin design is defined using
five features. After specifying the design, a computational fluid
dynamics-based model is developed that computes the pressure
drop during the flow. Bayesian optimization is carried out on a
Gaussian processes-based surrogate model to obtain an optimal
combination of pin-fin features to minimize the pressure drop.
The results showed that the optimization tends to approach an
aerodynamic design leading to low pressure drop corroborating
with the existing knowledge. Furthermore, multiple iterations of
optimizations were conducted with varying degree of input data.
The results revealed that a convergence to similar optimal design
is achieved with a minimum of 25 initial datapoints for the sur-
rogate. A sensitivity analysis showed that the distance between
the rows of the pin fins is the most dominant feature influencing
the pressure drop.

∗Address all correspondence to this author.

NOMENCLATURE
Design and Optimization:
2D Two Dimensional
BO Bayesian Optimization
∆P Pressure drop
Dx Projection of the pin fin on the x-axis
Dy Projection of the pin fin on the y-axis
f (θ),g(θ) Functions of θ

GP Gaussian Process
K GP-based covariance/variance of a design Ω

K Covariance matrix of n designs
Kn+1 Covariance of the n+1th design
m GP-based mean of a design Ω

m A vector of n means
mn+1 Mean of the n+1th design
Ω A pin fin design vector
Ω∗ Design Space
Ω A collection on n pin fin designs
φ Objective function
φ A vector of n objective functions
ri ∀ i = 1,2,3, ith radial distance of a pin fin shape
S Distance between the rows of two fin
θ ∗ Orientation of the pin fin from the x-axis
x x-direction
X Distance between the columns of two fins
y y-direction

CFD Model and Equations:
δi j Kronecker delta
E Energy per unit mass
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f̄i External force in the ith direction
ke f f Effective conductivity
µ Viscosity
Pgauge Gauge Pressure
p̄ Mean pressure
ρ Density of the fluid
T Temperature
τe f f Effective shear stress
Tf in Temperature of pin fins
ūi Flow velocity in the ith direction
u′i Fluctuating component of velocity
VVV Velocity vector
vin Inlet velocity

1 INTRODUCTION
The hot-section components, e.g., turbine rotor blades of gas

turbines operate at upwards of 1500 K creating a harsh environ-
ment. For this reason, innovative technologies are used to facil-
itate cooling of these components. A rotor blade typically has
a complex cooling configuration. The blade can be divided into
three primary sections, each of which has a dedicated coolant
supply plenum. These sections include: (i) the leading edge re-
gion, (ii) the mid-chord region, and (iii) the trailing edge region.
The pressure side of a turbine blade has a relatively higher tem-
perature than the suction side and is, therefore, provided with
additional cooling. This is accomplished by internal and external
cooling that favors the pressure side of the blade, particularly in
the trailing edge region [1].

Internal cooling of the trailing edge has been investigated
extensively. Heat transfer enhancement designs have been devel-
oped to fully utilize the cooling capacity of the coolant. Unique
to this blade region is the pressure drop between the internal
plenum and the external mainstream conditions. This region
allows for greater heat transfer enhancement at the cost of in-
creased frictional loss. Fully-bridged pin-fin arrays result in large
pressure losses but also excel at heat transfer enhancement. As
a result, pin-fins represent an ideal candidate for trailing edge
cooling. As an additional benefit, the fully-bridged pin-fin de-
sign also increases the structural rigidity of the blade. For these
reasons, a vast amount of literature supports the implementation
of impingement arrays to enhance heat transfer and structurally
support the trailing edge section of airfoils [2].

One of the primary objectives of the pin-fin design is, there-
fore, to decrease the pressure drop while increasing the heat
transfer. Both experimental and computational investigations
have been carried out in the past to achieve this objective. Otto
et al. [3] performed a particle image velocimetry study to under-
stand the developing flow characteristics of a staggered pin-fin
array. Horseshoe type vortices and Karman instabilities were
identified as the key contributors to turbulent mixing. Chyu et
al. [4] investigated the dependence of pin-fin cross-sections on

the thermal performance. Square, circular, and diamond-shaped
pins were studied and circular pin-fins were found to have the
best trade-off between pressure drop and heat transfer.

