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S U M M A R Y
Rapid development of time-lapse seismic monitoring instrumentations has made it possible
to collect dense time-lapse data for tomographically retrieving time-lapse (even continuous)
images of subsurface changes. While traditional time-lapse full waveform inversion (TLFWI)
algorithms are designed for sparse time-lapse surveys, they lack of effective temporal constraint
on time-lapse data, and, more importantly, lack of the uncertainty estimation of the TLFWI
results that is critical for further interpretation. Here, we propose a new data assimilation
TLFWI method, using hierarchical matrix powered extended Kalman filter (HiEKF) to quantify
the image uncertainty. Compared to existing Kalman filter algorithms, HiEKF allows to
store and update a data-sparse representation of the cross-covariance matrices and propagate
model errors without expensive operations involving covariance matrices. Hence, HiEKF
is computationally efficient and applicable to 3-D TLFWI problems. Then, we reformulate
TLFWI in the framework of HiEKF (termed hereafter as TLFWI-HiEKF) to predict time-
lapse images of subsurface spatiotemporal velocity changes and simultaneously quantify the
uncertainty of the inverted velocity changes over time. We demonstrate the validity and
applicability of TLFWI–HiEKF with two realistic CO2 monitoring models derived from Frio-
II and Cranfield CO2 injection sites, respectively. In both 2-D and 3-D examples, the inverted
high-resolution time-lapse velocity results clearly reveal a continuous velocity reduction due
to the injection of CO2. Moreover, the accuracy of the model is increasing over time by
assimilating more time-lapse data while the standard deviation is decreasing over lapsed time.
We expect TLFWI-HiEKF to be equipped with real-time seismic monitoring systems for
continuously imaging the distribution of subsurface gas and fluids in the future large-scale
CO2 sequestration experiments and reservoir management.

Key words: Probability distributions; Statistical methods; Time-series analysis; Waveform
inversion.

1 I N T RO D U C T I O N

Monitoring the dynamic evolution of injected fluids or gas in the
subsurface is crucial for CO2 sequestration, geothermal exploration,
or enhanced oil recovery (Lazaratos & Marion 1997; Daley et al.
2007; Zhu et al. 2019). Time-lapse seismic monitoring is a cost-
effective and promising way to provide the spatiotemporal image of
seismic changes due to fluids or gas migration (Lumley 2001). How-
ever, the poor repeatability of traditional sparse time-lapse seismic
surveys will likely decrease the spatial resolution of the time-lapse
image because the errors caused by non-repeatable surveys may eas-
ily mask subtle seismic changes (e.g. leakages, Arogunmati & Har-
ris 2012). Additionally, the temporal resolution of seismic changes
is often limited due to the sparsity of time-lapse surveys (typically
year interval). To improve the image spatiotemporal resolution of

physical parameters, repeatable dense time-lapse or even continu-
ous active-source seismic monitoring (CASSM) surveys have been
proposed and tested in projects of monitoring CO2 plume (Daley
et al. 2007; Zhu et al. 2017) and hydraulic fracturing (Ajo-Franklin
et al. 2011). Sequent time-lapse traveltime tomographic analysis of
CASSM data has been reported to image the dynamic evolution
of a reservoir or injected CO2 plume in the few minutes temporal
resolution (Daley et al. 2008; Ajo-Franklin et al. 2011).

Compared to traveltime tomography, time-lapse full waveform
inversion (TLFWI) can reconstruct high-resolution time-lapse seis-
mic changes by exploiting all information embedded in seismic
data. The straightforward strategy to perform TLFWI is utilizing
independent FWI to deal with baseline and monitor data, then the
velocity changes are derived from the subtraction between the mon-
itored and the baseline velocity models. This subtraction between
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two models required two inversions converging to a similar level.
Otherwise, the velocity changes could be contaminated by unphys-
ical differences due to different local minima between inversions.
On the other hand, the sequential strategy was proposed to use the
inverted result from FWI at the previous time lapse as the initial
model for FWI at the current time lapse (Zheng et al. 2011; Routh
et al. 2012; Raknes et al. 2013; Asnaashari et al. 2015; Raknes
& Arntsen 2015). Another effective strategy is double-difference
TLFWI that minimizes the data differences between two time-lapse
data sets to directly obtain time-lapse velocity changes (Watanable
et al. 2004; Denli & Huang 2009). The above-described methods
have been demonstrated to sparse time-lapse seismic data (base-
line and one or two monitoring data sets, e.g. Zhang & Huang
2013; Yang et al. 2016), but it is not clear whether they are
suitable to deal with dense even continuous seismic monitoring
data.

Due to the nature of seismic inversion (e.g. incomplete data,
noise, instrument errors, etc.), the uncertainty of the TLFWI re-
sults would be crucial for subsequent interpretation of time-lapse
changes. Nonetheless, to our best knowledge, very few studies on
evaluating uncertainty of time-lapse images have been reported. Fol-
lowing recent studies on the quantification of the FWI uncertainty,
we could assess the uncertainty of TLFWI results by calculating the
posterior covariance matrix in each time lapse. The posterior covari-
ance is equal to the inverse Hessian when all errors are Gaussian
(Tarantola 2005; Fichtner & Trampert 2011; Bui-Thanh et al. 2013;
Zhu et al. 2016). However, the calculation of the inverse Hessian is
still computationally challenging in single FWI processing (Virieux
& Operto 2009; Zhu et al. 2016).

