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Application of a Distributed
Element Roughness Model to
Additively Manufactured Internal
Cooling Channels
Design for cooling effectiveness in turbine blades relies on accurate models for dynamic
losses and heat transfer of internal cooling passages. Metal additive manufacturing (AM)
has expanded the design space for these configurations, but can give rise to large-scale
roughness features. The range of roughness length scales in these systems makes morphol-
ogy resolved computational fluid dynamics (CFD) impractical. However, volumetric rough-
ness models can be leveraged, as they have computational costs orders of magnitude lower.
In this work, a discrete element roughness model (DERM), based on the double-averaged
Navier–Stokes equations, is presented and applied to additively manufactured rough chan-
nels, representative of gas turbine blade cooling passages. Unique to this formulation of
DERM is a generalized sheltering-based treatment of drag, a two-layer model for spatially
averaged Reynolds stresses, and explicit treatment of dispersion. Six different AM rough
surface channel configurations are studied, with roughness trough to peak sizes ranging
from 15% to 60% nominal channel passage half-width, and the roughness Reynolds
number ranges from Rek= 60 to 300. DERM predictions for spatially and temporally aver-
aged mean flow quantities are compared to previously reported direct numerical simulation
results. Good agreement in the mean velocity profiles, stress balances, and drag partitions
are observed. While DERM models are typically calibrated to specific deterministic rough-
ness morphologies at comparatively small roughness Reynolds numbers, the present more
generalized DERM formulation has wider applicability. Here, it is demonstrated that the
model can accommodate random roughness of large scale, typical of AM.
[DOI: 10.1115/1.4062838]
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1 Introduction
The growth of additive manufacturing (AM) has significantly

expanded the design space for gas turbine blade cooling geometries.
As this technology has matured, an entirely new class of complex
cooling passages are now possible, which could allow for higher
operating temperatures and thereby improved engine efficiency.
However, AM gives rise to an entirely new class of large-scale

surface roughness, that by the nature of the manufacturing
process, cannot be removed with postprocessing. Characterization
and measurements of the drag and heat transfer augmentation
induced by this class of AM surfaces is an active area of research.
Snyder et al. [1,2], Stimpson et al. [3,4], and Kirch and Thole [5]
have investigated various aspects of engine-scale AM internal
cooling channels, including the influence of build direction, geo-
metric tolerances, and surface roughness correlations.

In order to successfully leverage the opportunities of AM, design-
ers require analysis tools that allow for the efficient, yet accurate
prediction of the aero-thermal properties of these surfaces. Due to
the high overhead costs and limited bandwidth of experimental
investigation, computational fluid dynamics (CFD) remains the
primary predictive method for rough wall turbulent boundary
layers. Directly resolving a rough surface using body fitted grids
presents its own set of challenges due to the disparate length
scales present. Capturing both the near-wall viscous region and
resolving the roughness elements themselves in both the streamwise
and transverse directions drive up cell count dramatically compared
to a smooth-wall case. For an AM channel, the required cell count
can rise into the tens of millions [6], which is impractical from a
design perspective.
Surface parameterizations of roughness such as k+-based sand

grain roughness (SGR) models are considerably cheaper to imple-
ment due to the use of smooth-wall grids. However, their simplicity
makes them a far less-flexible tool to accommodate the wide range
of possible surface roughness fields. First, a surface’s ks value must
be obtained from either experimental investigation or direct numer-
ical simulation (DNS) and is not known a priori. Additionally, while
many efforts have been made over the years to create robust
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correlations between actual surface statistics and ks, these are far
from universal [7,8]. Investigations have shown that roughness
RMS height, element skewness, kurtosis, and sheltering all interact
in a complex way to determine drag, and that modification of the
turbulent boundary layer cannot be condensed to a single-length
scale [9,10].
An alternative to surface parameterization of the roughness field

