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Abstract: Due to their reduced metabolism, persister cells can survive most antimicrobial treatments,
which usually rely on corrupting active biochemical pathways. Therefore, molecules that kill bacterial
persisters should function in a metabolism-independent manner. Some anti-persister compounds
have been found previously, such as the DNA-crosslinkers mitomycin C and cisplatin, but more
effective and lower cost alternatives are needed. Copper alloys have been used since ancient times
due to their antimicrobial properties, and they are still used in agriculture to control plant bacterial
diseases. By stopping transcription with rifampicin and by treating with ampicillin to remove
non-persister cells, we created a population that consists solely of Escherichia coli persister cells.
Using this population of persister cells, we demonstrate that cupric compounds kill E. coli persister
cells. Hence, copper ions may be used in controlling the spread of important bacterial strains that
withstand treatment with conventional antimicrobials by forming persister cells.
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1. Introduction

Persister cells are a subpopulation of phenotypic variants that are tolerant to antimicrobial
compounds. This phenotype was discovered in the early 1940s [1] and occurs primarily as a stress
response [2–4]. Since they are metabolically inactive [5,6], antibiotics often do not eradicate these
cells. The recurrence of microbial diseases has been attributed to persisters, so they constitute a
reservoir of cells [7]. Notably, we found that for pathogenic and non-pathogenic E. coli, the viable but
non-culturable state and persistence are equivalent [5].

Despite being refractory to many antimicrobial molecules, persister cells can be killed [8,9] by
compounds such as cisplatin [10] and mitomycin C [11] that are FDA-approved for cancer treatments,
and they can kill persister cells by crosslinking their genomic DNA while they “sleep”. These findings
highlight new uses for well-known drugs. In addition, by screening compounds for activity directly on
persister cells, the indigoid 5-nitro-3-phenyl-1H-indol-2-yl-methylamine hydrochloride was discovered
that kills E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus persister cells [12]. Additionally,
retinoids have been found to kill S. aureus persisters [13], and other molecules have been identified [9],
although they are not approved yet for persister treatment.

Copper compounds have been used for their antimicrobial properties since ancient times [14],
and many different microorganisms are rapidly killed by copper ions [15,16]. Recently, copper alloys
have been approved for use by the U.S. Environmental Protection Agency (Reg 82012-1 [17]), due to
their effective antimicrobial properties, on important bacteria such as methicillin-resistant S. aureus
(MRSA) [18,19], Salmonella enterica [20], and E. coli O157 [21], as well as on bacteriophages [22,23] and
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Norovirus [24]. Copper is used not only for medical applications but is also used for surfaces [16], since
it can prevent the spread of pathogens more effectively than stainless steel alone [18] or silver [19].

The antimicrobial mechanisms of copper ions include membrane damage, oxidative stress,
and protein/DNA denaturation [25–27]. Critically, these are mainly metabolism-independent
mechanisms; hence, we hypothesized that copper can kill persister cells. Although copper has
already been linked to the induction of persister cells [28–30], here, we demonstrate that copper can
also effectively kill E. coli persister cells.

2. Methods

2.1. Bacterial Strains, Growth Media and Chemicals

E. coli BW25113 was used throughout [31] and was grown at 37 ◦C, with agitation (250 rpm),
in lysogeny both [32]. Cisplatin (cis-diamminodichloroplatinum (II)) stocks (1 mg/mL) were diluted in
0.1 M sodium perchlorate [33], since DMSO inactivates cisplatin [34]. Cupric sulfate stocks (0.5 M)
were prepared in water. Both solutions were filter-sterilized.

To determine copper minimum inhibitory concentration (MIC), 10 µL of culture (turbidity at
600 nm of ~1.0) was inoculated into lysogeny broth (LB) medium supplemented with a range of copper
concentrations: 0, 120, 240, 480, 960, and 1920 µg/mL. Test tubes (final volume 2 mL) were incubated
overnight (approximately 16 h with agitation at 250 rpm), and the MIC was determined as the lowest
concentration that prevented bacterial growth by visual inspection. All experiments were conducted
with at least two biological replicates.