An excellent approach to the aforementioned problems is incor-
porating the Kalman filter (KF) into geophysical inverse problems.
This not only constrains the time-lapse variation (evolution) but also
provides the uncertainty estimation. KF is a powerful data assimila-
tion tool based on Bayesian inference for evaluating time-series data
of random variables that incorporates knowledge acquired from all
previous time-steps into the estimation of parameters at the current
time-step (Kalman 1960). Unlike deterministic inversion that only
gives a single best estimation in the least-squares sensing, the so-
lutions given by KF represent a range of possible estimates with
uncertainty quantification, characterized by the maximum a poste-
riori best estimation and a statistical covariance. The original KF is
only suitable to deal with the linear problem. The extended Kalman
filter (EKF, Anderson & Moore 1979; Dennis Jr & Schnabel 1996)
approximates the nonlinearity between the measurements and state
parameters using a first-order Taylor expansion around the current
state. The accuracy of the EKF is heavily dependent on the degree
of nonlinearity. We can increase the accuracy of EKF by either us-
ing high-order Taylor expansions (Gelb 1974) or applying iterative
approaches when dealing with nonlinearity problem (Dennis Jr &
Schnabel 1996). Recently, Eikrem et al. (2019) showed the ability
of iterative EKF to assess the uncertainty of 2-D TLFWI. However,
the iterative EKF has to explicitly store and calculate the covari-
ance error matrices at every iteration within each time lapse, and
the immense storage and computational cost make it only suitable
for small-scale seismic problems. Instead of iterative EKF, Huang &
Zhu (2019) proposed to use TLFWI to predict a good a priori veloc-
ity model to reduce the nonlinearity in their TLFWI–EKF method,
which is not only far more efficient than iterative or high-order EKF,
but also impose additional spatial constraints on predicting the a pri-
ori velocity model. Nevertheless, because the amount of storage and
computational cost of TLFWI–EKF is proportional to the squared
number of discretized model parameters, it is still very challenging

for the TLFWI–EKF method to solve large-scale seismic inverse
problems, especially 3-D cases.

On the other hand, researchers proposed to incorporate the en-
semble KF (EnKF) into FWI for uncertainty estimation (Jin et al.
2008; Gineste & Eidsvik 2017; Thurin et al. 2019). The EnKF
method proposes to replace the full-rank covariance matrix by its
low-rank approximation. Based on Monte Carlo sampling theory,
the estimation error is proportional to 1/

√
N , which means that the

ensemble size N increases, the estimation error decreases (Evensen
2003). Besides, the sampling bias in covariance matrices becomes
significant when the ensemble size N is smaller than the number
of observations (Kepert 2004). Therefore, maintaining small statis-
tical errors requires a large ensemble size for EnKF, although the
ensemble size may possibly be reduced by additional optimal meth-
ods (Evensen 2003; Aanonsen et al. 2009). So far, no attempt has
been made to use EnKF for 3-D FWI.

Li et al. (2014) introduced a hierarchical matrix (H2-matrices)
powered Kalman filter (HiKF) that produces results as accurate
as original KF but with a dramatically reduced computational and
storage cost. This HiKF method approaches the dense covariance
matrices with H2 algebra from a data-sparse (low rank) represen-
tation, then applies fast multipole methods (Fong & Darve 2009)
to accelerate the multiplication referred to those dense covariance
matrices in KF. The accuracy and efficiency of the H2-matrices ap-
proach was demonstrated in linear large-scale geostatistical inverse
problems (Ambikasaran et al. 2013; Li et al. 2014).

To solve large-scale nonlinear seismic TLFWI problems, here
we extend the HiKF method into H2-matrices powered extended
Kalman filter (HiEKF). We reformulate the TLFWI in the frame-
work of HiEKF (hereafter referred to as TLFWI–HiEKF) to pro-
cess dense time-lapse monitoring data. By reformulating, TLFWI
instead of the random walk forecast model (Quan & Harris 2008;
Li et al. 2014) is used to provide a good a priori velocity model by
imposing spatial constraints on velocity changes while data assim-
ilation HiEKF technique is designed for processing data evolution
to maintain temporal constraints on high rate of time-lapse velocity
variations. Moreover, HiEKF uses the H2-matrices approach to ex-
plore the low rank representation of the covariance matrices at an
affordable storage and computational cost in large-scale problems.
Another important aspect of this reformulation is to seek the best
estimation of time-lapse velocity changes and meanwhile provide
the corresponding uncertainty maps of those estimations.

In the following we first illustrate the framework of TLFWI–
HiEKF. Then, we present 2-D Frio-II and 3-D Cranfield CO2 seques-
tration synthetic examples to prove the validity and applicability of
the proposed method on dealing with time-lapse seismic monitor-
ing data. Discussions and conclusions associated to the proposed
scheme are made finally.