With the advancements in metal additive manufacturing, the
feasibility of making complex pin fin designs that are not limited
to the traditional manufacturing constraints has increased multi-
fold. This is evident from the recent research efforts towards the
testing of such unique designs [5], and their corresponding pa-
rameters [6]. The introduction of this manufacturing technology
has led to the initiation of research towards more innovative de-
sign strategies, particularly with the use of data-driven tools [7].
These strategies are built upon the parametrization of the pin fin
designs followed by an optimization that leads to the desired pin
fin shape.

Accordingly, there are several parameters pertaining to the
pin shape that could be optimized to minimize pressure drop
and maximize heat transfer. Existing literature has shown ex-
perimental results with unique geometries for pins such as a star
or a dimpled sphere [5]. However, experimental optimization of
pin-fins is expensive and time-consuming. For this reason, com-
putational investigations have played a crucial role in the devel-
opment of novel designs and creative solutions. Eyi et al. [8, 9]
used parameterized Bezier curves to define and, then, optimize
the leading edge of a fin in a parametric form. Wileke et al. [10]
used adjoint optimization for a U-shaped channel to reduce the
total pressure loss. On a similar note, Ghosh et al. and Dilgen
et. al. implemented a topology optimization technique to ex-
plore manufacturing constraints [11, 12]. Fabbri [13] applied a
genetic algorithm to optimize pin fin designs. Hamadneh et al.
used particle swarm optimization (PSO) to evaluate several pin
fin geometries for enhanced thermal performance [14].

Recently, Ghosh et al. used Gaussian process (GP) surro-
gates with constrained Bayesian Optimization (BO) for optimiz-
ing the thermal performance of the pin-fin arrays [7]. Due to the
black-box nature of CFD simulations for complex geometries,
the use of GP and BO has shown promising results, particularly
while working with limited data. However, due to the relatively
nascent percolation of such techniques for pin fin optimization,
more complex formulations in the design space are not yet fully
explored. In addition to that, such studies have been hampered
by the lack of automated simulations using established computa-
tional tools such as ANSYS Fluent, thereby, restricting the opti-
mization to a few manually conducted iterations. This paper ad-
dresses these existing shortcomings by applying a novel spline-
based pin-fin definition that offers a potential to explore complex
geometries. In addition to that, the simulations conducted in this
analysis are completely automated leading to a relatively high
number of design iterations.

The optimization process in the present study was performed
to minimize the pressure drop. The results revealed that the
framework can learn the design principles with limited training
data and converged to a desired solution with < 50 iterations.
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A study on the data requirement of the algorithm was also con-
ducted to quantify the need of initial data for the algorithm to
perform adequately. Furthermore, a sensitivity analysis was pre-
sented to understand the impact of the features on the pressure
drop. Although the analysis presented in the article was studied
for minimizing pressure drop, it can be easily modified to address
other desired objectives.

2 METHODOLOGY
2.1 FEATURIZATION OF PIN FINS

Features of the general pin fin shape
A general closed shape in 2D is a locus of points, x = f (θ),

and y = g(θ), parameterized over θ . The most common form of
this parametrization is visualized with a circle of radius r, an out-
come of x = r cosθ and y = r sinθ . By employing more complex
functional representations in the construction of f (θ) and g(θ),
a range of variations in the shapes can be generated. Among
several such strategies, this paper uses piecewise-cubic splines
to generate parametric shapes in 2D. The complexity of these
shapes, owing to their construction, further depends on the num-
ber of splines used in the process.

With this in mind, the analysis in this paper was performed
by using three splines. As an example, Fig. 1(a) depicts the two
curves (x = f (θ ) and y = g(θ)), both constructed using three
cubic splines. The resultant shape indicating the contribution of
the individual splines is shown in Fig. 1(b). The shape indicates
three radial distances (r1, r2, and r3) that provide the necessary
coordinates for spline interpolation.

To be able to optimize this shape, features that impact the
geometry need to be chosen. Three such features, viz. r2, r3,
and θ ∗ were identified to be the defining elements for any shape
generated using the aforementioned procedure. The feature, r1,
was maintained at a constant magnitude of 1 mm to ensure a
reference dimension to prevent the optimization algorithm from
choosing extreme (either too small or too large) geometries. The
angle of r1 from the X-axis is denoted by θ ∗, as shown in Fig.
1(a) and (b). It controls the orientation of the pin fin. Fig. 1(b)
also depicts Dx and Dy which denote the projection length of the
pin on X and Y axis, respectively.