is volumetric parameterization, a concept that dates back to Schlict-
ing [11]. A subset of these approaches is discrete element roughness
model (DERM). In the DERM approach, the governing equations
are spanwise spatially averaged (i.e., tangent to the wall), so the
explicit geometry of the roughness is averaged away. The influence
of surface roughness on the flow is represented in closure terms that
appear in the averaged equations, which represent interfacial forces,
dispersion, and Reynolds stresses due to space and time averaging.
The roughness field itself is represented by wall-normal volume
fraction and volume fraction gradient distributions. DERM has
the advantage of the low computational cost associated with
smooth-wall grids (like SGR models), while accommodating the
geometric richness of complex roughness morphologies. This
comes at the cost of requiring a suitable representation of the rough-
ness element volume fraction field and robust closures for the aver-
aged Navier–Stokes equations.
Taylor et al. [12–14] were the first to rigorously derive a DERM

model using control volume analysis, and the resulting two-
dimensional time-averaged boundary layer equations served as
the starting point for future efforts. Significant improvements
were made to Taylor’s model by McClain et al., who extended
Taylor’s model to random roughness, modified the existing drag
term, and identified useful parameterization methods for rough sur-
faces [15–17]. Aupoix [18] endeavored to construct a more general
model for DERM through a double averaging (both time and space)
of the Navier–Stokes equations. This spatial averaging technique is
widely used in the porous media field [19–21]. After revisiting his
model, Aupoix [22] identified that in addition to the traditional Rey-
nolds stress term and drag effort term, the spatial averaging gives
rise to a term that contains the product of spatially fluctuating veloc-
ity components, otherwise known as the dispersive stress. While
Aupoix did not attempt to provide closure for all terms that
appear in the exact averaged equations, his review provided
insight into many of the challenges involved in fully implementing
this generalized DERM and also serves as a comprehensive litera-
ture survey of the field.
Hanson et al. derived double-averaged equations for the com-

pressible flow, with a specific focus on the heat transfer on
ice-roughened airfoils [23–25]. Hanson’s work was one of the
first to attack the double-averaged energy equation and the attendant
closure terms, and implement the DERM equations in the context of
a general finite volume CFD solver. Chedevergne and Forooghi
[26] published the ONERA formulation of DERM, which combines
Aupoix double averaged incompressible equations, a mixing
length turbulence model, a modified varying sectional drag coeffi-
cient, and McClain’s meltdown height approach, which was vali-
dated against DNS of cone-like surrogate roughness.
The goal of this article is to demonstrate the applicability of a new

DERM formulation to an important class of surface roughness. In
particular, we apply this DERM to channels with random roughness
comparable to the channel height, as arises in AM turbine blade
cooling passages. These channels have recently been explored
both experimentally and computationally by Snyder et al. [1],
Stimpson et al. [4], Hanson et al. [6], McClain et al. [27], Stafford
et al. [28], and Altland et al. [29]. Unique to this formulation of
DERM is a generalized treatment of the DERM drag force and
the spatially averaged Reynolds stresses. This work proposes a spa-
tially varying sectional drag coefficient, which is determined by
invoking so-called sheltering theory. This generalized formulation
of the drag coefficient allows for improved model accuracy across
a wider array of potential roughness fields, without having to rely
on calibration for each morphology. A novel two-layer approach
to modeling the spatially averaged Reynolds stress is also proposed.

The remainder of the article is organized as follows. First, the dif-
ferent geometric configurations investigated are described, and the
details of the proposed DERM model are discussed. Then, results
from a series of numerical studies on AM rough channels are com-
pared to our groups previously reported DNS. Finally, an assess-
ment of the predictive capabilities of the DERM model are given,
and recommendations for model improvement are made.

2 Technical Approach
2.1 Roughness Configurations and Characterization. This

study considers three different rough surface topologies, which
are all computed tomography (CT) scans of additively manufac-
tured surfaces. These surfaces are referred to as upskin, downskin,
and real. Further details of the three rough surfaces can be found
in the study by Stafford et al. [28] and McClain et al. [27], where
they are referred to by the same names. The upskin and downskin
surfaces were manufactured with Inconel 718 and the real surface
with Hastelloy. We place each rough surface opposite a smooth
surface and the other two rough surfaces. This leads to six-channel
configurations. Table 1 lists details of these rough wall channels.
The case ID nomenclature is bottom-surface/top-surface, with des-
ignations upskin (u), downskin (d), real (r), and smooth (s).
Figure 1 is a sketch of a rough wall channel configuration at a

given spanwise location. Here, x is the streamwise direction, z is
the wall-normal direction, δ is the half-channel height, and Lz is
the channel height. In all six cases, Lz= 2δ, which is measured
from the underlying substrate of the bottom wall, to the substrate
of the top wall. The bottom wall roughness extends from 0 to a
peak height kb,max, and the top wall roughness extends from Lz
down to a peak height of kt,max. The average heights of the
bottom and top walls are kb,m and kt,m respectively. From Table 1,
it should be clear that these rough surfaces obstruct a significant
part of the channel, and the maximum extent of the roughness is
comparable to the half-channel height in all cases; indeed, kmax/δ ≈
2
3 for the real surface.
We can define a wall normal distribution of volume fraction