2 T H E O RY

2.1 Time-lapse full waveform inversion

FWI of seismic data can be expressed as the minimization of a
cost function of the difference between the modelled data u and the
observed data d as

E = 1

2
|d − u (m)|2, (1)

where m is the model parameter (e.g. P- or S-wave velocity, den-
sity) to be recovered. In this paper, we focus on P-wave velocity,
hence we replace m with v hereafter. u(v) is the synthetic data
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generated by numerically solving the acoustic wave equation with
an initial velocity model v. It can be expressed in the frequency
domain:

u (v) = G (v) S (ω) δ (x − xr ) , (2)

where G is the Green’s function, S is the source function, ω is the
angular frequency, and xr is the position of receivers. Since FWI is a
strongly nonlinear optimization problem, the initial velocity model
(a priori velocity model) needs to be in the vicinity of the solu-
tion for the global minimum. Assuming the initial velocity model
is adequately defined, iterative gradient-based searching methods
can be used to solve this optimization problem, (Mora 1989;
Vireux & Operto 2009; Huang et al. 2015), mathematically written
as

vi+1 = vi + αi gi , (3)

where αi is the step length. gi is the gradient of the cost function E
with respect to v at the ith iteration and can be derived from the mul-
tiplication of forward wavefield and backpropagated data residual
wavefield in the frequency domain using the adjoint-state method
(Plessix 2006). We then iteratively update the velocity model v us-
ing eq. (3) until the cost function reaches its minimum. The final
velocity model v is the output of FWI.

The purpose of TLFWI is to reveal changes of v over time.
TLFWI often involves two or more FWIs on baseline and monitoring
data. The time-lapse images of changes are obtained by subtracting
the background velocity model from the inverted velocity models
obtained from FWIs of monitoring data. We perform the TLFWI
in the frequency domain, in which a frequency group strategy is
applied to perform from low- to high-frequency group (Sirgue &
Pratt 2004).

2.2 Extended Kalman filter for time-lapse seismics

In data assimilation, EKF uses the state x and measurements z to
describe the dynamic evolution of a system according to

xk+1 = F xk + wk+1 (4)

zk+1 = h (xk+1) + ek+1 , (5)

where F is the state transition matrix, h is a measurement function
which related measurements z to the state x, wk+1 ∼ N (0, Qk+1)
and ek+1 ∼ N (0, Rk+1) are the state error and measurement noise
at time lapse k + 1 with zero mean and known covariances, respec-
tively. In the context of seismic forward modelling, eq. (5) can be
replaced by eq. (2), and the commonly used random walk model
(Vauhkonen et al. 1998) is applied to describe the velocity model
evolution. Then, the time-lapse seismics can be expressed as a dy-
namic evolution problem using the following equations

vk+1 = vk + wk+1 (6)

dk+1 = G (vk+1) S (ω) δ (x − xr ) + ek+1 , (7)

where v is the subsurface velocity model and d is the observed
seismic data in the frequency domain, where wk+1 ∼ N (0, Qk+1)
and ek+1 ∼ N (0, Rk+1) are the velocity model error and observed
data noise at time lapse k + 1, respectively.

To solve eqs (6) and (7), the classical EKF schemes are formula-
rized in two steps: predict and update. In the prediction step, EKF

predicts a velocity model at the current time lapse using informa-
tion from the previous time lapse. Therefore, the estimation from
the prediction step is an a priori estimation. Then in the update step,
EKF combines the a priori velocity model and the observed data at
the current time lapse together to update the velocity model. This
update can be treated as a weighted average between the a priori
and the measured models. Hence, the estimation from the update
step is an a posteriori estimation. The formulation of the two steps
are described as follow:

predict

v̂−
k+1 = v̂k (8)

P−
k+1 = P k + Qk+1 (9)

update

K k+1 = P−
k+1 H T

k+1

(
Hk+1 P−

k+1 HT
k+1 + Rk+1

)−1
(10)

v̂k+1 = v̂−
k+1 + K k+1

(
dk+1 − G

(
v̂−

k+1

)
S (ω) δ (x − xr )

)
(11)

P k+1 = (I − K k+1 Hk+1) P−
k+1 (12)

where v̂−
k+1 and v̂k+1 are the a priori and a posteriori estimation of

velocity models. P−
k+1 and P k+1 are the a priori and a posteriori co-

variance matrices at time lapse k + 1 with the dimension of m × m,
where m is the total number of discretized subsurface model param-
eters. K k+1 is the Kalman gain which acts as the weights between
the a priori and measured model, and Hk+1 is the derivative of
wavefield at the locations of observations with respect to velocity
v, which is the Fréchet kernel matrix. Based on the Born approxi-
mation, we can derive the explicit expression of the Fréchet kernel
function. Then, we calculate the Fréchet kernel matrix H using the
scattering-integral approach method (Liu et al. 2015). Qk+1 is the
model error covariance with the dimension of m × m, and Rk+1

is the observation error covariance with the dimension of n × n,
where n is the number of receivers (measurements). R is always
set to be a diagonal matrix with a constant value equal to the noise
variance in the observed seismic data.

From eqs (8)–(12), it is clear that the covariance matrices P and
Q need be stored and calculated at each step. The amount of storage
for the covariance matrices P and Q is proportional to the squared
number (m2) of discretized model parameters. Taking a 3-D velocity
model with discretized grid size of 100 × 100 × 100 for example,
the number of model parameters m equals to 106. Hence, the size of
matrices P or Q is 106 × 106 and to store P or Q in memory takes
up to about 4 TB. Such a high memory cost is still unaffordable for
most of current computer clusters. Therefore, the EKF algorithm
is only suitable to small-scale 2-D problems (Eikrem et al. 2019;
Huang & Zhu 2019).