Features of Pin-Fin Arrays
In addition to the three features of a single fin, the setup of

the array is controlled with two additional features that account
for the distance between the rows and columns of the fins. In lit-
erature, the distance between the rows is denoted by S, whereas,
for columns, it is denoted by X as shown in Fig. 1(c). Accord-
ingly, S/D and X/D are the two ratios that are commonly dis-
cussed in pin fin literature where D is the projected length of the
fin perpendicular to the flow. In this formulation, a minor varia-
tion of these ratios is used to avoid numerical inconsistencies in

FIGURE 1. (a) Two curves (x = f (θ) and y = g(θ)) constructed
with three piece-wise cubic splines. (b) The pin-fin shape resulting
from three splines with the defining parameters. (c) A pin fin array
constructed with two rows and two columns.

design. Instead of using S/D and X/D, the authors define S/Dy
and X/Dx as the two additional features based on their projection
lengths from Fig. 1(b). The inclusion of this modification avoids
intersection of two fin shapes on the grid, which was observed to
be happening in cases where the optimization converged towards
fins with a high Dx/Dy ratio.

Therefore, in total, the design (Ω) of a pin-fin array can be
uniquely defined by five features, viz. r2, r3, θ ∗, S/Dy, and
X/Dx:

Ω = [r2,r3,θ
∗,S/Dy,X/Dx] (1)

Design Space
To proceed with the optimization, some constraints on the

range of variation for all the five features is decided. Because a
reference radial distance (r1) was maintained at 1 mm, the other
two radii r2, and r3 were varied from a lower bound of 0.1 mm
to an upper bound of 1 mm. The lower bound was chosen to
avoid numerical complications in spline computation which were
observed for radii approaching zero. The impact of variation of
these parameters on the fin shape is shown in Fig. 2.

As depicted in Fig. 2, the orientation parameter (θ ∗) was
varied from 0 to π radians. Due to the nature of the flow, any
pin fin design with θ ∗ has the same characteristics as 2π − θ ∗.
Therefore, the range 0 to π ensured all distinct orientations were
taken into account. Every single variation between these three
parameters θ ∗, r2, and r3 lead to a unique shape and thereby
provided a multitude of design combinations. The variation in
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FIGURE 2. Feature space variation for (a) θ∗, (b) r2, (c) r3, (d)
X/Dx, and (e) S/Dy. The (red) arrows indicate the extent and the
direction of variation of the parameter.

array parameters was relatively straightforward. Based on litera-
ture [5], the range of these parameters was chosen to vary from
2 to 3 and its impact on the array is shown in Fig. 2(d) and (e).
The design space is represented through a vector Ω∗ as follows:

Ω
∗ =[r2 ∈ [0.1,1],

r3 ∈ [0.1,1],
θ
∗ ∈ [0,π],

S/Dy ∈ [2,3],
X/Dx ∈ [2,3]]

(2)

2.2 Development of the CFD Model

Simulation Domain and Boundary Conditions
The geometry of the 2D pin-fin array and the corresponding

flow domain is shown in Fig. 3. The inlet passage of the domain
was extended to 10Dx upstream to allow the flow to fully develop
before interacting with the fins. An inlet velocity (vin) of 100
m/s was maintained with a temperature of 300 K. The fins were

modelled as a stationary wall with a no slip condition and are
maintained at a constant temperature (Tf in) of 350 K. The domain
outlet was defined at atmospheric pressure (Pgauge = 0), with a
temperature of 300 K, and the outlet passage was also extended
to 5Dx to capture the flow behavior in the wake region. The top
and bottom regions have a symmetry boundary condition. This
ensures that any variation in the design space (for ex. due to
S/Dy) would not have any impact on the simulations. The region
of interest encapsulating the pins, shown in the inset in Fig. 3,
will be shown in the results going further.

FIGURE 3. Simulation domain and boundary conditions imple-
mented in the CFD model.

Flow-Thermal Governing Equations
The dynamics of the fluid flow is governed by the conserva-

tion of mass and the Cauchy momentum equation. In addition,
the following assumptions about the physics of the fluid flow are
made:

1. The fluid (i.e., air) is considered incompressible (with the
constant density), thus the mass conservation translates into
the volume conservation.

2. The material properties of air are modeled with a linear con-
stitutive behavior, i.e. a Newtonian fluid, where the internal
shear stress is proportional to the shear rate.

