
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Does Promoting High Tech Products Spur Development? 
 
 

 

Julie Hunt 

and 

James Tybout 

Georgetown University 
 

April 1, 1998 
 
 
 
 
 
 
 
 
 
This study was funded by The World Bank, Private Sector Development Department.  
The findings, interpretations, and conclusions are the authors’ own and should not be 
attributed to the World Bank, its Executive Board of Directors, or any of its member 
countries. 



 1

I. OVERVIEW 

 In the past decade, contributors to the endogenous growth literature have 

identified a variety of ways that learning might sustain long run growth. Among these, 

Lucas (1993) has argued that the mechanisms emphasized by Krugman (1987), Stokey 

(1988 and 1991) and Young (1991) provide an especially appealing characterization of 

developing countries: growth is accomplished by concentrating resources in those goods 

whose production processes induce learning and knowledge spillovers.  Hence trade 

policy, by influencing the mix of production, can affect long run growth rates.  

 Despite its appeal, the Lucas/Krugman/Stokey/Young (hereafter LKSY) view 

remains largely untested.  To distinguish it convincingly from other theories that relate 

trade to growth requires information on product-specific market shares and their 

evolution, as well as the technological sophistication and productivity growth rates 

associated with each product. Comprehensive product-level data of this kind are rarely 

available, and they are certainly missing in the relatively aggregated data sets that the 

empirical growth literature has focussed upon.1  

 Nonetheless, by exploiting plant-level panel data, it may be possible to get much 

closer to testing the LSKY view than the existing empirical growth literature has done. If 

particular products may be associated with particular plants, and if technological 

sophistication may be associated with the plant-specific engineer- and technician-intensity 

of production, these data should provide a reasonable basis for inference. This paper 

begins from the premise that they do. 

                                                
1  Recent contributions to the empirical literature include Barro and Sali-Martin, 1994; Coe and 

Helpman, 1995; Keller, 1995; and Sali-Martin 1997. 
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  After reviewing the theoretical models of interest (section II), we devote 

considerable time to rendering the concept of a “learning industry” empirically meaningful 

(section III). We then use plant- and industry-level data from Colombia and Morocco to 

characterize rates of movement up the continuum of products from low-end (little learning 

potential) to high-end goods (section IV). Finally, we look for evidence that relatively 

rapid productivity gains accompany relatively rapid movement up the goods continuum. 

 

II. THE MODELS OF INTEREST 

 Most of the models that motivate our empirical work involve learning by doing. 

That is, in the process of manufacturing output, managers and workers acquire experience 

that makes them more productive. This well-documented phenomenon is typically 

summarized by a “learning curve” relating process-specific production costs to cumulative 

units produced.2 For new processes the learning curve is downward sloping, but it 

eventually flattens out as the potential for learning is exhausted.  

 If each process is associated with a given product, knowledge accumulation is a 

non-decreasing, concave and bounded function of that product’s cumulative output. 

Hence, when the set of goods produced is fixed, growth associated with learning is limited 

by the scope for refinement of the associated production techniques, and steady- state 

growth cannot be sustained by learning by doing. But if there are infinitely many goods 

subject to learning by doing, some not yet manufactured, then a shift of production away 

                                                
2 See, for example, early work by Alchian (1936) on airframe construction. Since then, many studies 

have found corroborating evidence that production experience decreases unit costs. Benkard (1997) 
provides an excellent recent contribution and documents partial spillovers from experience 
producing one generation of wide-body aircraft to the next generation’s efficiency.  Malerba (1992) 
provides a recent review of the literature and some evidence of his own. 
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from goods where learning by doing has been exhausted toward new goods where no 

learning has yet occurred induces growth.  So long as new goods are introduced, growth 

persists. 

 Lucas (1988), elaborating on Krugman (1987), provides some structure to this line 

of thinking. He supposes that goods exist in infinitely-lived families. Each generation of 

good requires more human capital than the foregoing generation because it inherits the 

foregoing generation’s human capital requirements and has some additional needs of its 

own. Because new generations of goods are continually introduced, learning by doing 

within each family is never exhausted. Some families of goods hold more potential for 

learning than others, so at any point in time, the aggregate rate of productivity growth in 

an economy is a weighted average of the learning rates in different families, the weights 

being measures of sector-specific production.  

 This framework provides one formalization of the infant industry argument: trade 

protection drives up the relative demand for industrial goods, accelerating learning there. 

Once industrial productivity is sufficiently high relative to productivity in other sectors, the 

economy has a comparative advantage in industrial goods, and opening to trade will 

cement in place specialization in the high growth sector. 

 The Krugman (1987) and Lucas (1988) models do not formally describe the 

process by which the goods within each family are introduced, refined, and eventually 

abandoned. But Stokey (1988) does precisely this. Focusing on a single family of 

products, she begins by positing an infinite continuum of produced or potentially 

producable goods, indexed in ascending order of technological sophistication. The higher 

the value of the index, the larger the number of Lancaster’s (1966) characteristics the 
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good possesses. For example, 133 megahertz laptop computers with CD ROM are more 

sophisticated than first generation PCs because they deliver all the useful characteristics 

supplied by early PCs, and much more.  

 As production occurs, all producers become more efficient through knowledge 

spillovers, but the effect of these spillovers on efficiency is strongest among relatively 

sophisticated goods. So over time these high-end goods drift into the set of goods 

produced, and eventually drive low-end goods from the market. Efficiency gains create 

income growth, which expands the relative demand for high-end products through Engel 

effects. Hence sustained growth is possible, and is accompanied by the introduction of 

increasingly sophisticated goods and the discontinuation of relatively primitive goods. 

 The model is general enough that growth rates may increase, decrease, or remain 

constant in the long run, depending upon one’s assumptions regarding tastes, technology 

and knowledge accumulation. Further, when a “traditional” sector without learning effects 

is added to the model, it is possible that the economy will be trapped in a no-growth 

equilibrium, producing only the traditional good. However, if demand shocks induce at 

least some manufactured production, sustained growth begins. In this context, it is 

possible that trade could drive a country to specialize in goods without learning potential, 

thereby preventing growth. So results qualitatively similar to Krugman’s (1987) and 

Lucas’s (1988) are attainable with a more complete representation of the evolving product 

mix and associated learning processes.3 

                                                
3  As Lucas (1993) notes, however, trade becomes intra-industry when one moves to heterogeneous 

products and technologies. 
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 Focusing more directly on trade, Young (1991) also posits a model where learning 

by doing in high-end goods is the source of growth. (Details are provided in Appendix I.) 

As in Stokey (1988), learning is bounded on each individual good and has positive 

spillovers across goods because learning contributes to aggregate human capital. 

However, instead of indexing goods by the number of their characteristics, Young ranks 

goods in terms of the “sophistication of the technical processes used” in their production. 

Experience producing one good reduces the unit cost of producing all goods with learning 

potential, and production costs are monotonically increasing in the level of sophistication. 

So, goods are introduced in the order of increasing technological sophistication. 

 Consumers have a strong, but bounded, preference for variety. As more and more 

technologically sophisticated goods are produced, consumers purchase a greater variety of 

them, but the price to marginal utility ratio for low-tech goods eventually sufficiently high 

that consumers drop them. Equilibrium here, as in Stokey’s model, is characterized by 

unbounded growth and a gradual shift in the product mix toward high-end goods. 