2.3 H2-matrices powered extended Kalman filter

To avoid explicitly storing and calculating the covariance matrices
P and Q, following the H2-matrices approach proposed by Li et al.
(2014), we define the a priori and a posteriori cross-covariance
matrices C− and C as

C−
(k+1) = P−

(k+1) H
T
(k+1) and C(k+1) = P(k+1) H

T
(k+1), (13)
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and the model error cross-covariance matrix A

Ak+1 = Qk+1 H T
k+1. (14)

Then, we multiply H T
k+1 to eq. (9) to obtain

C−
k+1 = P k H T

k+1 + Ak+1. (15)

Assume H T
k+1

∼= H T
k given that the seismic velocity would not

change rapidly from one time lapse to the next time lapse. Based on
our numerical tests, this replacement H T

k+1
∼= H T

k barely influences
the results. Hence, eq. (15) is rewritten as

C−
k+1

∼= P k H T
k + Ak+1 = Ck + Ak+1. (16)

Substituting eqs (13) and (14) into eqs (10)–(12), combining with
eqs (8) and (16), yields the H2-matrices powered extended Kalman
filter (we call it HiEKF hereafter) equations as follows:

predict

v̂−
k+1 = v̂k (17)

C−
k+1 = Ck + Ak+1 (18)

update

K k+1 = C−
k+1

(
Hk+1C−

k+1 + Rk+1

)−1
(19)

v̂k+1 = v̂−
k+1 + K k+1

(
dk+1 − G

(
v̂−

k+1

)
S (ω) δ (x − xr )

)
(20)

Ck+1 = (I − K k+1 Hk+1) C−
k+1. (21)

According to the rules of multiplication between two matrices,
the posterior variance δ2 that is the diagonal of covariance matrix
P in eq. (12) can be calculated using the following equation:

δ2
k+1 = δ−

k+1
2 −

n∑
j = 1

(Kk+1)i j

(
C−

k+1

)
i j
, (22)

where δ−
k+1

2
is the diagonal of covariance matrix P−

k+1. In the new
formulation, rather than storing and updating the covariance matri-
ces P and Q with the size of m × m in the original EKF (eqs 8–12),
we instead store and update the cross-covariance matrices C and A
with the size of m × n (where n � m).

To calculate the cross-covariance A in eq. (14), we adopt a H2-
matrices approach (Li et al. 2014) to avoid an explicit expression
of the model error covariance Q. The H2-matrices approach is a
data-sparse representation method which relies on the H2-matrices
structure [We refer readers to Ambikasaran et al. (2013) and Fong
& Darve (2009) for details ofH2-matrix approach]. By observation,
we first rewrite the cross-covariance A using matrix decomposition
as

A = Q HT = [
Qh(1) Qh(2) · · · Qh(n)

]
, (23)

where h(k), k ∈ {1, 2, · · · , n} is the column vector of matrix HT ,
and n is the number of observations. Since Q represents the interac-
tion between well-separated clusters of gridpoints, the matrix-vector
products can be written as

Q h(k)
i =

m∑
j=1

K
(
xi , x j

)
h(k)

j (24)

where i ∈ {1, 2, · · · , m}, m is the number of model parameters, and
K (xi , x j ) is the interaction between gridpoints xi and x j . Solving

eq. (24), we apply the fast multipole method (Fong & Darve 2009)
to compute and store the matrix-vector products at a reduced storage
and computational cost by using Chebyshev interpolation to obtain
the low-rank factorizations of K (xi , x j ). And the rank is determined
by the desired accuracy.

Therefore, HiEKF avoids the explicit usage of covariance matri-
ces P and Q by replacing them with cross-covariance C and A.
The maximum matrices storage size reduces from m × m to m × n
and the total computational cost decreases fromO(nm2) toO(mn2).
Since m � n is often true in large-scale geophysical problems, the
storage and computational cost of HiEKF are dramatically reduced
compared to original EKF.

C++ software packages related to the fast multipole method
used in this paper, including BBFMM2D (available at https:
//github.com/sivaramambikasaran/BBFMM2D) and PBBFMM3D
(available at https://github.com/ruoxi-wang/PBBFMM3D), can be
operated as a black box. To handle the calculation of matrices, the
Eigen package (available at http://eigen.tuxfamily.org/index.php?ti
tle=Main Page) is used in this paper.

2.4 TLFWI plus H2-matrices powered extended Kalman
filter

Due to the first-order Taylor expansion approach in EKF, HiEKF
is only suitable to weak nonlinearity problems. To extend the ap-
plicability of HiEKF to nonlinear problems, following our previous
study (Huang & Zhu 2019), we modify eq. (6) by adding a velocity
perturbation term as follows:

vk+1 = vk + δvk+1 + wk+1, (25)

where δvk+1 is the velocity change produced from TLFWI at time
lapse k + 1. By this modification, rather than the random walk
model in eq. (6), the high spatial resolution velocity change δvk+1

generated from TLFWI can help HiEKF to predict a good a priori
velocity model, which reduces the nonlinearity of the targeted prob-
lems and is likely to guarantees the weak nonlinearity requirement
of the HiEKF. To solve the new dynamic evolution problem defined
by eqs (25) and (7), we only need to revise the eq. (17) in the HiEKF
formulation (eqs 13 and 14, and 17–22) as

v̂−
k+1 = v̂k + δvk+1. (26)

Together with eqs (13), (14) and (18)–(22), we name them as the
TLFWI–HiEKF algorithm.