2.2. Persister Cells

Using our previous method [4,5], the persister cell fraction in an E. coli culture was increased
10,000-fold, using a rifampicin pre-treatment to induce cells to enter the persister state. To form these
persisters, exponentially growing cells at a turbidity of 0.8 at 600 nm were treated with rifampicin for
30 min at 100µg/mL, harvested by centrifuging at 1600× g, and resuspended in ampicillin-supplemented
LB (100 µg/mL) to kill non-persister cells for 3 h. Then, the cells were centrifuged and resuspended in
LB or NaCl buffer.

2.3. ASKA Library Screening for Copper-Resistant Mutants

E. coli electro-competent cells (50 µL) were electroporated with 1 µL of pooled plasmids from a
complete set of E. coli K-12 ORF archive (ASKA) (200 ohms, 25 µF, 1.5 kV) using a 0.1 cm electroporation
cuvette. LB medium (900 µL) was added and after 1 h of growth (250 rpm), 990 µL of bacterial
suspension was inoculated into 25 mL of LB (no antibiotics added), and cells were grown to a turbidity
of approximately 0.5 at 600 nm (250 rpm). Chloramphenicol was added (30 µg/mL), and the cells
grown for 1 h. After that, 25 µL of this culture were re-inoculated in LB medium supplemented with
cupric sulfate (1 ×MIC, 960 µg/mL), with or without IPTG (0.5 mM), and grown overnight (250 rpm).

2.4. KEIO Library Screening for Copper-Resistant Mutants

We used two different approaches to identify copper-resistant strains: LB supplemented with
cupric sulfate (1 ×MIC, 960 µg/mL) and cupric sulfate in NaCl 0.85% buffer. For both methods, 250 µL
of the pooled KEIO mutant library was inoculated into 25 mL of LB and grown to a turbidity of
approximately 0.8 (250 rpm) to let the cells revive. Cells (25 µL) were added to LB supplemented with
cupric sulfate (960 µg/mL, 1 ×MIC in LB), and kept overnight (250 rpm) or 5 mL of the revived cells
were centrifuged and washed once in 0.85% NaCl buffer and cupric sulfate at approximately 1/6 ×MIC
(160 µg/mL, from 1 ×MIC in LB of 960 µg/mL). This bacterial suspension was incubated for 2 h without
shaking at 30 ◦C.
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2.5. Copper Killing Assays

For cells in LB, E. coli exponential and persister cultures (5 mL) were centrifuged, resuspended
in 5 mL containing 1 ×MIC of cupric sulfate (960 µg/mL), and shaken in 125 mL Erlenmeyer flasks;
then, the aliquots were used for serial dilutions. Colony-forming units (CFU) were determined after
3 h and 18 h. For cells in NaCl buffer, the cultures were centrifuged, washed 2 × in NaCl 0.85%,
and resuspended in this same buffer. To each 2 mL of this bacterial suspension, cupric sulfate was
added (32 µg/mL and 160 µg/mL: final concentrations), and cells were incubated without shaking at
30 ◦C for 1 h.

2.6. Effect of Oxygen on Copper Activity

Cells were grown to a turbidity of approximately 0.8 and resuspended in 0.85% NaCl with cupric
sulfate (160 µg/mL). Cultures were incubated without shaking at 30 ◦C for 1 h in opened vials (aerobic)
and in an anaerobic chamber (Coy Laboratories). Aliquots were serially diluted and plated on LB–agar
plates, which were incubated under aerobic and anaerobic conditions.

2.7. Membrane Integrity Assessment by Live/Dead Microscopy

To determine whether copper ions damage the persister cell membrane, we performed a Live/Dead
assay. Persister cells (5 mL) were resuspended in 0.85% NaCl supplemented with cupric sulfate
(160 µg/mL final). The bacterial suspensions were incubated for 30 and 60 min at 30 ◦C incubator,
without shaking, and washed twice in PBS buffer before the addition of propidium iodide (PI)
(Invitrogen P3566) and SYTO 9 (Invitrogen, L7012), reaching final concentrations of 60 µM and 20 µM,
respectively. After a 15 min-incubation (room temperature, light-protected), cells were observed under
a Zeiss fluorescence microscope (approximate excitation/emission for PI is 490/635 nm, and for SYTO9,
it is 485/500 nm). Pictures taken with different filters were merged using ZEN software. As a control,
heat-treated E. coli cells were used to confirm the PI staining of dead cells.