3. The fluid adheres to the surfaces of the fins and the walls;
there is a no slip condition.

4. The turbulence is specified using a 5% turbulent intensity
and a viscosity ratio of 10.

5. In specifying the wall properties for the pin fin, a standard
roughness model with a roughness constant of 0.5.

Using the above assumptions, the time-averaged Reynolds-
averaged Navier–Stokes (RANS) equations are used to describe
the flow through pin fin arrays. The equations in Einstein nota-
tion for an incompressible Newtonian fluid and a stationary flow
are written as:
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ρ ū j
∂ ūi

∂x j
= ρ f̄i+

∂

∂x j

[
−p̄δi j +µ

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
−ρu′iu

′
j

]
(3)

Here, ρ is the density of the fluid, ū j is the mean velocity in
jth direction, and ∂ ūi

∂x j
is the velocity gradient with respect to the

jth direction. Therefore, ρ ū j
∂ ūi
∂x j

is the change in the mean mo-
mentum of a fluid element owing to the convection in the mean
flow. This change is balanced by the mean body force ρ f̄i, the
isotropic stress due to the mean pressure field −p̄δi j, the viscous

stresses µ

(
∂ ūi
∂x j

+
∂ ū j
∂xi

)
, and apparent stress ρu′iu

′
j owing to the

fluctuating velocity field, generally referred to as the Reynolds
stress. Here fi represents the external force, p̄ is the average
pressure, ū′i denotes the mean of the fluctuating component of
the velocity. For modelling turbulence, the SST k−ω formula-
tion is used [15].

One of the future objectives of this research is to per-
form optimization studies that simultaneously minimize pressure
drop and maximize heat transfer in a pin-fin array. Hence, in
the present research the energy conservation equations are also
solved. The transport of thermal energy is computed using the
following equation:

∂ (ρE)
∂ t

+∇ · [V(ρE + p)] = ∇ ·
[
ke f f ∇T + τe f f ·V

]
(4)

Here, E is the energy per unit mass, VVV is the velocity vector,
p is the pressure, ke f f is the effective thermal conductivity, and
τe f f is the effective shear stress.

Model Implementation
The fluid flow and thermal evolution are simulated with the

software ANSYS® Fluent 2020 R2, which is based on the finite-
volume method. The governing equations are integrated over a
finite set of quadrilateral control volumes that meshes the sim-
ulation domain. Details of the mesh are represented in Fig.
4. Following a cell-centered discretization, the numerical solver
computes discrete values of the continuous velocity and pressure
fields at the center of the control volumes. The values at any
other locations are interpolated from the discrete values, when-
ever required. The numerical scheme evaluates the advection and
diffusion fluxes of momentum through all the faces of the control
volumes. Then, the accumulated quantity of momentum inside
each control volume is updated according to its net fluxes. As the
fluid is incompressible, the pressure field is a result of the conti-
nuity constraint. A pressure equation is derived from the law of
mass conservation.

FIGURE 4. Mesh distribution near the fin boundaries.

The evolution of the system was solved incrementally with
an automatic time stepping method using pseudo transient set-
tings. The simulation was run for 200 iterations which was ob-
served to be a sufficient duration for model convergence. In the
simulations, the maximum element size was maintained at 0.05
mm. The convergence conditions are set at 1e−6 for all residu-
als. The discretized momentum equations and pressure equations
relative to the set of control volumes were solved with an implicit
solver that ensured stability of the numerical scheme. At each in-
cremental time step, the numerical algorithm computes the new
values of the primary discrete variables that are the local veloc-
ities, the pressure and temperature. Secondary results, such as
the streamline of the flow, the shear rate, the viscous stress, or
fluxes, are computed from the primary variables. The pressure
drop (∆P), which represents the critical objective for optimiza-
tion in this study, was calculated by simply recording the inlet
pressure at the end of the simulation (since the outlet is main-
tained at pgauge = 0 Pa).