Fig. 1 shows the workflow of the TLFWI–HiEKF method, which
includes three main parts: TLFWI, prediction step and update
step. In the first step, TLFWI is conducted to calculate the ve-
locity changes δvk+1 at time lapse k + 1. Then, the calculated ve-
locity changes δvk+1 are used to predict a priori velocity model
v̂−

k+1 (eq. 26) in the prediction step. The update step of TLFWI–
HiEKF also includes two parts: one part is treated as an addi-
tional inversion (eq. 20) which uses the a priori velocity model
v̂−

k+1 (eq. 26) and the Kalman gain (eq. 19) to weight the ve-
locity model on the basis of seismic data residuals. The other
is the quantification of the variance (uncertainty) of the inverted
results (eqs 21 and 22). Given that TLFWI instead of the ran-
dom walk model can invert the velocity changes δvk+1 at time
lapse k + 1, leading to a better prediction of velocity v̂−

k+1, the
TLFWI–HiEKF not only reduces the nonlinearity in the subsequent
update step but also speed up the convergence of the inversion.
Therefore, the proposed TLFWI–HiEKF method integrates the ad-
vantages of TLFWI and HiEKF together, which not only provide
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Figure 1. Workflow for the TLFWI–HiEKF method.

high-resolution subsurface velocity models at each time lapse, but
also quantifies the variance (uncertainty) of the inverted velocity
results.

3 S Y N T H E T I C E X A M P L E S

This section will present synthetic tests of the scheme of TLFWI–
HiEKF in two different time-lapse seismic monitoring data sets
collected in two CO2 sequestration sites: Frio-II and Cranfield. In
Frio-II, dense 2-D crosswell time-lapse seismic surveys were carried
out, while relatively sparse 3-D surface time-lapse seismic surveys
were conducted in Cranfield.

3.1 2-D Frio-II model

3.1.1 Site background

The Frio-II CO2 pilot was a small-scale injection of supercriti-
cal CO2 into a high permeable reservoir at the depth of 1650 m
to test geological storage in saline aquifers (Daley et al. 2007).
The baseline P-wave velocity model (i.e. a velocity map before
CO2 injection) of the Frio-II site is derived from 2-D extrapo-
lation of logs acquired in the Frio injection well with a local
dip determined from gamma ties (Fig. 2a). The velocity values
range from 2650 to 2765 m s−1 with a background velocity of
2700 m s−1 outside the Blue Sand. Fig. 2(b) shows the simulated
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Figure 2. (a) Baseline velocity model for Frio-II tests; and (b) time-lapse velocity changes after 120 hr CO2 injection (red stars indicate sources and black dots
stand for receivers).

Figure 3. (a) True time-lapse velocity models, (b) inverted results and (c) the corresponding SD (in m s−1) distribution at the injection time of 3, 48 and 93
hr, respectively.

CO2-induced velocity reduction after five-days of injection in Frio-
II site. The seismic velocity changes due to CO2 plumes are pre-
dicted by rock physics modelling of velocity and saturation from
a 3-D multiphase flow model (Daley et al. 2011). We have to-
tally 41 time-lapse seismic models with 3-hr intervals. Fig. 3(a)
shows three time-lapse P-wave velocity (vp) models at 3, 48 and
93 hr.

3.1.2 Time-lapse seismic data acquisition and inversion
parameter selection

To mimic the field survey in our test, we simulate synthetic time-
lapse seismic crosswell data every 3 hr. We use 32 time-lapse models

for forward simulations. In each time-lapse experiment, 32 active
sources are deployed at the injection well and 140 receivers are
deployed in the observation well (Fig. 2b). The observed seismic
data is simulated by a finite-difference scheme with eighth-order
accuracy in space and second order in time. Gaussian white noise
is added in the observed seismic data, and the signal-to-noise ratio
is defined as

SNR = 10log10

∥∥d2
2

∥∥∥∥σ 2
2

∥∥ , (27)

where d is the observed data, and σ 2 is the noise variance. The
signal-to-noise ratio of observed data is 25 after adding noise. The
source function is a Ricker wavelet with the dominant frequency

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/2/811/5870665 by Pennsylvania State U

niversity user on 04 Septem
ber 2020



Data assimilated time-lapse full waveform inversion 817

Figure 4. The velocity model error distribution at the injection time of 3, 48 and 93 hr, respectively.

Figure 5. Estimated model error relative to the true solution verse time
lapses.

of 250 Hz. The grid size is 0.45 m × 0.45 m and the model size is
about 69.3 m × 64.35 m.

During the test, we use the baseline velocity model as the initial
model for the proposed TLFWI–HiEKF method at the first time
lapse. The frequency selection for TLFWI is from 13.5 to 313.5 Hz
with an interval of 12.5 Hz. These frequencies are divided into
three groups: the first group is ranging from 13.5 to 151 Hz, the
second is [151 Hz, 238.5 Hz] and the third is [238.5 Hz, 313.5 Hz].
The initial value of δ2 is set as 90 000 (m · s−1)2 assuming we have
no prior information about the model. The noise matrix R in the
seismic data is set diagonal with a constant value equal to the noise
variance. The model error covariance matrix of Q is constructed
from an exponential function (Li et al. 2014)

Q (r ) = exp

(
−

√
r

L

)
, (28)

where r is the distance between two points, and L is the correlation
length.