2.8. Membrane Integrity Assessment by Lysis Assays

To determine if copper ions cause cell lysis, cells were grown to a turbidity of 0.8, washed twice
using NaCl 0.85% (3500× g for 10 min), and the pellet was resuspended in PBS buffer. For the 100%
lysed positive control, a 1 mL aliquot was sonicated (20 s, 3 W, 3 cycles, Sonic Dismembrator 60),
centrifuged, and the supernatant used as a positive control (which we call “sonicated”). For the
copper-treated cultures (5 mL), cupric sulfate was added (160 µg/mL) and vials were incubated for
1 h at 30 ◦C; then, they were centrifuged (6500× g, 4 ◦C, 15 min) and the supernatants were collected.
Protein detection was determined using BCA protein assay kit (Pierce, Prod#23227), following the
manufacturer’s instructions.

2.9. Copper Versus Cisplatin for Killing Persisters

Persister cells were resuspended in LB supplemented with cupric sulfate (1920 µg/mL, 2 ×MIC),
cisplatin (200 µg/mL, 2 × MIC), or the solvent control for cisplatin, sodium perchlorate (0.1 M),
and incubated at 250 rpm. Aliquots for CFU assessment were obtained by serial dilution and colony
counting at 0 min, 15 min, 30 min, and 60 min.

2.10. Statistical Analysis

All experiments were carried out with at least two biological replicates. Median values were
obtained for each time-point assessed, and the standard deviation was calculated. For statistical
significance analysis, we used a t-test (bicaudal, type 1) versus the control conditions and considered a
minimum of 0.05 (*) for the p-values.
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3. Results

3.1. Copper-Related Proteins in E. coli K-12

Gram-negative strains utilize the cue system (Cu efflux) [35] and the cus system (Cu sensing) [36]
for copper detoxification. These systems are chromosomally encoded and are complimentary in
function. CopA (cue system) is involved in cytoplasm detoxification, while the cus system is involved
in periplasm detoxification [35,37]. Under anaerobiosis, CueO (periplasmic copper detoxification)
has its activity impaired, but cus system proteins remain functional, removing copper ions from
the periplasm [35,37] (Table 1). Under strong selective pressure (i.e., in copper-rich environments),
bacteria may also harbor additional plasmid-borne genetic elements that improve copper tolerance
(usually pco genes) and enhance the ability of the bacterium to efflux copper ions [35]. Our reference
strain, E. coli BW25113, contains the expected main systems for copper regulation (cus and cue) and
is devoid of the plasmid-encoded pco system (Table 1). Therefore, it is a suitable model for copper
persistence for E. coli and other Gram-negative bacteria.

Table 1. Gram-negative copper homeostasis/resistance systems (Bondarczuk and Piotrowska-Seget, 2013)
identified in E. coli BW25113.

System Gene Comments

cue system
“Cu efflux”

cueR copper-responsive metalloregulatory protein

cueO multi-copper oxidase (periplasmic copper detoxification)

copA soft metal ion-translocating ATPases (extrudes the excess
copper from the cytoplasm into the periplasm)

cus system
“Cu sensing”

cusC

efflux system spanning the entire cell envelope plus
periplasmic copper detoxification

cusB

cusF

cusA

cusR

pco system
“plasmid-borne copper resistance” pcoABCDRSE pco system requires CopA activity to confer resistance

3.2. Cooper Kills Both Exponential and Persister E. coli Cells

The MIC of copper for E. coli exponential cells was determined to be 960 µg/mL in lysogeny broth
(LB) after overnight incubation. Persister cells were formed so that they were the dominant population
following the previously published methodology [4,5] that increases persister cells by 10,000-fold;
this method uses a rifampicin pre-treatment for 30 min to suppress protein synthesis, and a subsequent
ampicillin treatment for 3 h to kill non-persister cells. Our method of generating persister cells has
been validated eight ways [38] and utilized by 11 independent labs to date [4,39–48].