2.3 Optimization Framework

Gaussian Process-Based Surrogate
The surrogate development strategy is based on a class of

stochastic processes called Gaussian Processes (GPs) that as-
sume any finite collection of random variables to follow a mul-
tivariate jointly Gaussian distribution. For a finite collection of
n designs, Ω, the corresponding function outputs, φ are assumed
to have a multivariate jointly Gaussian distribution,

φ ∼ N (m(Ω) ,K(Ω,Ω′)) (5)

Here, N implies a Gaussian distribution. The underlying
GP is completely characterized by a mean function: m(Ω) =
E[φ ], and a covariance function: K(Ω,Ω′) = E[φ −m(Ω))(φ ′−
m(Ω′))] [16]. Here, E[⋆] denotes the expectation of ⋆. Ω

′ and φ
′

denote a set of finite designs other than Ω and the correspond-
ing functional output of it, respectively. In the context of this
problem, the output φ corresponds to ∆P.
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In order to understand the application of surrogate model-
ing, consider the situation where n designs denoted by the Ω have
been computationally evaluated to generate the outputs φ . Using
this data, a surrogate model can be established with the multivari-
ate Gaussian formulation. The surrogate model, can now be used
to estimate the output of a new design Ωn+1 using the following
formulation for a conditional distribution:

φ
n+1|φ ,φ n+1,Ω ∼ N (mn+1,Kn+1) (6)

Here,

mn+1 = K(Ωn+1,Ω)K(Ω,Ω)−1
φ (7)

Kn+1 = K(Ωn+1,Ωn+1)−K(Ωn+1,Ω)K(Ω,Ω)−1K(Ω,Ωn+1)

(8)

Here, K is the covariance matrix. Thus, the predicted pos-
terior distribution of the outputs at every test data point is also a
Gaussian distribution, characterized by the mean, mn+1 and co-
variance, Kn+1. A detailed mathematical account of GPs can be
found in [16].

Bayesian Optimization
The term optimization is used to denote minimization of an

objective function. A maximization problem can be posed simi-
larly by taking the negative of the objective function. In a single-
fidelity setting, there is a single objective function φ . To mini-
mize φ over its domain, the solver needs to find:

Ω̂ = argmin
Ω∈Ω∗

φ(Ω) (9)

Here, ‘argmin’ finds the argument that gives the minimum
value from an objective function, φ . The functional form of φ is
typically unknown and, hence, a gradient-free or black-box opti-
mization is often utilized. BO is one such black-box optimization
technique [17] that leverages the predictions through a surrogate
for sequential active learning to find the global optima of the
objective function. The active learning strategies find a trade-
off between exploration and exploitation in possibly noisy set-
tings [17], which facilitates a balance between the global search
and local optimization through acquisition functions. One com-
monly used acquisition function in BO is Expected Improvement
(EI).

The objective function, φ , expressed as a GP, yields a pos-
terior predictive Gaussian distribution characterized by the mean

m(Ω) and standard deviation K(Ω) for Ω ∈ Ω∗, where Ω∗ is the
search space of the optimization challenge. The optimization al-
gorithm proceeds sequentially by sampling Ω̂ = argmaxΩEI(Ω)
at every step of the iteration process to add on to the dataset, af-
ter which the GP surrogate is retrained with the new data set to
predict the acquisition potential for the next iterative step. This
process continues until an optimum is reached, or the compu-
tational budget is extinguished. Since the acquisition potential
is predicted over the entire search space by the surrogate, BO
can achieve fast predictions without a lot of function calls in the
search space (i.e., without having to run the simulations to obtain
the objectives at all the search locations). Without the benefits of
BO, optimizations might be computationally infeasible when the
search space is high-dimensional and the simulations are expen-
sive.

FIGURE 5. Flow chart of the optimization framework.

2.4 Implementation of Iterative and Automated GP
and BO

The implementation of the proposed optimization frame-
work is hinged on training and updating a surrogate model.
Fig. 5 depicts the workflow of the algorithm during the train-
ing and updating phase. In the training phase, a surrogate model
is trained using an initial design population that is generated
through a Latin hypercube sampling (LHS)-based design of ex-
periment (DOE). For every design in the population a CAD
model is generated in MATLAB, followed by an ANSYS sim-
ulation. Based on these outputs, a GP-based surrogate is trained.
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This surrogate forms the basis of the BO framework that again
consists of three main computation aspects that need to be op-
erated in sync iteratively. These aspects are (i) numerical pin
fin shape generation and translation to a CAD geometry, (ii)
CFD model setup and simulation, and (iii) Iterative BO using
steps (i)-(ii). To achieve these steps, multiple softwares are op-
erated through a master script in Python. The pin fin shapes
are generated in MATLAB using the spline toolbox. The shape
is then converted to an AutoCad file (.dxf) from MATLAB us-
ing the open source library DXFLib. The geometry is imported
to ANSYS and the simulation is setup using pre-recorded jour-
nals. The output of the simulations is read from the simulations
backup files by the python masterscript and is used to update the
Bayesian model until convergence or maximum specified itera-
tions. The BO algorithm is employed using the GPyOpt toolbox.
The entire framework is run without any manual intervention.