β, such that β = ∀f /∀, the ratio of fluid-to-total planar area at a
given elevation. Above the maximum extent of the roughness,
β = 1, as there is no obstruction of the fluid, and β< 1 below
kmax. The roughness height distribution is close to Gaussian for
all three AM surfaces [29]. Accordingly, the wall normal

Table 1 Roughness configurations

Case ID kb,max/δ kt,max/δ Reτ,N

u/s 0.155 0 410
d/s 0.404 0 431
r/s 0.667 0 474
u/d 0.142 0.390 446
u/r 0.130 0.646 495
d/r 0.341 0.620 510

Fig. 1 Rough wall channel sketch with nomenclature
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distribution of volume fraction can be written analytically as the
cumulative density function of the roughness height and is given
by Eq. (1) and plotted in Fig. 2.

β(z) =
1
2

1 + erf
z − km
σk

��
2

√
( )[ ]

(1)

2.2 DERM Equations and Model Closures. The governing
equations for DERM are derived by spatially and temporally aver-
aging the Navier–Stokes equations. This double-averaging
procedure is reviewed in the study by Aupoix [22]. Just as in Rey-
nolds averaging, where flow variables are decomposed into tempo-
rally averaged and temporally fluctuating components using
ϕ = ϕ + ϕ′, spatial averaging requires decomposition into spatially
averaged and spatially fluctuating terms, where ϕ= 〈ϕ〉f+ϕ′′. In
this notation, · denotes time averaged, ·′ denotes temporal fluctua-
tions, and ·′′ denotes spatial fluctuations. 〈 · 〉f denotes an intrinsic
spatial average, and 〈 · 〉 denotes comprehensive spatial averaging.
These two volume averages are related through 〈ϕ〉= β〈ϕ〉f.
For conciseness, we present the model here for fully developed

periodic channel flow. In practice, the model is applied within con-
ventional 3D sublayer-resolved Reynolds-averaged Navier–Stokes
(RANS). Accordingly, the fully developed incompressible DERM
x-momentum equation is given by

∂
∂z

ν
∂β〈U〉f
∂z

− 〈u′w′〉 − 〈u′′w′′〉
( )

−
1
ρ

∂〈 p〉
∂x

+ fD = 0 (2)

where ν is the kinematic viscosity, p is the pressure, and U is the
streamwise velocity. The terms from left to right are viscous diffu-
sion, turbulent transport, dispersive stress, pressure gradient, and fD
is the drag effort term.
In this formulation of DERM, the primary variable of interest is

the double-averaged streamwise velocity 〈U〉. DERM does not
provide details of the spatially resolved velocity field, but the
local contributions to the momentum balance are embodied in the
modeled stress terms. Prediction of the double-averaged velocity,
and thereby skin friction, is generally sufficient for flow character-
ization, making DERM useful as a design level tool.
Equation (2) is a fairly universal starting point for DERM. In

order to close the DERM momentum equation, the drag effort
term, the spatially averaged Reynolds stress, and the dispersive
stress all require modeling. Our treatment of each of the these
terms is detailed in the following sections.

2.2.1 Drag Closure. Closure of the drag term has historically
been the most active area of DERM research. The majority of
DERM models use a general convective drag law, given by Eq.
(3) to model the momentum sink imposed by the surface roughness
on the fluid.

fD = −
1
2CDAf (〈U〉f )2

∀
(3)