Using the MIC for exponentially growing cells, we investigated the ability of copper ions to kill
both exponential and persister cells in rich medium (LB) with 1 × MIC cupric sulfate (960 µg/mL).
After 18 h of incubation, the number of viable exponentially grown cells was reduced 1000-fold more
than the persister cells (Figure 1A); hence, the exponentially grown cells were more susceptible to
copper killing. However, the number of viable cells in both populations continually decreased without
a plateau, indicating that copper continues to kill both kinds of cells, although it kills the persister cells
less rapidly.



Antibiotics 2020, 9, 506 5 of 13

 

cell cultures were washed with 0.85% NaCl buffer before being challenged with cupric sulfate in 
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the number of viable exponential cells, in comparison to cells without cupric sulfate, whereas there 
was no effect on the persister cells (Figure 1B). At higher concentrations (160 µg/mL cupric sulfate), 
both exponential and persister cells were eradicated (Figure 1B). These results not only corroborate 
that exponential cells are killed faster than persisters (as shown previously in LB, Figure 1A), but 
they also show that persisters can be completely eliminated by cupric sulfate. 

  

Figure 1. Exponential and persister cell viability with copper in rich medium and in buffer. (A) 
Both exponential and persister cells were incubated for 18 h with copper (960 µg/mL cupric sulfate, 
1 x minimum inhibitory concentration (MIC)) in lysogeny broth (LB). Error bars indicate standard 
deviation. (B) Survival under copper stress in 0.85% NaCl buffer after 1 h. Since we could not 
recover viable cells after incubating with 1 × MIC (160 µg/mL), a 1/5 concentration was used in buffer 
(32 µg/mL). Relative survival obtained after copper was added to the bacterial suspension in NaCl 
buffer. The symbols *** (p < 0.001) and ** (p < 0.05) indicate significant differences. NS indicates that 
non-significant difference was found. 

3.3. Copper Ions Damage the E. coli Persister Cell Membrane 

Since different mechanisms for copper killing have been suggested [27], including cell lysis 
[51], we investigated whether cell lysis was occurring with E. coli by assessing its membrane status 
after cupric sulfate treatment via Live/Dead staining. Live/Dead staining uses the membrane-
impermeant DNA intercalator propidium iodide and the membrane-permeant DNA intercalator 
SYTO9 to determine the extent of cell envelope disruption; i.e., cells with membrane damage are 
stained red, and all cells are stained green by SYTO9.  

The microscopy results show that after 160 µg/mL of cupric sulfate in NaCl buffer for 1 h, 58% 
± 8% of persister cells have damaged membranes (Figure 2A). The remaining green-stained cells 
for the copper-treated cultures are also dead, since no surviving cells were recovered with these 
conditions (Figure 1B). Therefore, membrane damage occurs to a significant extent due to the 
copper treatment of persister cells, and copper ions might also impair some internal biochemical 
pathways, leading to cell death. 

In addition, we hypothesized that if membrane damage was the leading cause of death by 
copper ions, we would be able to detect an increase in protein content outside of cells. Therefore, 
supernatants of the suspensions of persister cells after copper treatment (160 µg/mL of cupric 
sulfate in NaCl buffer for 1 h) were analyzed, and we found no additional extracellular protein 
after copper treatment (Figure 2B); hence, we did not find evidence of cell lysis, only evidence of 
membrane damage. 

Figure 1. Exponential and persister cell viability with copper in rich medium and in buffer. (A) Both
exponential and persister cells were incubated for 18 h with copper (960 µg/mL cupric sulfate,
1 × minimum inhibitory concentration (MIC)) in lysogeny broth (LB). Error bars indicate standard
deviation. (B) Survival under copper stress in 0.85% NaCl buffer after 1 h. Since we could not
recover viable cells after incubating with 1 ×MIC (160 µg/mL), a 1/5 concentration was used in buffer
(32 µg/mL). Relative survival obtained after copper was added to the bacterial suspension in NaCl
buffer. The symbols *** (p < 0.001) and ** (p < 0.05) indicate significant differences. NS indicates that
non-significant difference was found.