FIGURE 6. Comparison of the (a) point of separation and (b)
wake length with published literature [18]

3 RESULTS AND DISCUSSION
3.1 Validation of the CFD Model

Grid convergence study is a necessary test in CFD simula-
tions. In this study, the variation in the performance parameters
e.g., ∆P is studied by altering the element size from 0.5 mm to
0.03 mm. This leads to a variation of 3471 to 0.8 million nodes.
All parameters, except the element size, are kept identical for
all simulations. The variation in pressure drop is not significant
(2%) beyond 0.05 mm element size. Therefore, the element size
of 0.05 mm is chosen for all analyses. To verify the setup of the
Fluent module, a study is performed to compare the wake length
and the point of separation to similar published research [18].
The comparison is shown in Fig. 6 indicating that the Fluent
module is adequately set.

3.2 Performance of the Gaussian Process (GP) Surro-
gate

Before moving to optimization, a Latin hypercube sampling
(LHS)-based design of experiment (DOE) is conducted for 100

FIGURE 7. Comparison of ∆P between the prediction of the GP-
based model against actual data.

designs to develop a surrogate model. This surrogate model
forms the basis of the Bayesian optimization framework, and an
efficient search of the optimal design depends on the construction
of this model. Therefore, before diving into optimization, it is of-
ten advisable to check the accuracy of the surrogate using some
regression metrics. In this study, to test the surrogate model, the
available data is randomly split using a 75%-25% ratio into a
training and testing set. The training set is used to build the sur-
rogate and the testing set is used to assess it. The result of the
predictions against the actual data is shown in Fig. 7. The model
predicts 92% of the testing data within the 95% confidence inter-
val indicating that the surrogate indeed has emulated the actual
physics. The Pearson correlation (r-square), however, is low at
0.67. There is one conspicuous outlier in the data that shows a
∆P of 6 kPa. By removing that outlier, the model is capable of
achieving an almost perfect accuracy. However, since the reasons
for the outlier are enmeshed in the physics of the system, it is not
removed during the optimization computations. It is also impor-
tant for the GP to have some data for worst designs which helps
in avoiding those design combinations later during optimization.
The choice of 100 for the initial designs to build the surrogate
is random. With optimization problems that are computationally
expensive, 100 initial simulations already pose a challenge, and
therefore, it is also essential to address these data requirements
for the proposed algorithm to be successful. To address this is-
sue, a discussion is followed in Section 3.4.

3.3 Performance of Bayesian Optimization (BO)
The convergence of the BO algorithm against the iterations

and initial DOE information is shown in Fig. 8(a). The algo-
rithm, that uses a surrogate built with 100 initial designs, finds
an optimum within a few iterations, followed by an occasional
(unsuccessful) exploitation of the design space indicated by the
peaks in the convergence curve. The best design (Fig. 8(b)) with
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FIGURE 8. (a) Convergence of the BO algorithm. (b), (c), and
(d) Best design, the corresponding pressure and velocity field, re-
spectively, provided through the DOE. (d), (e), and (f) Optimized
design, the corresponding pressures and velocity field, respectively.

the corresponding pressure and velocity fields (Figs. 8(c) and
(d)) provided by the initial DOE exhibits a ∆P of 1.46 kPa. The
optimization algorithm is able to reduce it further to 1.3 kPa with
a design (and pressure, velocity fields) shown in Figs. 8(d), (e),
and (f). A comparison between the two designs in Figs. 8(b)
and (e) reveal the impact of BO on making a more aerodynamic
design resulting in an improved ∆P.

3.4 Evaluation of the Optimization Algorithm with
Minimal Data

The optimization result in the preceding section could re-
duce the pressure drop by 0.1 kPa using the information from
100 initial designs. In some practical scenarios, evaluating 100
simulations may not be feasible. Therefore, the capability of the
BO algorithm to work with less information needs to be studied.
In order to do that, the optimization is now carried out using four
instances of less initial data by testing the functionality of the
BO algorithm with 75, 50, 25, and 0 initial designs. The omis-
sion of the designs in each instance is such that the best designs
are removed, thereby providing incrementally low information
about the optimal solution to the BO algorithm. The best designs
obtained through these simulations are shown in Fig. 9 and the

FIGURE 9. Optimized designs for cases with (a) 75, (b) 50, (c) 25,
and (d) 0 initial designs prior to optimization, with their respective
pressure fields in (e), (f), (g), and (h), and velocity fields in (i), (j),
(k), and (l).

convergence rates are shown in Fig. 10. The features for all the
optimized designs are tabulated in Table 1.