 To explore the consequences of North/South trade, Young assumes that North is 

initially endowed with more human capital than South. This implies that in autarky the 

most sophisticated products are produced only in the North, and the most primitive 

products are produced only in the South. Moving to free trade generates the usual static 

gains, but there are also some dynamic effects that depend upon the relative populations 

and the initial difference in human capital.  

 To illustrate, suppose North has a greater labor force than South, and initial levels 

of human capital imply that there is some overlap in the range of goods produced by the 

two regions. Then North’s low-end goods, where learning by doing for North has been 
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exhausted, compete with South’s high-end goods, where much of South’s learning 

potential lies. (Simple electronic goods, like no-frill telephones and radios, might fall in 

this category.) Trade discourages both regions from producing this range of middle goods 

by making cheaper high-end substitutes available in South, and cheaper low-end 

substitutes available in North. Consequently, North diverts its workers toward higher-end 

goods, where more learning potential is, and South toward lower-end goods, where 

learning has been exhausted. North grows faster than in autarky and South grows slower.4 

 Of course, not all learning is a by-product of experience producing particular 

goods. Individuals typically devote some effort to skill acquisition because the returns 

from doing so can be partly internalized.  Although Young (1991) rules out this type of 

activity, Stokey (1991) shows in a second model that schooling can be substituted for 

learning by doing without changing Young’s (1991) conclusions much.  In this model, 

high-end products are human-capital intensive, so a shift of demand toward these goods 

spurs investment in education, and accelerates the rate of knowledge accumulation.5 Thus 

growth acceleration is still associated with shifts in the product mix toward high-end 

goods, and trade liberalization still has the potential to slow growth in developing 

countries, which have a comparative advantage in low-end products.  One distinguishing 

                                                
4  Other outcomes are possible but less plausible.  If South is sufficiently larger than North and the 

human capital gap sufficiently small, South may overtake North. In this example, South is so large 
and its technological handicap so small that before trade it produces all goods produced by North and 
some lower-end goods.  Trade causes both to divert resources away from these goods toward higher-
end goods, with greater learning potential. But because South has more workers to employ in high-
end production, South grows faster than North and faster than in autarky. 

5  Externalities in schooling are necessary to make the rate of knowledge accumulation a positive 
function of the level of schooling chosen by each generation. 
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feature of Stokey’s (1991) schooling model is that production technologies themselves do 

not evolve with learning. 

 To summarize, Young (1991), Stokey (1988, 1991) and Lucas (1993) each 

attribute productivity growth to learning processes that make feasible the production of 

increasingly sophisticated products, and to the associated knowledge spillovers. The more 

rapidly learning takes placeeither through schooling or through learning by doingthe 

higher the rate at which new high-end products are introduced, and the higher the rate of 

productivity growth. (Similarly, the productivity growth rate is monotonically related to 

the rate at which low-end products are discontinued.)  Trade policy influences the relative 

demand for high-end products, and thus affects all three of these endogenous variables. A 

likely, but not necessary, consequence of trade liberalization in LDCs is that demand for 

high-end goods is dampened, thereby limiting the amount of learning and spillovers taking 

place. 

 These models capture a fundamental, albeit second best, rationale for infant 

industry protection in developing countries. They are distinct from other endogenous 

growth models because they link learning directly with product sophistication rather than 

with product variety (as, for example, in Romer, 1990, and Keller, 1995), with general 

improvements in the quality of a fixed set of goods (as, for example, in quality ladder 

models like Grossman and Helpman’s, 1991b), or with the general quality of labor (as, for 

example, in Lucas’s, 1988, human capital model). Accordingly they are unique in 

predicting that productivity growth is associated with continual movement up the 

spectrum of product sophistication, and that high-end goods should exhibit more 
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productivity growth than low-end goods.6 We now look for evidence that they are 

empirically relevant. 

 

III. WHAT IS A GOOD WITH LEARNING POTENTIAL? 

A. How theorists sort goods 

 The definition of a high-end good varies from model to model. Krugman (1987) 

and Lucas (1988) simply assume that in the high-end sectors, productivity is relatively 

sensitive to the amount of output they have produced. Since the scope for learning in the 

production of any particular product is eventually exhausted, the implicit notion is that 

sectors are composed of families of goods, and the family composition is continually 

shifting toward goods with unexhausted potential for learning by doing. 

 More elaborate models explicitly describe the shifting process. This means 

distinguishing individual products according to their unexploited learning potential rather 

than sorting broadly defined sectors. In Young’s (1991) formulation high-end goods are 

those introduced recently enough that some refinements in the production process are still 

undeveloped. These goods are also characterized by learning spillovers that help other 

producers near the high-end of the product sophistication spectrum to become efficient 

more quickly. Stokey’s (1988) formulation is similar, except in that efficiency gains among 

high-end goods are relatively rapid for any given increment to the stock of general 

knowledge.  

                                                
6  Stokey’s (1991) model does not carry the implication that productivity growth should be more rapid 

among the more sophisticated goods. 
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 Knowledge accumulation in both Young’s (1991) and Stokey’s (1988) first model 

is a purely external byproduct of production.  In contrast, Stokey’s (1991) second model 

treats knowledge accumulation as the result of privately optimal schooling decisions on 

the part of households.  High-end goods in this formulation are simply those that require 

relatively high levels of schooling inputs per unit output.  They are goods with learning 

potential only in the sense that they induce demand for schooling, which improves the 

quality of current generation workers and makes human capital acquisition easier for 

future generations through positive externalities.  Unlike in the learning-by-doing models, 

the production technologies for these goods exhibits no more tendency toward efficiency 

gains than those for goods at the low end of the spectrum. 

 

B. Feasible Empirical Sortings 

 The unexploited learning potential of a good cannot be directly observed; nor can 

the effects of any good’s production on the general stock of knowledge.  Thus, to examine 

empirically the growth mechanisms embodied in the models of interest, our first task is to 

characterize the learning potential associated with different products using observable 

data.  

 We will base our characterizations on comprehensive plant-level panel data sets 

from Colombia (1977 through 1991) and Morocco (1986 through 1990). In addition to 

annual information on inputs and outputs at each plant, these data include information on 
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the composition of each producer’s work force, distinguishing technical personnel from 

others. 7 

 Unfortunately R&D intensity is not directly observable for either of the sample 

countries. However, our data bases do include a number of other variables that should 

proxy for the amount of learning going on. The number of technicians and their total wage 

bill is reported annually for plants in the Colombian panel, and in two years for plants in 

the Moroccan panel. When information on technicians is provided, the Moroccan data 

further disaggregate them into three categories: upper management, middle management 

and skilled workers.  From these variables we construct techwork, upmaemp, mimaemp, 

and skilemp, which measure the share of technicians, upper management technicians, 

middle management technicians, and skilled workers, respectively, in total employment 

(Table 1). We also construct techwage, techprod, and techexpe, which measure the cost of 

technicians relative to the total wage bill, the total value of output, and total expenditures, 

respectively.8 

 Do our various measure of sophistication correspond to the theoretical notions 

described by Stokey (1988, 1991) and Young (1991)?  Each measures the intensity of 

technical worker use, which is directly related to the notion of a high-end producer in 

Stokey’s (1991) schooling model, and should proxy Young’s (1991) and Stokey’s (1988) 

                                                
7  The first version of this paper also treated Chilean data, which did not provide information on 

technicians, but did report expenditures related to patents.  These data proved to be poor proxies for 
technological sophistication (in the sense that will be discussed shortly) so we have dropped Chile 
from the analysis. 