Here, Af is the projected frontal area of the roughness. For the deter-
ministic roughness fields that have historically been the target of
DERM modeling, such as hemispheres or cones, the frontal area
projection can be written in terms of the characteristic diameter of
the roughness element and an element spacing parameter. For the
roughness in this study, the average frontal area per unit planar
area as a function of z can be determined by directly interrogating
the CT scans.
The sectional drag coefficient is the challenging feature, and a

considerable amount of variation is seen in the form of CD among
authors. Historically, the drag coefficient was curve fit from a
suite of experimental data (see Taylor et al. [14] and Chedevergne
and Forooghi [26]). However, this limited the applicability of the
model to roughness fields that were similar in morphology to the
calibration case. As an alternative, we have turned to sheltering
theory to develop a more generalized drag coefficient.
Flow sheltering is a concept that was introduced into the rough-

ness literature by Raupach [30]. Its main perspective is that a rough-
ness element in the wake of another roughness element exerts less
drag force on the flow than if it were fully exposed to the incoming
fluid. Yang et al. [31] developed a fully analytical sheltering model
for the effective drag exerted on an arbitrary rough surface. There,
the average velocity in a rough wall turbulent boundary layer is
written as the sum of two shape functions, an exponential profile
in the roughness occupied region, and a logarithmic profile above
the roughness height. Equation (4) gives the form of these shape
functions.

U(z) = Uk exp
a(z−kmax)

kmax if 0 < z < kmax
uτ
κ log

z−d
zo

if kmax < z < H

{
(4)

To completely describe the average velocity field U(z), five
unknown constants must be solved for: the velocity attenuation
parameter a, the displacement height d, the roughness length
scale zo, the friction velocity uτ, and Uk, the velocity at kmax. Five
constraints are therefore required. Four of these are force balance
(integrated skin friction equal to integrated form drag), velocity con-
tinuity at z= kmax and z=H, and the formal definition of d (centroid
height of the distributed drag force). Here, H is the boundary layer
height.
The fifth constraint and a novel contribution from Yang et al. is a

method for determining a, which is a measure of flow sheltering. It
is an intuitive that the attenuation parameter should be dependent on
the geometric configuration, and that it should increase the more
densely packed the roughness elements are. The sheltering model
in Ref. [31] characterizes the wake interactions of an arbitrary
roughness geometry by returning the attenuation parameter a.
With this final constraint, all five constants in Eq. (4) can be evalu-
ated and a full prediction of U(z) is obtained. Further details of the
sheltering approach can be found in Ref. [31] and are not presented
here for brevity.
In the context of DERM, the exponential shape function for the

average velocity in the roughness occupied region is used to
define a sectional drag coefficient as a function of wall normal coor-
dinate.

CD(z) = Coe
−(a−ao )(z−kmax)

kmax (5)

Here, Co is the drag coefficient of an isolated roughness element and
ao is the minimum attenuation coefficient. The minimum attenua-
tion coefficient estimates the attenuation in the sparse roughness
limit, and a value of ao= .4 is used. Co ≈ O(1) can be obtainedFig. 2 Wall normal volume fraction distribution
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from the literature for many deterministic roughness shapes. We
take Co= 1 here, as justified by the force balance predictions
shown in Sec. 3. In the limit of very sparsely packed roughness,
a → ao and this model returns the isolated drag coefficient. The
benefit of this sheltering approach is that it can accommodate a
wide variety of topologies and is independent the calibration that
classic DERM drag coefficients rely upon.

2.2.2 Spatially Averaged Reynolds Stress. In addition to the
drag term, special treatment of the spatially averaged Reynolds
stress term in Eq. (2) is required for DERM closure. Unfortunately,
using spatially averaged versions of the RANS turbulence model
equations to calculate an average eddy viscosity ντ presents
several challenges. These include a large number of unclosed
co-variances and ambiguity related to the boundary conditions for
these equations. As a consequence, mixing length turbulence
models have been the primary method of closing the averaged Rey-
nolds stress in DERM [26,32], i.e.,

〈u′w′〉 = ντ
∂β〈U〉f
∂z

ντ = l2m
∂β〈U〉f
∂z

(6)

The exact form of the mixing length both above and below the
roughness height is another area where divergent approaches have
been used in the DERM community. In this work, we adopt a
hybrid eddy viscosity approach, with a conventional DERM
mixing length formulation blended with an outer region two equa-
tion RANS turbulence model.
The mixing length expression employed in this work has two

layers. lm,o is the form of the mixing length above the extent of
the roughness kmax, and lm,i is used in the roughness occupied
region.

lm,o =
[
(δ − d)