Rich medium is not representative of the conditions bacteria face in natural environments,
which are predominantly oligotrophic [49]. In addition, copper ions could be complexed by proteins
and/or other molecules present in rich media, which could give us less accurate results [50]. In order
to evaluate the effect of copper without these artifacts, both persister and exponential cell cultures
were washed with 0.85% NaCl buffer before being challenged with cupric sulfate in NaCl buffer.
Our first attempts using the LB-obtained MIC of 960 µg/mL resulted in complete cell death, even
after short incubation periods of less than one hour (data not shown). Using a lower concentration
(32 µg/mL cupric sulfate) and 1 h of incubation, a significant reduction was found in the number of
viable exponential cells, in comparison to cells without cupric sulfate, whereas there was no effect on
the persister cells (Figure 1B). At higher concentrations (160 µg/mL cupric sulfate), both exponential
and persister cells were eradicated (Figure 1B). These results not only corroborate that exponential
cells are killed faster than persisters (as shown previously in LB, Figure 1A), but they also show that
persisters can be completely eliminated by cupric sulfate.

3.3. Copper Ions Damage the E. coli Persister Cell Membrane

Since different mechanisms for copper killing have been suggested [27], including cell lysis [51],
we investigated whether cell lysis was occurring with E. coli by assessing its membrane status after
cupric sulfate treatment via Live/Dead staining. Live/Dead staining uses the membrane-impermeant
DNA intercalator propidium iodide and the membrane-permeant DNA intercalator SYTO9 to determine
the extent of cell envelope disruption; i.e., cells with membrane damage are stained red, and all cells
are stained green by SYTO9.

The microscopy results show that after 160 µg/mL of cupric sulfate in NaCl buffer for 1 h, 58% ± 8%
of persister cells have damaged membranes (Figure 2A). The remaining green-stained cells for the
copper-treated cultures are also dead, since no surviving cells were recovered with these conditions
(Figure 1B). Therefore, membrane damage occurs to a significant extent due to the copper treatment
of persister cells, and copper ions might also impair some internal biochemical pathways, leading to
cell death.
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Figure 2. Membrane integrity and cell lysis of persister cells with copper. (A) Persister cells were 
suspended in 0.85% NaCl buffer supplemented with cupric sulfate (160 µg/mL) for 1 h, then treated 
with Live/Dead staining. Scale bar is 10 µM. (B) Persister cells were treated with copper (160 
µg/mL) or 1 × PBS buffer (“no copper”) and protein content was quantified and compared to the 
positive control of completely-lysed cells via sonication (“sonicated”) * (p < 0.05); ** (p < 0.01). 

3.4. Copper Ions Kill More Effectively Anaerobically. 

Since copper ions has been reported to kill E. coli cells more effectively under anaerobic 
conditions [51,52], we tested the effect of oxygen on cupric sulfate at 32 µg/mL in NaCl for 1 h for 
exponentially grown cells. As expected, we found a greater killing of exponential cells in the 
absence of oxygen (91% ± 2% versus 64% ± 6%, Figure 3). 

Figure 2. Membrane integrity and cell lysis of persister cells with copper. (A) Persister cells were
suspended in 0.85% NaCl buffer supplemented with cupric sulfate (160 µg/mL) for 1 h, then treated
with Live/Dead staining. Scale bar is 10 µM. (B) Persister cells were treated with copper (160 µg/mL) or
1 × PBS buffer (“no copper”) and protein content was quantified and compared to the positive control
of completely-lysed cells via sonication (“sonicated”) * (p < 0.05); ** (p < 0.01).

In addition, we hypothesized that if membrane damage was the leading cause of death by copper
ions, we would be able to detect an increase in protein content outside of cells. Therefore, supernatants
of the suspensions of persister cells after copper treatment (160 µg/mL of cupric sulfate in NaCl
buffer for 1 h) were analyzed, and we found no additional extracellular protein after copper treatment
(Figure 2B); hence, we did not find evidence of cell lysis, only evidence of membrane damage.