8  In the Moroccan surveys, the categories of employees changed somewhat between 1986 and 1990. 
Further, consistency checks revealed that the labelling of certain worker types in Morocco was 
inconsistent between these two years.  Appendix II discusses the measures we took to recover the 
correct labels. 
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earlier notion of a good with learning potential as well, so long as the production of 

products that involve learning requires relatively educated workers. Shortly we will look 

at correlations of product and firm rankings across proxies and countries. 

Table 1:  Technological Sophistication Indicators 
Country/Years Variable Definition 

Colombia, 1977-1991 techwork number of technicians/total employees 
 techwage technicians’ wage bill/total wage bill 

 techprod technicians’ wage bill/total output 
 techexpe technicians’ wage bill/total expenditures 
   

Morocco, 1986 and 1990 upmaemp upper management technicians/total employees 
 mimaemp middle management technicians/total employees 

 skilemp skilled workers/total employees 

 

C. Correlations across indicators, countries, time 

 Before using our proxies for technological sophistication to rank industries and 

firms, it is worth exploring their empirical properties. We would like to know if they are 

stable through time at the industry level, as the Lucas and Krugman theories presume. (At 

the firm level, rankings may change if the potential for learning is exhausted among some 

producers.) Further, if our sectoral rankings are to provide a basis for generalization, we 

require that they be stable across countries. Finally, it would be comforting to find that our 

rankings are consistent with earlier work on product sophistication in the literature, which 

has focussed on R&D. 

 

 relation to R&D 

 Addressing the last issue first, we compare the industry rankings implied by our 

various measures in Table 1 to industry rankings based on R&D expenditure data from the 
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United States.9 The United States data are reported at a level comparable to the 2 digit 

ISIC level, so we aggregate our plant-level data from Colombia and Morocco up to that 

level, and take averages of all variables in Table 1 over time.  

 Our findings are reported in Table 2.  Even if technician intensity were an excellent 

proxy for R&D activity, we would expect imperfect correlations because of cross-country 

differences in product mixes within each industry, and variations in production techniques 

for given products.  Nonetheless,  a strong ( greater than 0.75) correlation between both 

techwage, mimaemp and U.S. R&D expenditures appears to exist.  There is also a high 

(greater than  0.65) correlation between both techwork and upmaemp and US R&D. 

Clearly, the high-end sectors in terms of R&D intensity in the U.S. appear to also be the 

high-end sectors in terms of technician-intensity in Colombia and Morocco. If R&D 

reflects learning, this is support for our use of  the technician-intensity variables to rank 

products. 

  

                                                
9  The U.S. data describe the period 1981-91. The R&D data are from Science & Engineering 

Indicators−1993., p. 368. 
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Table 2:  Correlation Coefficients Between Technological 
                Sophistication Indicators and R&D Expenditures 

Colombia Morocco 
Technological 
Sophistication 
Measure 

Correlation 
Coefficient  
(p-value) 

Technological 
Sophistication 
Measure 

Correlation 
Coefficient  
(p-value) 

    
techwork 0.6500 upmaemp 0.6833 
 (0.1476)  (0.1802) 
techwage 0.7667 mimaemp 0.8500 
 (0.0791)  (0.0351) 
techprod 0.4000 skilemp -0.2333 
 (0.2909)  (0.3801) 
techexpe 0.3833   
 (0.3000)   

 

 Stability of rankings 

 Next, we wish to know whether product rankings based on the variables in Table 1 

are stable over time. If we cannot associate a given class of products with a given position 

in the ranking, a basic premise of the LKSY framework is wrong, and it makes little sense 

to proceed. Individual firms, however, can be expected to drift up or down in the ranking 

as the nature of their products changes and goods enter or exit the population. 

 

Table 3:  Cross-Time Rank Correlations of Firms’Technological Sophistication  
 Colombia (inital year 1977) Morocco (inital year 1986) 
Correlation 
after: 

techwork techwage techprod techexpe  upmaemp mimaemp skilemp 

4 years 0.5030 0.5128 0.5010 0.5020  0.4130 0.3153 0.1618 
 (0.0001) (0.0001) (0.0001) (0.0001)  (0.0001) (0.0001) (0.0001) 

7 years 0.4642 0.4737 0.4645 0.4531  n.a. n.a. n.a. 
 (0.0001) (0.0001) (0.0001) (0.0001)     

10 years 0.4245 0.4339 0.4233 0.4143  n.a. n.a. n.a. 
 (0.0001) (0.0001) (0.0001) (0.0001)     

13 years 0.4002 0.4127 0.3994 0.3971  n.a. n.a. n.a. 
 (0.0001) (0.0001) (0.0001) (0.0001)     
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 Table 3 reports cross-time Spearman correlations of firms’ sophistication rankings, 

for each of the technological sophistication indicators we consider. The results suggest 

that most of our technological sophication rankings are stable from period to period. As 

expected, the persistence of the rankings weakens over time; nonetheless it remains 

positive and significant for most sophistication measures.  For example, the correlation 

coefficient for techwork is 0.50 for 1977 and 1981, but declines to 0.40 for 1977 and 1990 

(the full time span).  The same pattern emerges for the other indicators of technological 

sophistication, excepting skilemp in Morocco. 

 Cross-country stability 

 Finally, are the rankings stable across countries? If so, this suggests that 

technological factors, rather than local conditions, dictate the nature of production 

processes.  If not, the results are unlikely to provide a basis for generalization to other 

countries. 

  Given that both the Moroccan and the Colombian rankings correlate strongly with 

U.S. R&D-based  rankings, it is not surprising that they correlate well with each other 

(Table 4).10 At the two digit level, the Colombian indicators techwork and techwage are 

highly correlated (i.e., ρ > 0.675) with the Moroccan indicators upmaemp and mimaemp.  

And in 1986 all are significant at the 5% level or below. 

 Disaggregating  introduces more scope for country-specific products and 

technologies. Nonetheless, correlations remain strong at the three digit level (refer to the 

middle panel of table 4). Note that techwage and techwork are significantly correlated with 

                                                
10  Table 4 is based on 1986 data. Patterns in the 1990 data are similar, but somewhat weaker.  Figures 

are available upon request. 
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all of the Moroccan indicators of technician intensity. And skilemp is significantly 

correlated with all of the Colombian indicators of technician intensity. 

 At the four-digit level, all indicators of Colombian technician intensity and 

Moroccan technician intensity are significantly correlated (bottom panel, table 4). The 

strongest correlations are between i) techwork and both upmaemp and mimaemp and ii) 

techwage and both upmaemp and mimaemp. 