(
0.14 − 0.08ẑ2 − 0.06ẑ4

)]
fVanD

fVanD = 1 − e
−uτ,T (z−d)

26ν

lm,i = lm,o|kmax

[
1 − tanh

(
kmax − z

kmax

)]
z

kmax
(7)

The variable ẑ =
(
1 − z−d

δ−d

)
is a corrected wall distance. Here, d is the

displacement and uτ,T is the total friction velocity (see Sec. 2.3). The
mixing length above the roughness lm,o is a modified version of the
smooth-wall turbulent internal flow expression derived by Nikuradse
[33] and validated by Antonialli and and Silveira-Neto [34]. Here, the
expression has been corrected by the displacement height d, to
account for the fact that the roughness takes up a non-negligible
portion of the channel. The value of d used in the mixing length
model is obtained from the sheltering model as discussed in Sec.
2.2.1. For the present set of additive surfaces, the displacement
height is approximately equal to km. This outer layer form has been
used previously in the context of DERM [26]. The inclusion of the
Van Driest damping expression fVanD is to accommodate the smooth-
wall limit where both kmax and d are zero, i.e., to recover the tradi-
tional mixing length expression.
The mixing length below the height of the roughness (lm,i) blends

the outer mixing length down to 0 at the underlying substrate. Here,
a hyperbolic tangent is used to damp the mixing length, and this
expression was informed by interrogation of our DNS data [29].
In particular, this function was chosen in an attempt to match the
DNS mixing length in the upper half of the roughness occupied
region, since the assumptions of mixing length models break
down deep within the roughness occupied layer. This model
returns Reynolds stresses with reasonable accuracy all the way
down to the substrate, as shown in Sec. 3. Figure 3 shows the
mixing length expression given by Eq. (7) compared to the DNS
data for the d/s case. Good agreement is observed for the upper
part of the roughness occupied region and above the roughness.
A pure mixing length approach like those taken in other DERM

models would require additional smoothing or blending to accom-
modate nonsymmetrically rough channels, as arise in this study
and AM cooling channels in general. In order to avoid discontinu-
ities in the mixing lengths from both the top and bottom walls, we
propose a two-layer formulation for the eddy viscosity in the
channel. Below a blending height zm, which we set as 1.3kmax (or
0.25δ for smooth walls), the eddy viscosity for Eq. (6) is calculated
using the previously described mixing length model. Above zm, ντ is
calculated using the k − ε turbulence model [35]. In order to ensure
continuity across the match location, the k transport equation is also
solved in the mixing length region, and ε is directly computed from
the values of k and ντ: ε = Cμk2/ντ. These values of k and ε then act
as boundary conditions on the outer region, ensuring continuity of
eddy viscosity. Validation of this proposed approach is shown in
Sec. 3. Additionally, this two-layer approach retains the generality
of freestream turbulence condition transport.

2.2.3 Dispersive Stress. The final term in Eq. (2) that requires
discussion is the dispersive stress. Just as Reynolds stress arises
from the temporal averaging of the convection term in the momen-
tum equation, dispersive stress arises from the spatial average and
analogously represents the product of unresolved spatial fluctua-
tions in velocity. While this term has long been identified both
within and outside of the DERM community, little effort has been
undertaken to explicitly model it. For many roughness morpholo-
gies, the magnitude of dispersive stress is small compared to the
Reynolds stress [36–38]. However, for the AM surfaces considered
in this study, dispersion can represent a significant fraction of the
total stress budget and therefore should be accounted for.
Machine learning has been explored by numerous researchers

within the context of CFD and has been employed in instances
where lack of knowledge about the underlying physics complicates
the development of closure models [39]. Here, we use a data-based
approach, namely, a feedforwrad neural network, to model the dis-
persive stress. The neural network inputs I and output O are given in
Eq. (8).