3.4. Copper Ions Kill More Effectively Anaerobically

Since copper ions has been reported to kill E. coli cells more effectively under anaerobic
conditions [51,52], we tested the effect of oxygen on cupric sulfate at 32 µg/mL in NaCl for 1 h
for exponentially grown cells. As expected, we found a greater killing of exponential cells in the
absence of oxygen (91% ± 2% versus 64% ± 6%, Figure 3).
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anaerobic and aerobic conditions and is listed as 100%. The symbol * (p < 0.05) indicates the 
significant difference compared to the control (“no copper”). 
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Realizing genetic resistance could limit the use of copper as an effective antimicrobial, we 
assessed the likelihood of copper resistance using pooled libraries [12] of the 3985 KEIO E. coli 
single-gene knockouts which contains all non-lethal mutations of E. coli K-12 [31] as well as pooled 
libraries [2] of the ASKA plasmid library [53] where all of the 4287 E. coli proteins are produced. 
We reasoned that either a deletion or production of a key protein would allow higher copper 
tolerance and that this approach could also give us additional clues about the mode of action of 
copper. 

For the pooled ASKA strains, after transformation, cells were grown overnight in LB 
supplemented with 1 × MIC of cupric sulfate (960 µg/mL), with and without 0.5 mM IPTG to induce 
gene expression. However, no strain capable of growing at 1× MIC was recovered. For the pooled 
Keio strains, since 160 µg/mL of cupric sulfate reduces a 108 cell/mL bacterial suspension to zero in 
1 h in NaCl buffer (Figure 1B), we exposed the pooled library for 2 h at this condition. Some colonies 
were recovered using this method, but further testing showed that despite being more tolerant to 
copper ions during the limited-time exposure (2 h), it did not render these cells able to grow at 1 × 
MIC (960 µg/mL) during an overnight incubation (Figure 4). Hence, no copper-resistant mutants 
were obtained. 
  

Figure 3. Exponentially growing cells with copper under aerobic and anaerobic conditions.
Bacterial suspensions in 0.85% NaCl buffer supplemented or not with 32 mg/mL cupric sulfate
for 60 min at 30 ◦C. A “no copper” control was used for each condition for comparison; i.e., for both
anaerobic and aerobic conditions and is listed as 100%. The symbol * (p < 0.05) indicates the significant
difference compared to the control (“no copper”).

3.5. Absence of Copper Resistance Mutants

Realizing genetic resistance could limit the use of copper as an effective antimicrobial, we assessed
the likelihood of copper resistance using pooled libraries [12] of the 3985 KEIO E. coli single-gene
knockouts which contains all non-lethal mutations of E. coli K-12 [31] as well as pooled libraries [2] of
the ASKA plasmid library [53] where all of the 4287 E. coli proteins are produced. We reasoned that
either a deletion or production of a key protein would allow higher copper tolerance and that this
approach could also give us additional clues about the mode of action of copper.

For the pooled ASKA strains, after transformation, cells were grown overnight in LB supplemented
with 1 ×MIC of cupric sulfate (960 µg/mL), with and without 0.5 mM IPTG to induce gene expression.
However, no strain capable of growing at 1 ×MIC was recovered. For the pooled Keio strains, since
160 µg/mL of cupric sulfate reduces a 108 cell/mL bacterial suspension to zero in 1 h in NaCl buffer
(Figure 1B), we exposed the pooled library for 2 h at this condition. Some colonies were recovered
using this method, but further testing showed that despite being more tolerant to copper ions during
the limited-time exposure (2 h), it did not render these cells able to grow at 1 ×MIC (960 µg/mL) during
an overnight incubation (Figure 4). Hence, no copper-resistant mutants were obtained.
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grow normally in LB agar plates after an overnight incubation without copper. (B) The same 
mutants shown in A, but now on a copper-supplemented LB agar plate (1 × MIC, 960 µg/mL). Note 
that despite being selected for being more tolerant to copper in a short-duration experiment (in 
NaCl buffer for 2 h), the cells are unable to survive at 1 × MIC when incubated. 
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perchlorate (solvent control for cisplatin) for 30 min in LB. Aliquots for CFU assessment were taken 
at 0, 15, 30, and 60 min. The symbol ** (p < 0.01) indicates the significant difference compared to the 
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Figure 5. Copper is more effective than cisplatin for killing persister cells. Persister cells were treated
with cisplatin (200 µg/mL, 2 × MIC), cupric sulfate (1920 µg/mL, 2 × MIC), or sodium perchlorate
(solvent control for cisplatin) for 30 min in LB. Aliquots for CFU assessment were taken at 0, 15, 30,
and 60 min. The symbol ** (p < 0.01) indicates the significant difference compared to the control
(NaO4Cl), using all the time-points values for each condition as a matrix to compare with all the time
points obtained for the control. “ns” indicates that a non-significant difference was found.
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4. Discussion