Table 4:  Cross-Country Correlation 
                  Coefficients, 1986 

 upmaemp mimaemp skilemp 
 2-digit rankings 

techwage 0.7167 0.6333 0.0500 
 (0.0298) (0.0671) (0.8984) 

techwork 0.7667 0.4167 0.2333 
 (0.0159) (0.2646) (0.5457) 

techprod 0.0833 0.0667 0.3833 
 (0.8312) (0.8647) (0.3085) 

techexpe 0.2333 0.3167 0.2333 
 (0.5457) (0.4064) (0.5457) 
    
 3-digit rankings 

techwage 0.6254 0.5562 0.0677 
 (0.0008) (0.0039) (0.7478) 

techwork 0.6408 0.5423 0.0300 
 (0.0006) (0.0051) (0.8868) 

techprod 0.3546 0.1969 0.1800 
 (0.0820) (0.3454) (0.3892) 

techexpe 0.5223 0.2446 0.1777 
 (0.0074) (0.2386) (0.3955) 
    
 4-digit rankings 

techwage 0.4394 0.4116 -0.0304 
 (0.0002) (0.0005) (0.8059) 

techwork 0.4691 0.4195 0.0127 
 (0.0001) (0.0004) (0.9181) 

techprod 0.1752 0.2693 0.1508 
 (0.1530) (0.0264) (0.2198) 

techexpe 0.1855 0.2705 0.1314 
 (0.1298) (0.0257) (0.2856) 
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 summary 

 In sum, two Colombian technician intensity indicators, techwork and techwage , 

and two Moroccan indicators, upmaemp and mimaemp , are strongly correlated across 

countries.  Moreover, these indicators yield industry rankings closely related to those 

based on U.S. R&D intensity, and are quite stable over time. For all of these reasons we 

will hereafter focus on  techwork, techwage, upmaemp and mimaemp in our analysis. 

 

IV. EVOLUTION OF THE SECTOR-LEVEL TECHNOLOGICAL SOPHISTICATION 

 With a means to describe the learning potential associated with each 

industryindeed, each firmwe can now proceed to ask whether the manufacturing 

sectors in our sample countries have been getting increasingly sophisticated.  There are 

two senses in which this might occur.  One, which is predicted by the LKSY product 

spectrum models, is by continually shifting resources toward high-end products.  The 

other is through a general increase in the intensity of skilled input use among all types of 

products. This is the kind of human capital deepening that provides an engine for growth 

in models that do not distinguish a spectrum of products in terms of their potential to 

generate learning (e.g., Barro and Sali-Martin, 1995, Chapter 5; Lucas, 1988). 

 

A. Inter-industry shifts 

 To distinguish these two types of increases in the sophistication of production, we 

begin by writing the growth rate of manufacturing-wide technological sophistication, e, 

between t-1 and t as the sum of two components:  
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Here e is the total number of technicians in manufacturing, expressed as a share of total 

manufacturing employment. Subscripts j and t indicate the industry and time period, 

respectively, θj is the jth industry’s share in manufacturing-wide employment, an overbar 

indicates the simple average over the two time periods, and ∆ is the difference operator for 

the period t-1 to t. The same expression can be used, mutatis mutandis, to decompose 

changes in manufacturing-wide technician wages as a share of some manufacturing-wide 

normalizing variable (either total wages, expenditures, or production). 

 The first term in the numerator on the right hand side captures the change in 

manufacturing-wide technological sophistication due to within-industry deepening of 

technician intensity, and the second term represents the reallocation of workers across 

industries. If the second term is positive, then the technician-intensive industries are 

growing relatively rapidly, indicating the type of resource reallocation consistent with 

LKSY-type productivity growth.  In contrast, if all of the change in aggregate technician 

intensity comes from intra-industry deepening, there is no evidence of this type of broad 

resource reallocation.  Nonetheless, it may still be case the case that within particular 3-

digit or 4-digit industries, resources are being shifted toward high-end products, in which 

case further disaggregation is needed to detect the LKSY growth mechanism.
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Table 5:  Change in Technological Sophistication:  Decomposition 
Country Period Measure of 

Technological 
Sophistication 

Total Growth Deepening 
Effect 

Share Shifting 
Effect 

 (t-1)−t      ∆e/et-1        = Σ∆eθ/et-1     + Σ∆θe/et-1 
      
Colombia 77−91 techwork 0.6159 0.6253 -0.0094 

 78−86  0.1765 0.1780 -0.0146 
 82−89  0.2054 0.2154 -0.0099 
 77−91 techwage 0.0543 0.0338 0.0206 
 78−86  -0.0241 -0.0593 0.0353 
 82−89  0.0720 0.0759 -0.0039 

      
Morocco 86−90 upmaemp 0.8846 0.9581 -0.0735 

 86−90 mimaemp 0.3895 0.4835 0.0940 
 86−90 skilemp 2.4135 2.3113 0.1022 

  
 Table 5 implements equation (1) for each of the sophistication measures in Table 

1, distinguishing industries at the 3-digit level.  For Colombia we report three sub-periods 

to control for business cycle effects:  the entire sample period (1977-91), the trough-to-

trough period (1978-1986), and the peak-to-peak period (1982-1989). Moroccan 

manufacturing output expanded during the entire sample period so this exercise was not 

feasible. Note also that in Morocco the definition of a skilled worker changed somehow 

between 1986 and 1990, rendering skilemp useless as a measure of the total increase in 

technological sophistication.  

 The message conveyed by table 5 is striking. Clearly, although technological 

sophistication generally increased from period to period,  this was almost entirely 

attributable to upgrading within industries, rather than a reallocation of market share 

toward more technologically sophisticated industries.  So, at this very broad level, 

aggregate technological sophistication appears to increase because of a deepening of 
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technological sophistication in all industries, not because high-end sectors grew relative to 

other industries. 

 It is somewhat surprising that inter-sectoral shifts are not more important. Other 

studies have documented a systematic shift of production away from simple manufactured 

products as the development process unfolds (e.g., Chenery and Syrquin, 1986).  One 

interpretation is that our time periods are relatively short, and much of the temporal 

variation is due to the major contractions and recoveries associated with the debt crisis 

and its aftermath. Nonetheless, we find evidence that production became more technician-

intensive in the aggregate during all subperiods, so the data do reflect long-term forces.  

 Interestingly, similar decompositions have been done for a wide range of 

developed countries to address the issue of whether pervasive skill-biased technical change 

explains the globally rising wage gap between skilled and unskilled labor. The findings, 

summarized in Behrman, Machin and Bound (1996), suggest that most of the rise in the 

skill intensity of production is due to skill deepening within industries, rather than shifts in 

the product mix toward skill-intensive sectors. However, with a few exceptions, they also 

find a role for product mix shifts toward skill-intensive industries.11 So, assuming that the 

level of disaggregation is sufficient, one might argue that during the 1980s, whatever 

movement toward high-end products took place was concentrated in the industrialized 

economies. 