I =

[
z

kmax
,

km
kmax

,
krms

kmax
, kkrt,

−ν
∂〈U〉
∂z

u2τ,T
, ES

]
, O =

<u′′w′′>
u2τ,T

(8)

Fig. 3 Mixing length lm(z) for d/s. The colored solid line is the
proposed closure expression for DERM. Symbols are calculated
from DNS. The location of the maximum roughness height kmax
and blending height zm are also included.
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Here, the six inputs to the network are the wall normal coordinate z,
the mean roughness elevation km, the root-mean-squared roughness
height krms, the kurtosis of the roughness distribution krms, the local
velocity gradient, and the roughness element slope ES. The output
is one value, the local dispersion. These input quantities were
chosen for several reasons. First, the roughness statistics used
here are among the most commonly reported in surface characteri-
zation for both random and deterministic surfaces [40]. Second, the
velocity gradient is included as an input to allow dynamic feedback
in the system.
The neural network employs 1 hidden layer with 40 nodes. The

network was trained using a combination of the DNS in Ref. [29]
and DNS of cube array roughness [41]. The Levenberg–Marquardt
[42] algorithm was used for network optimization. The weights and
biases of the trained network are encoded into the CFD solver, such
that in every computational cell, the network inputs are supplied,
and a local value of dispersion is obtained (see Ref. [43] for
further details on dispersive stress modeling).

2.3 Computational Details. This DERM model has been
implemented using NPHASE-PSU [44], an in-house finite
volume multiphase code. The domain is discritized using a
sublayer-resolved mesh, with comparable wall-normal resolution
to DNS. Unlike other DERM models, this formulation does not
use the melt down height as the reference datum and instead uses
the underlying substrate of the bottom wall roughness. As is often
done in DNS, we can eliminate the pressure gradient term in Eq.
(2) in deference to a volumetric body force fb, such that ∂〈 p〉

∂x = βfb.
The flow is driven by a constant volumetric body force fb, which
has units of N/m3, for all six cases.
In order to consistently compare our DERM results to DNS,

while also presenting self-consistent law-of-the-wall-comparisons,
we require two definitions of the friction velocity. The nominal

friction velocity uτ,N and total friction velocity uτ,T are given by
Eq. (9).

uτ,N =

����
fbδ

ρ

√
, uτ,T =

���������������������������
ν
∂〈U〉
∂z

|z=kmin
+
∫kmax

kmin

fD dz

√
(9)

We scale the problem such that uτ,N is constant for all six cases and
vary the kinematic viscosity to achieve the desired nominal
Reynolds number, Reτ,N= uτ,N δ/ν, and roughness Reynolds
number, Rek= uτ,N kmax/ν. This approach is identical to the one
taken in the DNS study [29]. Values of Reτ,N are listed in
Table 1. For the surfaces considered in this study, the roughness
Reynolds numbers range from Rek≈ 60 to 300.
The total friction velocity uτ,T is a unique quantity for each rough

wall. For the DERM simulations, uτ,T is calculated based upon each
rough wall’s contribution to the total drag force. This drag force is
the sum of both the drag on the roughness elements embodied by
the effort term fD, and the viscous drag on the underlying substrate.
The limit kmin is the coordinate of the underlying substrate, which is
z= 0 for the bottom wall and z= Lz= 2δ for the top wall.

3 Results
In this section, we present the results of the proposed DERM

model when applied to the six rough surface configurations. The
DNS results used for comparison are of identical channel geome-
tries. The DNS were conducted using the in-house code LESGO
to solve the incompressible Navier–Stokes equations. The code
uses a spectral method for spatial discretization in the streamwise
and spanwise directions, and a second-order finite difference
method in the wall normal direction. A second-order Adam–
Bashforth method was used for time advancement, and statistically
converged results were temporally and spatially averaged to allow
for direct comparison with the DERM predictions. Full details of
the DNS can be found in the study by Altland et al. [29].

Fig. 4 Double-averaged velocity profiles for the six roughness configurations: (a) u/s, (b) d/s, (c) r/s, (d) u/d, (e) u/r, and (f) d/r.
Solid lines are DERM profiles. Symbols are DNS. Black dashed lines indicate the maximum height of the roughness. Normali-
zation by uτ,N.
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3.1 Velocity Profiles. Figure 4 depicts the double-averaged
streamwise velocity from DERM as well as DNS for comparison.
Visually it should be clear that the six surfaces investigated here
give rise to markedly different velocity profiles. Overall, strong
agreement is observed both above and below the roughness crests
across the case matrix, for both rough wall–smooth wall and
rough wall–rough wall configurations.

In Fig. 5, the double-averaged Reynolds stress 〈Rxz〉
+ and disper-

sive stress 〈Dxz〉
+ profiles are plotted for both DERM and DNS.