3.1.3 TLFWI–HiEKF inversion results

After processing simulated time-lapse seismic data in 32 time
frames using TLFWI–HiEKF, we reconstruct the corresponding
maps of velocity changes induced by CO2 injection. Fig. 3(b) shows
the inverted results at three time lapses (3, 48 and 93 hr). Compar-
ing the inverted results to true velocity models, the primary velocity
changes (blue zones in Figs 3a and b) induced by CO2 injection
are captured with a comparable resolution. The perturbation results
indicate the spatiotemporal changes of the injected CO2 gas. We
note some oscillations (pointed by arrow in Fig. 3b) in the inverted
results. The oscillations are likely caused by the limited frequency

band we used for inversion. It is possible that we can broaden the
inversion frequency band to improve the quality of inverted results,
but large number of frequencies would cause extra computational
cost.

Fig. 3(c) shows the estimated standard deviation (SD) δ (the
square root of diagonal of the posterior covariance matrix) distri-
butions in which the SD value represents the degree of uncertainty,
that is small SD indicates low uncertainty, vice versa. We found
that the uncertainty distribution is somehow consistent to the illu-
mination distribution of the crosswell geometry of seismic surveys.
Overall, the estimated velocity between the two wells have less
uncertainty compared to the remainder of the model. We also ob-
served that the SD is decreasing over lapsed time. It indicates that
with more time-lapse seismic data, the accuracy of the recovered
model is increasing, which proves that our method can impose tem-
poral constraints on velocity changes and update the model well
over time. For comparison, the model error distributions are also
plotted in Fig. 4. The error maps show the absolute value differ-
ences between true and inverted models while the uncertainty (SD)
maps show how much we can trust on our inverted results. We
can see that the values of model error and the SD are at the same
level.

To measure the accuracy of the inverted result, we calculate rel-
ative model error et by

et = ‖vest − vtrue‖2

‖vtrue‖2

. (29)

The vest and vtrue are the inverted and true velocity models at
time lapse t . Fig. 5 plots the relative estimation error as a function
of time. As shown, the predictions become increasingly accurate
over time as more data have been assimilated, which is consistent
with the decreasing trend of the SD values in Fig. 3(c).

To measure the accuracy of the results in terms of data matching,
we compare seismic shot gather using inverted and true velocity
models in Fig. 6. We first generate two synthetic seismograms using
the final velocity model (blue wiggles in Fig. 6b) and its corre-
sponding initial model (black wiggles in Fig. 6a) at the time lapse
of 3 hr, then compare two synthetic seismograms with observed
seismic waveforms (red wiggles in Fig. 6), respectively. We can see
that the synthetic data with the final velocity model matches the
observed data much better than when using the initial model. We
repeat comparisons at other two other time lapses (48 and 93 hr) in
Figs 6(c)–(f). By comparing the data matching over time (from left
to right in Fig. 6), it seems that the residual between the synthetic
and observed data is decreasing over time lapses, which confirms
that the TLFWI–HiEKF method is able to increase the accuracy
of results over time by assimilating more observed time-lapse data
with effective temporal constraints.
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818 C. Huang and T. Zhu

Figure 6. Waveform comparisons before inversion (a), (c) and (e) at the injection time of 3, 48 and 93 hr. Waveform comparisons after inversion (b), (d) and
(f) at the injection time of 3, 48 and 93 hr (red stands for the observed data, black stands for the predicted data before inversion and blue stands for the predicted
data after inversion at different time lapses).

Figure 7. (a) 3-D seismic migration data and two P-wave velocity logs for Cranfield; and (b) 3-D baseline velocity model with arrays of seismic sources and
receivers (black dots represent receivers and red stars stand for sources).

3.2 3-D Cranfield model

In this section, we demonstrate the applicability of the proposed
TLFWI–HiEKF method in the 3-D Cranfield CO2 injection time-
lapse models.

3.2.1 Site background

The Cranfield site is located at Denbury Resources Cranfield Field
in southwest Mississippi. It was discovered in 1946 and abandoned
in 1965 at the end of primary oil and gas production. The reser-
voir was redeveloped by Denbury Onshore LLC and brought on
as a CO2-EOR field in 2008 using CO2 transported via pipeline

from a natural accumulation near Jackson, MS, USA. The main
CO2 injection test was conducted in the water leg of the structure
beyond producible hydrocarbon accumulations (Ajo-Franklin et al.
2013). The baseline seismic P-wave velocity model is built from the
3-D baseline seismic migration section and two well logs (Fig. 7a)
based on seismic structural and stratigraphic features (Wu 2017). To
meet the memory limits in our high-performance computing clus-
ter, we modify the size of the original velocity model (2.75 km ×
3.0 km × 1.5 km) as shown in Fig. 7(b). Six time-lapse velocity
models are manually constructed (Wu 2017) and shown in Fig. 9,
where the layered structures are in the colour scale and black blocks
drawn by isosurface indicate the velocity changes induced by CO2

plumes.
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Data assimilated time-lapse full waveform inversion 819

Figure 8. A time-lapse shot gather profile from a selected receiver line (the 10th receiver line in Fig. 6b). (a) Baseline data. (b)–(f) Data residual by subtracting
baseline data (a) from five time-lapse data. (b) First time lapse; (c) second time lapse; (d) third time lapse; (e) fourth time lapse and (f) fifth time lapse. Seismic
reflections are caused by injected CO2.