 

                                                
11  Between 1980 and 1990, Behrman, Machin and Bound (1996) report that 73 percent of the skill 

deepening in the U.S. was due to within-industry effects, 143 percent in Luxembourg, 59 percent in 
Sweden, 99 percent in Australia, 121 percent in Japan, 87 percent in Denmark, 79 percent in 
Finland, 73 percent in Austria, 94 percent in the U.K., and 49 percent in Belgium.  The level of 
disaggregation they use is roughly comparable to our 3-digit ISIC results. 
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B. Intra-Industry Shifts 

 We now look at changes within industries and ask whether sector-level 

technological sophistication increased because all firms became more sophisticated, or 

because of intra-industry market share reallocations toward more sophisticated firms. To 

do this we decompose each ∆e jt  term in equation (1) into the effect of intra-plant changes 

in technician intensity, and the effect of changes in the allocation of workers across plants.  

This exercise is basically the same as our sectoral decomposition, however it is 

complicated by extra terms to deal with the entry and exit of producers over the sample 

period. Our expression becomes: 
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Here c, b and d indicate continuing, entering (beginning) and exiting (dying) firms, 

respectively and i subscripts refer to individual producers.  αj is the share of continuing 

plants in total employment within industry j. (The other symbols are as before.)  The first 

ratio on the right-hand side resembles equation (1).  Its numerator disaggregates changes 

in technician intensity among incumbent producers into two subcomponents:  one is 

incumbent upgrading, and the other is shifts in market share among incumbents.  The 

second ratio measures the effect of changes in the market share of incumbent firms, or 

equivalently, changes in the turnover rate. This term indicates that when incumbents are 

more intensive in technicians than entering and exiting plants, then reductions in the 

amount of turnover (increases in αj ) will increase industry-wide technology intensity. 

Finally, if entering plants are more technician-intensive than the exiting plants they replace, 
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ongoing producer turnover will also increase industry-wide technology intensity. This 

replacement effect is described by the third ratio.  

 Note that a positive value for any of these four effects except incumbent 

upgrading corresponds to resource reallocation toward high-end producers. To the extent 

that individual firms manufacture the same product or products over time, these cross-firm 

resource reallocations can be interpreted as cross-product shifts, reflecting the LKSY 

growth mechanism.  Of course, if the movement toward higher-end products takes place 

mainly within plants, rather than by high-tech plants displacing more primitive plants, the 

associated increase in technician intensity will show up as incumbent upgrading and we 

will fail to isolate it with our decomposition.   

 We summarize the findings using weighted-averages of the industry-specific 

findings in Table 6.12 Interestingly, unlike in the cross-industry results (Table 5), here we 

do find evidence of systematic cross-product resource reallocation toward high-end plants.  

It is not due to market share reallocations toward incumbents who are technician-

intensive; rather it reflects the ongoing replacement of dying, low-end plants by entering 

higher-end plants.  Although the magnitudes of these figures vary with the country, time 

period, and measure of sophistication, the general pattern is remarkably stable. Finally, it is 

worth noting that there is tremendous cross-industry variation in the change in total 

technological sophistication and its components. (Industrry-by-industry figures are 

available upon request.) 

                                                
12 The weights are the shares of each industry in total employment. 
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 Of course, even these figures the miss the market share shifting that goes on within  

plants as older products are dropped or scaled back and new products are added.  If this is 

the dominant kind of product shifting, the LSKY growth mechanism will be consistent 

with stable market shares for high-tech plants, but these plants will consistently log the 

highest productivity growth rates.  We will explore this possibility in section IV below. 

 
Table 6:  Sources of Intra-Industry Change in Technological Sophistication 
                 (Weighted Averages of Industry-specific Results) 
Country Period Measure of 

Technological 
Sophistication 

Total 
Change 

Incum-
bent 

Effect 

Market 
Share Shifts 

among 
Incumbents 

Incumbent 
Upgrading 

Changes in 
firm 

Turnover 
Rate  

Replacing 
Exiters with 

Entrants 

         
   (1) (2) (2a) (2b) (3) (4) 
Colombia 77−91 techwork 0.8153 0.5197 0.0171 0.5026 -0.0099 0.3054 

 78−86  0.2936 0.2159 0.0221 0.1938 0.0096 0.0681 
 82−89  0.3370 0.2631 -0.0103 0.2734 -0.0034 0.0773 
 77−91 techwage 0.1944 0.1638 0.0092 0.1546 -0.0057 0.0363 
 78−86  0.0870 0.0937 0.0326 0.0611 0.0071 -0.0138 
 82−89  0.2147 0.1722 -0.0054 0.1776 0.0042 0.0385 

         
Morocco 86−90 upmaemp 1.0684 0.8781 0.0278 0.8503 0.0462 0.1476 

 86−90 mimaemp 0.6568 0.4849 -0.0008 0.4857 0.0179 0.1582 
 86−90 skilemp 2.4539 2.0838 0.0014 2.0824 -0.0138 0.3764 

 

IV. IS PRODUCTIVITY GROWTH CONCENTRATED AMONG HIGH-END GOODS?  

 Thus far we have seen evidence that our sample countries have increased the 

intensity with which they use technicians, and that this is partly (although not mainly) due 

to intra-industry shifts in their product mixes toward high-end producers.  If the these 

producers manufacture goods that hold the most potential for learning and productivity 

growth, then the LKSY growth mechanism is present.  In this section we empirically 

address this key final link. 
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A. R&D & Productivity: The Literature 

 Not surprisingly, the notion that invention and technical change are central to 

productivity growth has attracted considerable attention from applied researchers. Several 

basic findings have emerged. First, firm-level data suggest that the elasticity of output with 

respect to the stock of firm R&D capital is sizable and significant.13 Second, a number of 

studies find evidence of significant R&D spillovers. In his literature survey, Griliches 

(1992) concludes that, “taken individually, many of the studies are flawed and subject to a 

variety of reservations, but the overall impression remains that R&D spillovers are both 

prevalent and important.” 

 These studies simply suggest that the return to R&D is positive. But the LKSY 

mechanism requires a link between product sophistication and rates of learning-based 

productivity growth. Given that R&D-intensive firms produce relatively sophisticated 

products, there is some evidence to support this phenomenon as well. For example, Clark 

and Griliches (1984) regress total factor productivity growth on R&D intensity and find a 

positive, significant relationship. 

 

B.   What we find in our data 

 Does the link between product sophistication and productivity carry over to the 

developing world? If so, is there evidence that productivity growth is accomplished there 

by shifting the product mix toward high-end goods? Are spillovers in evidence? 

                                                
13  Griliches and Jacques Mariesse (1984) find this relationship in the cross-sectional dimension of a 

sample of more than 100 U.S. manufacturing firms. In the time dimension, however, the collinearity 
of key variables makes it difficult to isolate a positive relationship. Using a panel of French firms, 
Cuneo and Mariesse (1984) find that the elasticity of value added with respect to the stock of firm 
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 We approach these questions at two levels. First, at the level of the firm, we 

investigate whether technician-intensive firms are relatively productive and/or exhibit 

relatively high productivity growth. Then, at the level of the industry, we ask whether 

technologically sophisticated industries exhibit relatively rapid productivity growth, and 

whether they accomplish this by shifting market shares toward high-end firms and/or 

exploiting spillover effects. 

 Our productivity measure is based on estimates of a constant returns Cobb-

Douglas production function relating gross output to primary factor inputs: 

 
(3)  y k li i i i= + + − +α β β ε* ( ) *1  

 
Here overbars denote cross-year averages of the associated variables, i indexes plants, and  

y, k and l are the log of output, capital stock and labor, respectively.14 We measure labor 

in efficiency units, so l  is a relative wage-weighted-sum of the different types of labor. 