First, we note that the dispersive stress values predicted by our
neural network provide generally good agreement. A few patholo-
gies are observable in the DERM predictions, particularly that the
model has a tendency to underpredict the maximum value of disper-
sive stress in the roughness occupied region. These stress profiles

Fig. 5 Double-averaged stress profiles for the six roughness configurations. (a) u/s, (b) d/s, (c) r/s, (d) u/d, (e) u/r, and (f) d/r.
Light solid lines are DERM profiles of R+

xz [〈u′w′〉+]. Dark solid lines are DERM profiles of D+
xz [〈u′′w′′〉+]. Diamond symbols are

DNS profiles of R+
xz. Circle symbols are DNS profiles of D+

xz. Black dashed lines indicate the maximum height of the roughness.
Normalization by u2

τ,N.

Fig. 6 Double-averaged DERM velocity profiles for the bottom
walls for all six cases. Normalization by uτ,T. Solid lines are
DERM, and symbols are DNS.

Fig. 7 Double-averaged DERM velocity profiles for the top walls
for all six cases. Black solid lines are the law-of-the-wall U+= z+

and U+ = 1
κ log z+ + B.
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illustrate the necessity of including a dispersion model, particularly
for channels including the real surface. Indeed, 〈Dxz〉

+ accounts for
almost 25% of the stress balance at the height of the roughness and
is of equivalent value to the Reynolds stress through roughly half of
the roughness occupied layer. Failure to account for this component
of the stress budget would have dramatically altered the DERM
mean velocity profile.
The Reynolds stress predictions also accord well with the DNS,

although there is a slight underprediction of the Reynolds stress in
the roughness occupied layer for all three real surfaces (Figs. 5(c),

(e), and ( f )). The overall strong agreement across the case matrix
demonstrates two things. First, it shows the accuracy of the pre-
dicted value of d provided by the sheltering model. Second, it con-
firms that, despite the nuances of AM channels, and with only minor
modifications, existing DERM mixing length models remain a
viable closure method.
Figures 6 and 7 show the velocity profiles for the top and bottom

surfaces plotted in inner units. We observe the expected logarithmic
behavior in the velocity profiles above the roughness heights, and
we confirm that all three smooth surfaces conform to the
law-of-the-wall despite the presence of rough surface on the oppo-
site wall [29].

3.2 Eddy Viscosity. Figure 8 depicts the DERM profile of
eddy viscosity for cases d/s and u/d. Here, we show that our two-
layer approach transitions smoothly from calculating the eddy vis-
cosity based on the mixing length, to determining it via the k-ε
model. This applies for both the rough wall side and the smooth-
wall side and underscores one of the benefits of the two-layer
formulation.

3.3 Drag Partition. Another relevant engineering quantity
when investigating channel flows is the partition of the total drag

Fig. 8 Eddy viscosity profile for d/s and u/d (colors same as
Fig. 4). Normalized by kinematic viscosity. Dashed lines show
the match height zm for d/s, and dashed dotted lines for u/d.

Table 2 Drag partition

Case ID fbot, DERM fbot, DNS ftop, DERM ftop, DNS

u/s 56.6% 55.5% 43.4% 44.5%
d/s 67.1% 68.2% 32.9% 31.8%
r/s 75.2% 77.8% 24.8% 22.2%
u/d 37.1% 37.2% 62.9% 62.8%
u/r 26.7% 25.6% 73.3% 74.4%
d/r 38.3% 36.4% 61.7% 63.6%

Fig. 9 The DERM drag force profiles for top: upskin, middle: downskin, and bottom:
real. Solid lines correspond to DERM. Symbols are DNS. f+D is normalized by u2