Figure 9. True velocity models at different time lapses with an isosurface plot of time-lapse velocity changes (black blocks) induced by CO2 plumes. (a)
Baseline model; (b) first time lapse; (c) second time lapse; (d) third time lapse; (e) fourth time lapse and (f) fifth time lapse.

3.2.2 3-D time-lapse seismic data acquisition and inversion
parameter selection

Similar to field surveys, we adopt a surface seismic acquisition
survey to collect 3-D time-lapse data. We deploy 24 receiver lines
along the Y-direction with an interval of 125 m and 22 receivers are
evenly distributed in each receiver line from 0 to 2.75 km along the
X-direction (black dots in Fig. 7b). At each time lapse, we design
12 shot lines along the Y-direction with an interval of 250 m with
11 shots evenly distributed along each shot line from 0 to 2.75 km
in X-direction on the surface. In total, 132 sources are fired in each
time frame (red stars in Fig. 7b). A 3-D finite-difference scheme
with eighth-order accuracy in space and second-order in time is
used to generate the observed seismic data using the true velocity
models in each time lapse. Again, we contaminate the synthetic
observed seismic data with Gaussian noise (SNR = 25). The source

function is a Ricker wavelet with the dominant frequency of 15 Hz.
The grid size is 25 m × 25 m × 25 m. Baseline shot gather data
and time-lapse data at different time lapses are shown in Fig. 8 and
time-lapse waveform differences are caused by the CO2 injection
(Figs 8b–f). TLFWI–HiEKF has been applied from 1 to 25 Hz
with an interval of 1 Hz. Totally two frequency groups are used
for TLFWI in this test: one is from 1 to 12 Hz and the other is
from 12 to 25 Hz. The initial settings of δ2, the noise matrix R
and the cross-covariance A are identical to those in the Frio-II
test.

3.2.3 TLFWI–HiEKF inversion results

Comparing the ground truth models in Fig. 9, with the results shown
in Fig. 10, where black blocks represent inverted time-lapse velocity
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Figure 10. Inverted velocity models at different time lapses with an isosurface plot of time-lapse velocity changes (black blocks) induced by CO2 plumes. (a)
Baseline model; (b) first time lapse; (c) second time lapse; (d) third time lapse; (e) fourth time lapse and (f) fifth time lapse.

changes at different time lapses, time-lapse velocity changes (the
CO2 plume in the subsurface) are well captured by 3-D TLFWI–
HiEKF. Fig. 11 compares the true velocity models (left-hand col-
umn) with the inverted results (middle column) from the first time
lapse to the fifth time lapse. Similar observations are that the in-
verted results successfully capture the velocity changes induced by
the CO2 plume. In addition, the corresponding SD map (the square
root of diagonal of the posterior covariance matrix) at each time
lapse is shown in Fig. 11 (right-hand column). It is clear that the SD
maps (time lapse 1–5) are all dominated by surface seismic wave
illumination, and the uncertainty increases toward the depth where
poor illumination is expected. From the model error distributions in
Fig. 12, we can see the trend of decreasing values over time. To com-
pare the SD over time, we sum the SD matrix and plot these values
in Fig. 13. We found that the SD values decrease over time lapse,
similar to 2-D Frio tests, which indicate that TLFWI–HiEKF is able
to continuously update the results with more incoming time-lapse
seismic data .

Fig. 14 presents the comparison between the true and inverted
CO2-induced velocity perturbations at the fifth time lapse. The
3-D velocity changes induced by CO2 injection are well captured,
showing the successful applicability of the TLFWI–HiEKF method
in a 3-D time-lapse seismic experiment.

3.3 Memory usage and computational cost comparison in
2-D and 3-D examples

In this section, we compare the memory usage and computational
cost of the TLFWI–HiEKF method and other KF methods includ-
ing, original EKF- and EnKF-based TLFWI methods. Since the
procedure of TLFWI is nearly the same in all of those methods, we

first compare the memory usage of EKF, EnKF and HiEKF in the
aforementioned 2-D and 3-D examples. For EnKF, the accuracy of
results is proportional to the ensemble size N, and N should be larger
than the size of observations n to reduce the sampling bias in covari-
ance matrices (Kepert 2004; Li et al. 2014; Thurin et al. 2019). To
compare the memory cost of three types of KF methods (EKF, EnKF
and HiEKF) with maintaining the same accuracy, we take large N as
an example for computing the memory cost of EnKF, for example
600 in the Frio 2-D example and 6000 the Cranfield 3-D model.
Table 1 lists the approximately memory requirements. In 2-D case,
the number of model parameters m is 155 × 144 and the number of
observations n is 140; in 3-D case, the m is 111 × 121 × 61 and
n is 132. We can see that the HiEKF method requires the minimum
memory storage. For 3-D, the original EKF requires as much as
5 TB storage cost which is unaffordable in most high-performance
computing architectures. HiEKF only requires approximately
3.5 GB storage cost which is over 1000 times less than original
EKF and over 10 times less than EnKF. The total computational
cost for original EKF is O(m2) because it explicitly stores and cal-
culates the covariance matrix of size m × m. Since HiEKF operates
on the cross-covariance matrix of size m × n where n � m, the
overall computational cost is O(m). The storage and computational
costs of EnKF also scale linearly with the number of parameters m.
However, for each ensemble in EnKF, FWI should be implemented
independently (Thurin et al. 2019), which means N ensemble size
requires N times of FWI while HiEKF only needs one at each time
lapse. That is why EnKF is computationally more expensive than
HiEKF even if the ensemble size is equal to the number of receivers.
In summary, due to its high accuracy and low memory usage and
computational cost, HiEKF is superior to other KF methods for 3-D
time-lapse seismic problems.
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Data assimilated time-lapse full waveform inversion 821