This ensures that productivity will not appear to improve when a high-skilled worker is 

employed unless that worker’s employment increases real output more than it increases 

the cost of labor inputs to the firm. Using the estimates from (3), we obtain firm level 

primary factor productivity estimates residually from: 

(4)  PFP y k lit it it it= − − ⋅ − − ⋅α β β
^ ^ ^

( )1  

Appendix III provides further details. 

                                                                                                                                            
R&D capital in both the cross-sectional and time dimensions is large and significant. Similarly, 
Fikkert (1996) finds large and significant effects of R&D on productivity in a panel of Indian firms. 

14  The data sets are unbalanced panels; so estimate (3) using weighted least squares. The weight for the 
ith observation is the number of years for which the ith firm reports data. 
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 Firm-level correlations Table 7 reports our findings at the firm level. The first 

column reveals a strong relationship between contemporaneous technician intensity and 

productivity levels in both countries, and the second column reveals a weaker but still 

significant correlation between lagged technician intensity and productivity levels. These 

results are similar to the finding that high-R&D firms are more productive in industrialized 

countries. But here it does not simply mean that there is a positive return to replacing 

unskilled workers with highly paid technicians. Since we have used a wage-weighted 

average of worker types to construct our measure of the labor input, the implication is that 

technicians generate more in revenue than they add to cost (see Appendix III). That is, 

conditioning upon capital stocks, gross revenue per unit cost is higher among technician-

intensive producers. 

 
Table 7:  Firm Level Productivity and Technological Sophistication   

 Firm Level Correlations 
 

Country  
Year 

(PFPt,TSt) (PFPt,TSt-1) (∆ln(PFP),ln(TSt)) (∆ln(PFP),ln(TSt-1)) (∆lnPFP,∆lnTS) 

      
Morocco 0.2067* 0.0725* 0.0338 0.0015 0..0465 
86-90 (0.0000) (0.0004) (0.3030) (0.9691) (0.4488) 

      
Colombia 0.0858* 0.0094 -0.0029 0.0205 -0.0058 
77-91 (0.0003) (0.6948) (0.9324) (0.5564) (0.3353) 

      
Colombia 0.1671* 0.0709* -0.0477 0.0618 -0.0267 
78-86 (0.0000) (0.0011) (0.1328) (0.0513) (0.5374) 

      
Colombia 0.1380* 0.0552* -0.0582 0.0511 -0.1608 
82-89 (0.0000) (0.0177) (0.0798) (0.1242) (0.0002) 

      
Colombia 0.1802*     
Average (0.0000)     
For Morocco, TS = upmaemp; for Colombia, TS = techwage. 
* Significant at the 95% level of confidence. 
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 This pattern is encouraging, and consistent with previous work. But it does not 

speak directly to the LKSY hypothesis, which posits that productivity growth is relatively 

rapid among high-end goods. To look for evidence of this phenomenon, we examine the 

correlation between firm productivity growth rates and technician intensity levels (columns 

3 and 4). Neither initial technician intensity (TS t-1) nor ending technician intensity (Tst) 

correlates significantly productivity growth rates. Hence, although technician intensity is 

clearly related to the level of productivity, there is no evidence that the firms with high-

skilled workers generate rapid productivity growth.  

 More puzzling is the lack of association between growth in technician intensity 

(∆lnTS) and growth in productivity (∆lnPFP). This is simply a growth form of the 

relationship described by column 1. One interpretation is that the association between 

technological sophistication and efficiency gains is a loose one. Productivity growth does 

not immediately kick in when new technicians are hired, nor is it automatic after a 

gestation period. Hence timing lags and uncertainty make the number of technicians a 

noisy measure of the flow of efficiency-enhancing services, and the bias due to this noise is 

most severe when we identify the correlation parameter using only temporal variation in 

the data.15 

 Industry-level correlations: Presuming that we may associate products with plants, 

the absence of a plant-level correlation between technological sophistication and 

productivity growth is inconsistent with models in which high-end goods exhibit relatively 

rapid efficiency gains. But it does not rule out all growth models based on product 

                                                
15  Panel data estimators that rely on temporal variation for identification are well known to exacerbate 

measurement error bias (Griliches and Hausman, 1986). 
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shifting. For example, if the gains from learning quickly diffuse throughout a sector, then 

the technician-intensive plants at which learning originates may not exhibit unusual 

productivity growth, even when the LKSY growth mechanism is present.16 Also, if all of 

the shifting toward high-end goods takes place by low-end plants shutting down and high-

end plants replacing them (as Table 6 suggests), turnover can sustain productivity growth 

even if individual plants exhibit constant productivity during their lifetime. 

 To address these possibilities, we must look at industry-level patterns of technician 

use and performance. Specifically, using our industry-specific decomposition of growth in 

technician intensity (equation 2), we distinguish intra-plant upgrading from inter-plant 

share reallocation effects. Then we regress our industry-level productivity growth rates on 

these two sources of technician intensity growth to determine if share reallocations are 

associated with productivity growth spurts (columns 1 and 2). Also, we regress 

productivity growth on the sum of these components, that is, the industry-wide rate of 

technological sophistication.  

                                                
16  Although this would mean that producers did not internalize all of the returns to hiring technicians, 

we have seen that technicians pay off in a static sense by generating higher output levels. 
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Table 8:  Sector Level Productivity and Technological Sophistication  

(Dependent Variable = %∆PFP) 
 Equation 1 Equation 2 

 Within-Plant 
Deepening 

With-Industry  
Share shifting 

Total Increase in Technological 
Sophistication 

Morocco -0.4422 0.8804 -0.0520 
86-90 (0.3027) (0.6440) (0.1090) 

    
Colombia 0.1097 -0.1240 0.0015 
77-91 (0.0683) (0.1952) (0.0133) 

    
Colombia 0.3202* -0.4860 0.0609 
78-86 (0.1409) (0.4025) (0.0722) 

    
Colombia 0.2819* -0.0512 -0.0316 
82-89 (0.0850) (0.2429) (0.0547) 
    Standard errors are in parentheses. 
*  Significant at the 95% level of confidence. 
 

 The results of this exercise are reported in table 8.17 Notably, there is still no 

evidence that changes in technician intensity are related to productivity growth in 

Morocco. However in Colombia, there is a fairly strong relationship between productivity 

growth and increases in technician intensity due to intra-plant upgrading (column 1). That 

is, the sectors that become increasingly reliant on technicians are also the ones that exhibit 

the most rapid productivity growth. On the other hand, increases in technician intensity 

due to market share reallocations are not significantly associated with productivity gains 

(column 2). Finally, simple regressions of TFP growth on the rate of growth in technician 

intensity reveal no significant associations (column 3). 

 This Colombian pattern is intriguing. It suggests, first, that industries do not 

typically sustain productivity by shifting market shares toward plants that produce high-

end products. This is evidence against the LKSY vision of successful development, 

                                                
17 The results are similar across the various measures of technological sophistication so, for Morocco, 

we report only the results for upmaemp and, for Colombia, techwage. 
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although shifts toward high end goods may take place within  multi-product plants rather 

than across plants, remaining invisible to the measure of reallocation effects described by 

equation (2). 