Although copper is an essential element for life [54–56], it is toxic [57,58], and many different
modes of action have been proposed for this molecule. Besides lipid and DNA oxidation [15], proteins
can suffer mismetallation [59], misfolding [60], and the destruction of Fe–S clusters [61] in the presence
of copper. Interestingly, the reason for the essentiality and destructive potential of copper is the same:
it is highly reactive [54,56]. After the Earth’s atmosphere became oxygenated, the conversion of Cu+1

to Cu+2 increased the availability of this metal availability for biocatalysis [15,62]. As a result, many
respiratory-related proteins need this metal to function properly [63], but its homeostasis needs to be
strictly controlled by the cell to avoid its lethality [15,64].

Despite a matter of debate, the formation of reactive oxygen species (ROS) was thought to be one
of the main reasons for copper ions’ toxicity [53,61]. Indeed, oxidative stress occurs [61], but it might
be the result of downstream effects, after the primary targets are attacked by copper ions [35,52,61].
This has been shown by recent studies that indicate that the primary reason for copper toxicity is the
destruction of an Fe–S cluster of proteins, which is an oxygen-independent process that is enhanced
under anaerobic conditions [52,62,65]. In our study, we also found that under anaerobic conditions,
copper ions were more lethal to exponentially grown E. coli cells (Figure 3), and our attempts to reduce
ROS from copper by using glutathione were not successful (data not shown).

Other modes of action for copper have also been proposed, including contact killing by cell
envelope-associated damage [27,66]. In our study, we found clear evidence of membrane damage
(Figure 2A) but not lysis, since no extra cellular protein (Figure 2B) was found. Regardless of its exact
killing mechanism, copper ions are potent antimicrobial molecules. In fact, macrophages utilize copper
ions to kill microbes [67,68] and copper deficiency in humans and animals is linked to an increase in
infection [69].

Unlike many antibiotics, copper resistance is unlikely to occur spontaneously [70], requiring
the acquisition of plasmid-based operons to enhance copper homeostasis [71]. This may explain
our unsuccessful attempts to recover copper-resistant mutants using both KEIO and ASKA libraries;
however, more testing is required using longer times for mutants to occur and strains that are more
medically relevant. Genomic analysis performed on E coli BW25113 showed that it has no pco operon,
although copper homeostasis genes were fully present. Additionally, many medically relevant E. coli
strains are susceptible to copper [21], and even in the presence of supplemental copper-resistance
genes, most bacteria die on cupric surfaces, although they may need more contact time for this to
happen [72–74].

5. Conclusions

Critically, one of the main results of this work is that due to the metabolism-independent
membrane damage caused by copper ions, we verified that it is capable of killing E. coli persister cells
(Figure 1). Although the medical use of copper requires steps to limit its toxicity, our results suggest
new therapeutic alternatives to control persister cells, as well as suggest a continued use of copper
surfaces to kill bacteria. For example, copper-coated surfaces in hospitals could decrease the occurrence
of healthcare-associated infections, which can reach rates as high as 6% of acute care inpatients [75].
In addition to surfaces, many other uses of copper ions could be envisioned [76], especially because
there are other important sources of contamination inoculum in hospitals, besides hand-touched
surfaces, such as white coats [76–78]. To our knowledge, this is the first study to show that cupric
compounds can effectively kill persister cells. Hence, in addition to the long-known antimicrobial
properties of copper materials, its use could be expanded to include dormant cells, helping in the
ever-increasing need to fight pathogens.
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