FIGURE 10. Convergence plot for BO with (a) 75, (b) 50, (c) 25,
and (d) 0 initial designs.
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The optimized designs (Figs. 9 (a)-(d)) tend to approach a
similar shape for all the instances indicating the presence of a
global optima for this particular problem. The similarity in the
performance of these designs can be further compared with the
pressure and velocity fields in Figs. 9(e)-(l). The subtle differ-
ences in them can be studied through the numerical values in
the table. The designs, however, do not reveal the intricacies in
which the algorithm approached the optima. That behavior is
better exemplified by the convergence rates in Fig. 10. With 75
initial designs (Fig. 10(a)), the behavior of BO is almost similar
to the previous case with all information. With 50 designs (Fig.
10(b)), more understanding of BO can be inferred. By comparing
Figs. 10(a) and (b), one can notice that the first prediction of the
BO algorithm is almost similar in both cases. This implies that
the underlying GP learnt by the model with 75 and 50 designs is
similar in its functional form.

This interpretation is further emphasized by comparing with
Fig. 10(c) where BO gradually moves towards an optimal de-
sign until 40 iterations, thereby indicating that the GP needed
more than 25 designs to make a better informed decision. With
the final case of 0 initial designs (Fig. 10(d)), the convergence
is not as steady as the previous cases. Since there is no initial
data for this case, multiple instances with different limitations on
maximum allowable iterations are conducted. The results for BO
(25), BO (50), and BO (75) in Fig. 10(d) exemplify the random
nature of convergence for these simulations. Moreover, the in-
termittent peaks for ∆P that correspond to the exploitation phase
in optimization have larger variance than the previous cases due
to the unavailability of data. The predicted optima, however, is
still close to the previous cases indicating the intelligent sampling
procedure of BO. However, the predictions from such optimiza-
tions have a high probability of exploring local optima and are
therefore unreliable. On an average, the BO algorithm is able to
improve ∆P by more than 1 kPa as compared to the best design
provided by the DOEs in all the cases.

3.5 Sensitivity Analysis
From a design and manufacturing point of view, it is essen-

tial to understand the relative impact of the features on the per-
formance. Moreover, exploring the functional forms learnt by
the GP can further help in understanding the system behavior.
To address these points, a global and local sensitivity analysis is
now performed. The global analysis is essential to understand
the impact of the features, whereas the functional forms from the
GP can only be understood in a local context due to the multi-
parametric nature of the problem.

A SHAP (SHapley Additive exPlanations) analysis is per-
formed to understand the global sensitivity of the features. SHAP
is a method from coalitional game theory, developed to under-
stand the individual impact of all the features in a prediction [19].
Visually, the interpretation from this analysis can be presented in

TABLE 1. Features of optimized designs

# designs r2 r3 θ ∗ S/Dy X/Dx ∆P

(mm) (mm) (rad.) (kPa)

100 0.1 0.74 2.8 3 2.3 1.3

75 0.1 1.0 2.6 3 2.26 1.3

50 0.17 0.75 2.8 3 2.04 1.3

25 0.1 1.0 2.7 3 2.24 1.27

0 (50) 1.0 0.1 0.49 3 3 1.25

0 (25) 0.62 1.0 2.86 3 2 1.4

FIGURE 11. (a) A bar plot showing the relative absolute impact
of the features. (b) A summary plot revealing the impact of the
features on the output with respect to the changes in feature magni-
tudes.

two forms, viz. (i) Using a bar chart as shown in Fig. 11(a),
and (ii) Using a summary plot as shown in Fig. 11(b). Both the
figures reveal important information about the feature behavior.