 There is a second message in the Colombian results. We have already seen in Table 

7 (column 5) that there is no tendency for plants that increase their technician intensity 

relatively quickly to exhibit relatively rapid productivity growth. Yet Table 8 tells us that 

this link between growth in technician intensity and productivity growth exists at the 

industry level for the same plants and time periods. One interpretation is that spillovers are 

indeed important, and that the returns to learning at the plant of origin are less than the 

industry-wide returns. Such spillovers are central to endogenous growth models with 

learning, not just of the LKSY variety.18 So if this interpretation is correct, it constitutes 

an important piece of evidence in favor of these models’ relevance. 

 Are other interpretations plausible? We initially thought our results might imply 

that the link between technician intensity and productivity growth is only present among 

large producers. This would explain why simple cross-plant correlations don’t pick much 

up, but weighted averages at the industry level do. But limiting the sample to producers 

with at least 50 workers and repeating the correlations in table 7, we still found no 

evidence that productivity growth was related to growth in technological sophistication. 

(The results are available upon request.) A third view is that the measurement error bias 

one encounters when using firm level data is reduced when the noise is “averaged out” by 

aggregating across firms. This remains a possibility. 

                                                
18  Jones (1995) provides an illuminating summary of the role of knowledge spillovers in endogenous 

growth models. 
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 A final message of Table 8 is that the relation between technician intensity varies 

across countries. None of the industry-level correlations we find in Colombia appear in 

Morocco. An important, yet unanswered question is why the correlation patterns are 

unstable. 

 

V. SUMMARY AND CONCLUSIONS 

 Many policy makers know in their hearts that they can induce learning-based 

productivity growth by promoting technologically sophisticated products. They have cited 

this article of faith for at least 40 years as a justification for infant industry protection, and 

the growth models to back them up have been belatedly contributed by Krugman (1987), 

Lucas (1993), Stokey (1988, 1991) and Young (1991). This paper looks for evidence of 

its empirical relevance using plant-level panel data from Colombia and Morocco. 

 To link productivity growth with product sophistication, it was necessary to 

develop an observable proxy for the latter. We used the share of technicians in total 

employment because this measure yielded stable plant rankings across time, and stable 

industry rankings across time and countries. Further, it proved highly correlated with 

industry rankings from U.S. data based on R&D intensity. (R&D was not observable in 

our panels.) 

 Next, using this product sophistication measure, we documented the extent and 

nature of shifting going on in our sample countries. We found that Colombia and Morocco 

both became significantly more technician-intensive over their respective sample periods, 

but most of this was due to increases in technician intensity within plants rather than 

increases in the market share of technician-intensive producers. To the extent that the 
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latter took place, it was mainly due to the exit of low-tech plants and their replacement by 

more sophisticated entrants. 

 Although our sample countries did not rapidly shift market shares toward high-end 

producers, it seemed quite possible that the shifts which did take place were generating 

productivity growth. To investigate this possibility, we constructed plant-specific 

productivity trajectories for the firms in our sample and looked at the patterns of 

correlation between technician intensity and efficiency gains. As in other studies based on 

data from industrialized countries, we found that high-tech plants were more productive; 

so much so that the productivity gains more than offset the extra cost of hiring 

technicians. However, there was no evidence in the data that productivity growth rates 

were above average in the high-end plants. Hence a key link in the argument that 

promoting high-end goods increases productivity growth was not supported by the data. 

 Interestingly, however, we also found that in Colombia the industries undergoing 

rapid intra-firm growth in technician intensity were also improving their productivity 

relatively rapidly. Since the individual plants that were acquiring more technicians were 

not experiencing unusually rapid growth, it appears that they may have been generating 

positive spillovers for their competitors by increase the general knowledge stock. If this 

interpretation holds up to closer scrutiny, the Colombian data appear to confirm one key 

link in learning-based endogenous growth models. Further work is needed to pursue this 

important possibility, but the preliminary evidence is quite strong. 
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 Appendix I:  Young’s (1991) model 
 

 Young (1991) begins by sorting potentially producable goods according to their 

technological sophistication. Positions in the ranking are indexed by s∈ [B,∞], with higher 

s indicating greater sophistication. Also, at time t, all goods for which learning possibilities 

have been exhausted have indicies s < Tt, and all goods with further learning potentional 

have indicies, s >Tt.   

 Producing a unit of good s at time t requires α( , )s t  units of labor and nothing 

else. For closed form solutions, Young assumes: 
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where α ( )s =αe s− . This ensures that the greater the sophistication of the good, the 

greater potential efficiency, once learning effects are exhausted.  Further, among goods 

with unexhausted learning possibilities, labor requirements are positively related to their 

sophistication, as depicted below. 
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 Finally, among goods with learning, Young assumes that efficiency improves at the 

common rate: 
∂ α

∂
ln

t

dT

dt
= −2  The rate of efficiency growth among goods with 

unexhausted learning potential is then directly related to the amount of labor employed in 

the learning sectors:  
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where L(s,t) is the amount of labor being used to produce good s at time t. These 

expressions imply that the locus of production costs drifts rightward as experience 

producing the high-end goods accumulates.  Hence, for any T0 < T1 : 

   
    α  
                                                       α ( )s                                                       
 
 
 
 
 
 

                                                                           α ( )s  
 
                                      T0              T1                                   s 
 
 The returns to knowledge creation through learning cannot be internalized, so 

given the constant returns technology, pricing is competitive: P w s ts = α ( , ) . Given perfect 
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foresight regarding these prices and economy-wide income, consumers maximize the 

present value of their instantaneous utility, V C s ds
B

= +
∞

∫ ln[ ( ) ]1 , where C(s) denotes 

instantaneous consumption of good s. There is no storage, so at each point in time 

consumers spend all their income and the conditions for static utility maximization apply. 

Among all goods consumed, the usual condition holds, 
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but some goods are so expensive relative to the utility they generate that they aren’t 

consumed at all.  Call the low-tech good on the margin between zero and positive 

consumption good M, and the high-tech good on this margin good N.  Then, 
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, orα α α( ) ( ) ( )s C M ss = − . In autarky, this means that labor 

devoted to the production of each good consumed is the vertical distance to the horizontal 

line at height α ( )M : 
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The rate of change in T is L/2, and this is also the rate of growth in GDP per capita. 
 
 Now suppose that trade is opened up with a country that is further along (larger T) 

and has a higher wage w w* = ω .  Then the menu of alternative goods available in the 
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South will be as diagrammed below. (Other configurations are possible, depending upon 

relative size and tech. gap.) 
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Note that the LDC high-end goods are undercut by the more advanced DCs, so trade 

shifts the LDC labor force toward goods with no learning potential, and less spillovers 

take place. Growth slows in the LDCs.  In the DC s, production of the low end goods is 

undercut by the low-wage LDC.  So there, labor is shifted toward goods with high 

learning potential and spillovers. 

 



APPENDIX II: MOROCCAN WORKER TYPES 

 The worker types distinguished by the 1986 and 1990 Moroccan surveys are 

summarized in table AII.1 below. Because their were some changes in the category 

names, and because there was apparently a coding error in the data base for one of those 

years, it was necessary to experiment with mapping of 1986 categories onto 1990 

categories.  