Figure 11. Slices of true velocity models (left-hand column), inverted results (middle column) and corresponding SD (right-hand column) at (a) first, (b)
second, (c) third, (d) fourth and (e) fifth time lapses.
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Figure 12. The velocity model error distribution at (a) first, (b) second, (c) third, (d) fourth and (e) fifth time lapses.

Figure 13. Summed values of the SD matrix over five time lapses (red dots
stand for the values of SD at each time lapse).

4 D I S C U S S I O N A N D C O N C LU S I O N

We have presented the TLFWI-HiEKF method to process dense
time-lapse seismic data. We showed that the velocity estimate at
current time lapse by TLFWI rather than the random walk model
can serve as a better guess of the a priori velocity model in the
update step. This step reduces the nonlinearity in the subsequent
update step but also speed up the convergence of the inversion.
Moreover, HiEKF allows to store and update a data-sparse repre-
sentation of the cross-covariance matrices using H2-matrices al-
gebra and propagate model errors without expensive operations
involving covariance matrices. As a result, the proposed TLFWI–
HiEKF algorithm can handle large-scale 3-D problems with af-
fordable memory and computational requirements. The proposed

HiEKF can be easily modified to 3-D FWI by applying multi-
scale FWI from low to high frequency and treating seismic data
as a dynamic evolution over the frequency axis (Thurin et al.
2019).

Taking advantage of both TLFWI and HiEKF, the proposed
TLFWI–HiEKF method can impose both spatial and temporal con-
straints for inverting spatiotemporal subsurface time-lapse velocity
changes while simultaneously allowing to quantify the uncertainty
of the inverted velocity changes over time. The SD maps provide us
a straightforward way of evaluating the results. It is worth to note
that the proposed method can continuously update the subsurface
velocity model and the accuracy of the model is increasing over time
by assimilating more input time-lapse data. This is advantageous
over other time-lapse strategies.

In the HiEKF algorithm, we have to calculate and store the Fréchet
kernel matrix during inversion which is the most memory con-
suming part in the TLFWI–HiEKF implementation. The Fréchet
kernel matrix H in our algorithm is calculated by the scattering-
integral approach method (Liu et al. 2015). Based on the fact that
the number of observations is often much smaller (at least one
or two orders) than that of model parameters, storing the Fréchet
kernel matrix is possibly affordable in most 3-D seismic cases.
Rather than calculating the Fréchet kernel matrix itself, however,
the adjoint state method is to calculate the product of Fréchet
derivative with a vector (data residuals), which is the gradient
in FWI.

We have demonstrated that the TLFWI–HiEKF is feasible and
efficient in two different seismic time-lapse surveys: 3-D surface
seismic sparse surveys in Cranfield and 2-D crosswell dense seis-
mic surveys in Frio-II. In terms of the CASSM that has extremely
high temporal sampling rates and can reveal the corresponding
rate of changes in the monitored physical parameters (Daley et al.
2007), our perspective is to equip the proposed full waveform pro-
cessing (TLFWI–HiEKF) with the CASSM system for long-term
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Figure 14. Comparison between true and the inverted perturbations at the fifth time lapse.

Table 1. Comparisons of memory usage and computational complexity of three KF methods in 2-D and 3-D examples (m equals to the grid numbers).

Storage cost (GB)

Grid numbers EKF EnKF HiEKF

2-D Frio test 155 × 144 3.99 0.11 (600 samples) 0.02
3-D Cranfield test 111 × 121 × 61 5369.9 39.32 (6000 samples) 3.46
Computational complexity O(m2) O(m) O(m)

and large-scale CO2 monitoring. Although the early demonstra-
tion of CASSM is restricted to the crosswell acquisition due to
limited seismic source power (Daley et al. 2007), newly devel-
oped seismic sources and sensors including the Accurately Con-
trolled Routinely Operated Signal System (Ikeda et al. 2017),
distributed acoustic sensing sensors (Daley et al. 2013) and dis-
tributed sensor networks (Song et al. 2019) offer a path for surface
CASSM surveys. Moreover, with the capability of seismically in-
verting elasticity and attenuation (Xing & Zhu 2019), multiparam-
eters TLFWI including elasticity and attenuation will be incorpo-
rated in the future development. We anticipate that the proposed
method will become a companion processing tool for processing
CASSM data in future large-scale subsurface monitoring applica-
tions (e.g. CO2 sequestration, geothermal monitoring and reservoir
monitoring).
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