The bar graph indicates the relative impact of the features on
∆P. The X-axis of the graph shows the mean SHAP values that
denote the average contribution of the features towards ∆P. For
example, for S/Dy, the mean SHAP value of 0.48 indicates that
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S/Dy contributes to 0.48 kPa of the total ∆P predicted by the GP
model. Fig. 11(a) shows S/Dy to be the most dominant factor
influencing ∆P, whereas X/Dx has the least impact. Among r2,
r3, and θ ∗ (the three features that create a shape), θ ∗ has the
largest influence on ∆P.

FIGURE 12. Local feature sensitivity on ∆P for (a) r2, (b) r3, (c)
θ∗, (d) X/Dx, and (e) S/Dy.

Although this information is useful, it is impossible from
the bars in Fig. 11(a) to interpret how these features impact the
outcome. For example, the bar chart does not tell whether in-
creasing or decreasing S/Dy is beneficial. This shortcoming is
addressed through the summary plot in Fig. 11(b). The summary
plot shows a scatter of color-coded plots across the X-axis for
different features. The colors represent the relative magnitude of
the features and the X-axis is the SHAP value. The length of the
scatter indicates the relative influence. For example, for S/Dy,
the scatter is the largest, indicating that it has the most influence
on the model output. And the higher magnitudes of S/Dy (red
color) are towards the left end of the spectrum indicating that a
higher S/Dy would reduce ∆P. This interpretation is also aligned
with the optimized features (Table 1) where all designs have con-
verged to the maximum possible S/Dy to reduce ∆P.

To understand the local sensitivity, the behavior of the sur-
rogate models is studied for the optimized design with 100 initial
points. Fig. 12 shows the variation of each feature with ∆P as
learned by the GP. To compute the variation for each feature,
all other features are held constant at the optimized value indi-
cated by BO. Therefore, the functional forms are heavily influ-
enced by the constant feature values and the analysis is thereby
termed as local. Even so, the variations are useful in understand-
ing the impact on the optimized design. All the features, except
θ ∗ show monotonic variation with ∆P. The periodic variation
in θ ∗ alludes to a symmetry that may be embedded in the model.
Among all the features, the relative total variation in ∆P indicates
the impact of the feature on the outcome. As identified from the
SHAP analysis, S/Dy again has the maximum variation in ∆P in-
dicating its dominant impact. The star indicates the feature value
in the optimized design. The sensitivity analysis therefore pro-
vides a comprehensive relationship between the objective and the
features which ultimately aids in the design and manufacturing
phases. The SHAP analysis provides a toolkit for varying fea-
tures to satisfy the objective, i.e. setting a high value of S/Dy
in this case. Once an optimal design has been chosen, the local
sensitivity analysis helps in identifying the features that need to
be monitored (or controlled) more strictly than others depending
on their impact on the outcome.

4 CONCLUSION AND FUTURE WORK
The article presents a unique piece-wise cubic spline based

framework for featurizing pin fin arrays. An optimization prob-
lem for computing the pin fin arrays with minimum pressure drop
is setup using a CFD framework coupled with a surrogate-based
Bayesian optimization approach. The optimized designs are ob-
served to follow an aerodynamic shape leading to a reduction
in the pressure drop. The capability of the BO framework is
further tested with low initial information. The optimization is
observed to efficiently find an optimum design with 25-50 ini-
tial data points. Furthermore, a sensitivity analysis is performed
to reveal S/Dy to be the most dominant feature to influence the
pressure drop. Knowledge of the minimum number of designs
needed for optimization coupled with the sensitivity analysis pro-
vide valuable information to design engineers.

The convergence to an aerodynamic shape with piece-wise
cubic splines shows promise and will be explored further to test
the capabilities of the method. With higher number of splines,
more complex shapes emulating some of the tested prototypes
[5] can be generated. The mathematical setup of the pin fin
designs also provides opportunities to include shape distortion
that has been observed in additively manufactured specimens [6].
The studies with the modelling and impacts of such shape distor-
tions will also be conducted for optimization. Geometrical con-
straints to compensate for these effects will make this approach
more impactful and application-oriented. In addition to that, an
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extension of the method to three dimensions will also be pursued
in the future. An imperative part of the current approach is the
symmetry condition in the CFD model which in-theory implies
infinite arrays of pins and an unbounded domain. To improve
the predictions further, a bounded simulation emulating the ac-
tual testing environment will be conducted after finding the op-
timal pin fin shape. Moreover, the current method only tackles
the pressure drop minimization problem. In the future, studies
will also be conducted to perform a multi-objective optimization
targeted towards enhancing heat transfer while reducing pressure
drop.
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