 Two criteria were used.  First the average share of employment accounted for by 

each category was expected to remain fairly stable over the four 4 year period, so 

mappings in which this changed dramatically were considered suspect.  Second, the 

correlation of 1986 values with 1990 values for a given category was expected to be 

high.  That is, plants that relied relatively heavily on a given worker type in 1986 were 

expected, on average, to continue relying on that worker type in 1990. Mappings that 

did not exhibit high correlations were considered suspect. 

 The table below describes the two mappings that worked the best by these 

criteria.  Our first and second choice are labeled  primary and alternative mappings, 

respectively.  The primary mapping was used throughout this chapter.  Many unreported 

results were also obtained under the alternative mapping and were nearly identical to 

those obtained under the primary mapping.



 

   

Table AII.1:  Mapping of 1986 and 1990 Moroccan Worker Types 
  

1986 1990 
 

 Primary Mapping Alternative Mapping 
Non-paid workers n.a. n.a. 
Administrative upper management High level administrative staff High level administrative staff 
Technical upper management Technical staff Technical staff 
Middle management (technical) Intermediate technical staff Intermediate level administrative 

staff 
Mastership agents and similar 

positions 
Skilled and specialized workers Skilled and specialized workers 

Skilled workers and specialists Intermediate level administrative 
staff & Office workers 

Office workers 

Office employees Unskilled workers Unskilled workers 
Manual and unskilled labors Other workers Other workers 
Total Total workers Total workers 
n.a. n.a. Intermediate technical staff 

 
 



 

APPENDIX III: MEASURING PLANT-SPECIFIC PRODUCTIVITY 

 Productivity Concepts 

 In an earlier study, experimentation with the Chilean and Colombian panels 

revealed that total factor productivity (TFP) measures are quite sensitive to the exchange 

rate (Liu and Tybout, 1996).  This is because the cost of imported inputs increases 

dramatically when major devaluations take place, and the effects are concentrated at 

plants that use imported inputs intensively.  (Since plant-specific price deflators are 

unavailable, we cannot construct pure measures of input quantities.)  Measures of 

primary factor productivity (hereafter PFP), which describe output per unit bundle of 

capital and labor, do not suffer from this shortcoming and are much more stable (Liu and 

Tybout, 1996). Further, under the assumption that intermediate inputs are used in fixed 

proportion to output, they are equivalent to total factor productivity.  For these reasons, 

we base our productivity analysis on PFP.   

 Estimation techniques 

To construct PFP measures, one must somehow aggregate capital and labor 

usage into a scalar measure of primary input usage. We did this by estimating a constant-

returns-to-scale Cobb-Douglas production function relating gross output to capital and 

labor. This appendix provides the details of how the estimates were constructed and how 

both capital and labor were measured. 



 

 Because large plant-level panel data sets, were available, a number of estimation 

techniques were feasible.  Some, like the “within” or dummy variable estimator and the 

“difference” estimators, are based solely on temporal variation in the data.19  The 

advantage of these estimators is that they sweep out serial correlation due to unobserved 

plant characteristics that persist over time.  They also eliminate simultaneity bias due to 

correlation of these unobserved effects with the explanatory variables.20  However, when 

one of the explanatory variables exhibits transitory measurement error, estimators based 

on temporal variation can be biased, and evidence suggests the problem is quite 

important when panel data are used to estimate production functions (Westbrook and 

Tybout, 1994). Between estimators are much less sensitive to measurement error bias; 

further, since they are based purely on cross sectional variation, serial correlation is not 

an issue.21  Hence, so long as simultaneity bias is not a serious problem, between 

estimators are an attractive way to estimate production technologies.  

 Previous work suggests that the bias is indeed minor, so we use between 

estimators here (Tybout and Westbrook, 1996). Specifically, letting overbars denote 

                                                
19  A simple within estimator is computed by using firm-specific dummy variables to capture 

unobserved firm specific effects.  The number of observations will be equal to the number of firms 
times the number of time periods.  Simple difference estimators are constructed by performing 
ordinary least squares on the data after all variables have been converted to changes. 

20  In the current context, this correlation might be present because high-productivity firms tend to 
have relatively large market shares, and therefore employ relatively large amounts of capital and 
labor. 

21  The simple between estimator is obtained by averaging all of the years of data on each variable, 
plant by plant, then using the resulting plant-specific mean values in an ordinary least squares 
regression. The number of observations will be equal to the number of firms in the sample. 



 

cross-year averages of the associated variables, we fit the following constant-returns-to-

scale Cobb-Douglas production function: 

(AIII.1)  y k li i i i= + + − +α β β ε* ( ) *1  

where i indexes plants, y, k and l are the log of output, capital stock and labor efficiency 

units.  The data sets are unbalanced panels; we account for this in our estimation by 

weighing each observation by the number of years for which we have firm data.  

 Finally, using the estimates from (A1), we obtain firm level primary factor 

productivity estimates residually from: 

(AIII.2)  PFP y k lit it it it= − − − −α β β
^ ^ ^

* ( ) *1  

Aggregating up from the plant-level using weighted averages, we obtain the industry 

specific productivity levels and productivity growth rates reported in Table 3.A.2 at the 

end of this appendix. 

The capital stock series for all three countries were constructed using the 

perpetual inventory method with a five percent depreciation rate.  For a precise 

description of how the Colombian series was constructed see Roberts (1996), and for the 

Chilean series see Liu and Tybout (1996).  The Moroccan series were constructed by 

essentially following the method described in Sullivan (1996). However, to maximize the 

number of observations and to allow for firm entry, the base year was allowed to vary 

across plants.  Recall we focus our attention on 1986 and 1990, the years for which data 

on technician intensity are reported;  using 1985 and only 1985 as our base year.  This 



 

means that in order for a firm to be included in our sample, it must have reported data in 

both 1985 and 1986, or  in both 1985 and 1990.  Thus with 1985 as the base year, firms 

entering between 1985 and 1990 are excluded from our sample.  By using other base 

years, we introduce some of the error we hoped to reduce by using the perpetual 

inventory method, but we do not exclude entering firms from our sample.  

To take into consideration cross-plant variation in the quality of workers, we 

measure labor’s contribution to output using labor efficiency units.  The following 

equation documents how the labor efficiency units (LEUs) were calculated. 

(AIII.3) LEU E E W Wi iu il il iu
l

L

= +
=

∑ * /
1

 

where i denotes firm, u unskilled or blue collar labor, l the category of labor, E the 

number of workers, W average wage paid to workers in its sector.  (Under the 

assumption that workers are paid the value of their marginal products, relative wages 

provide the correct aggregation weights.)  The labor categories for each country are: 

Table AIII.1: Worker Types 
 Morocco Colombia Chile 
u = Unskilled Workers Unskilled Workers Blue Collar Workers 
l = Administrative Upper Management Management White Collar Workers 
 Technical Upper Management Skilled Workers  
 Technical Middle Management Local Technicians  
 Mastership Agents and Similar 

Positions 
Foreign Technicians  

 Skilled Workers and Specialists Apprentices  

 

  

 