τ,N/δ.
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force between the top and bottom surfaces. These values can be
computed directly from DERM, using an almost identical expres-
sion to the calculation of the total friction velocity given in Eq.
(9). This expression is valid for both rough and smooth walls in
the context of DERM, because in the smooth-wall case, fD is zero
and the drag on the surface is due only to viscous wall shear stress.
It should be noted that, by definition, the sum of the forces exerted

by both the top and bottom walls should balance the total body force
driving the flow. Because the total force driving the flow is given by�Lz
0 β(z)fB dz, and the volume fraction distribution is different for all
six cases, the total driving forces will also be different.
Table 2 lists the drag partition as a percentage of the total drag for

the top and bottom walls for all six cases. Unsurprisingly, given the
performance of the stress budget predictions, all cases return the
drag partition within roughly 3% of the DNS value. These values
can be easily converted into a skin friction coefficient, which is
useful in some contexts, although this is not done here.
Another way to characterize the DERM drag predictions is by

examining the average drag profiles as a function of the wall
normal location. Figure 9 compares DERM drag force to the
DNS for the upskin, downskin, and real surface. Since each
surface appears three times in the case matrix, each plot contains
three set of curves. We make several observations about these data.
First DERM does not predict with high accuracy the drag contri-

bution from the lowest regions of the roughness. For the upskin sur-
faces, for example, an overprediction of the drag near the wall
accounts for the under prediction of the mean velocity in the
bottom region of the roughness and the overprediction we
observe near the roughness crest in Fig. 4.
This is not entirely surprising. The flow in the recesses of a rough

surface is often recirculating, and the mean flow can even be in the
negative direction, complicating simple modeling. In addition, the
assumption of an exponential mean velocity profile in the roughness
layer, which is a significant part of our drag sheltering model, is
known to break down in the bottom layer of the roughness. This
is mitigated by the fact that for this class of surface, the bottom
20% of the roughness layer contributes only about 5% of the total
force budget, which is why the drag partition predictions are accu-
rate, despite DERM not matching the exact force distribution. Addi-
tionally, because both β and Af used in the DERM model are
analytical curve fits for the exact roughness field, there is some
error associated with their use, especially near the top and bottom
of the roughness, which has some impact upon these results.
Overall, the shape of the drag profiles are consistent with the
DNS and follow the appropriate trends.

4 Conclusion
AM has expanded the design space for internal cooling channels

in turbomachinery applications. In order to leverage this technol-
ogy, designers will need predictive areo-thermal tools with resource
requirements far lower than roughness resolving CFD. In this
study, a volumetric roughness model, DERM, was presented and
applied to a set of highly rough additively manufactured flow chan-
nels. The predictive capability of this model was demonstrated by
comparing it to DNS results.
We have highlighted the importance of the dispersive stress in

this class of roughness. Unlike other topologies, AM channels
require a model to account for these stresses, and a data-based
approach for closure was presented. The distribution of the drag
force in the roughness occupied region is an area that calls for addi-
tional attention, although the integrated force is well predicted.
Finally, it is noteworthy that closure of the Reynolds stress term
with a mixing length model proved sufficiently accurate. This can
be achieved without significant deviation from previously estab-
lished forms of the mixing length, despite the complexity of the
roughness field. Future work will involve incorporating a larger
set of training data into the dispersion modeling network, and
extending the model to surfaces with heat transfer.
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Nomenclature
a = attenuation parameter
d = displacement height
k = turbulent kinetic energy
p = pressure
x = streamwise coordinate
z = Wall normal coordinate
H = boundary layer height
U = streamwise velocity
ẑ = corrected wall distance
ao = minimum attenuation parameter
fb = volumetric body force
fD = DERM drag force
kkrt = kurtosis of roughness height
km = mean roughness height

kmax = maximum height of roughness
krms = root-mean-squared roughness height
lm = turbulent mixing length
lm,i = roughness layer mixing length
lm,o = outer layer mixing length
uτ,N = nominal friction velocity
uτ,T = total friction velocity
zo = hydrodynamic roughness length
zm = eddy viscosity match height
Af = projected frontal area
CD = sectional drag coefficient
Co = isolated drag coefficient
Dij = dispersive stress tensor
Lz = wall-normal domain height
Rij = Reynolds stress tensor
Uk = mean velocity at roughness crest
ES = element slope parameter
β = volume fraction ∀f /∀
δ = half channel height
ε = turbulent dissipation rate
κ = von Karman constant
ν = kinematic viscosity
ντ = eddy viscosity
ρ = density
σk = roughness height standard deviation
τw = wall shear stress
ϕ = generic variable
∀ = volume
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·′′ = spatially fluctuating quantity
·′ = temporally fluctuating quantity
· = time-averaged quantity

〈 · 〉 = comprehensive spatial average
〈 · 〉f = intrinsic spatial average
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