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It has become customary in engineering to require a modelling component
in research endeavours. In addition, as the code for these models becomes
more byzantine in complexity, it is difficult for reviewers and readers to
discern their value and understand the underlying code. This opinion
piece summarizes the negative experience of the author with the IPRO
and OptMAVEn computational protein engineering models as well as
problems with the optStoic metabolic pathway model. In our hands,
these models often fail to predict reliable ways to engineer proteins and
metabolic pathways.
1. Review
In the following, I describe our experience with three computational
programmes that were designed to improve proteins and metabolic pathways.

1.1. Optimal method for antibody variable region engineering
(OptMAVEn) for single-chain antibodies

As part of a National Science Foundation grant (CBET 1133040), we investi-
gated the de novo protein design of fully human antibody variable domains
for binding a specified antigen using OptMAVEn [1]. In OptMAVEn, possible
antigen-binding conformations are generated for a given antigen, then the
top scored antigen conformations and antibody models are assembled by com-
binations of six modular antibody parts and random mutations are introduced
to the antibody models for improved antigen-binding affinity.

We focused on trying to improve an existing antibody, 2D10, which is a
single-chain antibody (scFv) that recognizes the dodecapeptide DVFYPY-
PYASGS, a peptide mimic of mannose-containing carbohydrates. As a result
of the OptMAVEn predictions [2], we cloned and purified five de novo
designed scFvs and verified their correct folding. Of these five, two predicted
ScFvs had no binding to the dodecapeptide, and the other three ScFvs had
less superior binding by a factor of 2.3–6.2 fold [2]. Hence, in our experience,
OptMAVEn was unable to create ScFvs that have superior binding or even
equivalent binding.

1.2. Iterative protein redesign and optimization procedure (IPRO) for
improved dioxygenases

As part of a National Science Foundation grant (BES-0114126), we successfully
optimized naphthalene dioxygenase (NDO) of Ralstonia sp. strain U2 for oxidiz-
ing the benzene ring and the methyl-group of substituted toluene compounds
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using random protein engineering [3]. We had hoped to use
computational methods to help identify additional substi-
tutions that would be beneficial for increasing the activity
of the dioxygenase for nitroaromatic pollutants. With this
goal, IPRO [4] was performed on the large subunit NagAc
of NDO with the aim of optimizing the docking of the
substrate 2,3-dinitrotoluene to favour the formation of the
intermediate 4-methyl-3-nitrocatechol. IPRO is designed to
use energy-based scoring to identify beneficial substitutions
in native protein sequences.

Unfortunately, after its construction via site-directed
mutagenesis, the IPRO-predicted NagAc variant, L225R/
L251I/V258N/F350I, when analysed for 2,3-dinitrotoluene
activity by HPLC and a nitrite assay, was completely inactive
toward the substrate 2,3-dinitrotoluene. SDS–PAGE analysis
showed that this IPRO-predicted variant NagAc L225R/
L251I/V258N/F350I was produced at normal levels. Hence,
in our experience, IPRO was unable to predict amino acid
substitutions that increase protein activity.

1.3. IPRO for improved anaerobic oxidation of methane
As part of an Advanced Research Projects Agency–Energy
grant, our group reversed methanogenesis for the first time
by engineering an archaeal strain so that it could grow on
methane as a pure culture [5]. This required cloning methyl-
coenzyme M reductase (Mcr) from an unculturable organism
(which was part of an anaerobic methanotrophic archaeal
population in a Black Sea mat) into Methanosarcina acetivorans
and using 10 mM FeCl3 as an electron acceptor [5]. This led to
the engineered archaeal strain that could produce acetate [5],
lactate [6] and electricity [7].

As part of this project, we tested the IPRO predictions
for engineering Mcr, the enzyme for capturing methane as
part of reversed methanogenesis, by assaying for improved
enzyme kinetics (i.e. greater consumption of methane).
Critically, we tested the top two model predictions for engin-
eering McrA to improve F430 cofactor binding. After
sequencing to confirm the plasmid constructs were correct,
we tested McrAV419 K and found the predicted substitution
not only did not improve methane capture, it abolished
methane capture (i.e. it inactivated the enzyme). We also
tested the predicted substitutions McrA M78R/H157D/
V419 K and found these predictions also abolished methane
capture. Hence, in our hands, IPRO is unable to improve Mcr.

1.4. Optimum overall stoichiometry (optStoic) de novo
metabolic pathway modelling

As noted in the previous section, our laboratory discovered
how to reverse methanogenesis by using the external electron
acceptor ferric iron, to generate acetate in the autumn of 2014;
these results were subsequently published in 2016 by our
group [5]. To our surprise, our laboratory results on using
ferric iron to reverse methanogenesis with cloned Mcr in an
archaeal strain were published without our approval and
without acknowledgement as a means to give an example
of the power of the optStoic metabolic pathway modelling
routine [8]. optStoic is designed to identify the optimum
overall stoichiometry that maximizes carbon, energy or
price efficiency based on thermodynamic constraints. Our
laboratory research results were known to the group that
published them since this group was part of the same
ARPA-E research grant and received monthly reports. Strik-
ingly, they used our laboratory results as one of the
examples to demonstrate the robustness of their ‘model’
prior to our own publication of these results.

The common features between our proven laboratory dis-
covery and their ‘modelling predictions’ include: (i) anaerobic
capture of methane for growth by a pure culture (which had
not been demonstrated previously); (ii) methane conversion
to the same end product, acetate (iii) metabolism based on
the same electron acceptor, ferric iron; (iv) metabolism
based on the same enzyme, Mcr; and (v) metabolism based
on the identical archaeal host, M. acetivorans. Hence, the
model ‘predictions’ (e.g. the importance of ferric iron, gener-
ation of acetate) were published using our known, albeit
unacknowledged, experimental results.
2. Perspectives
Themain conclusion from our use of the IPRO andOptMAVEn
protein engineering models is that they are often incapable
of predicting substitutions that improve protein function.
Hence, evaluation of these kinds of models should be predi-
cated on a positive control being performed in which the
model predicts a priori some known beneficial substitution
that is experimentally verified. It should be noted that other
in silico protein engineering approaches exist, such as
computer-aided directed evolution of enzymes [9], which
successfully screened the effect of 128 substitutions in triose-
phosphate isomerase from Saccaromyces cerevisiae. Moreover,
a Rosetta enzyme design approach for sampling the sequence
and conformational space of partial active site randomization
led to the synthesis of four chiral β-amino acids via an aspartase
from Bacillus sp. YM55-1, without laboratory evolution [10].

In addition, it is worth noting that without a doubt,
experimentalists often get it wrong, too, without the aid of
protein modellers. For example, it has been predicted in a
prestigious journal that the archaeal strain M. acetivorans
can grow on methane faster than Escherichia coli can grow
on glucose [11], which is highly unlikely.

Furthermore, with 19 possible substitutions for every
amino acid and an average protein size of 333 aa, there are
19333 possible substitutions, so the protein space for models
(and experimentalists) have to cover is enormous. However,
of the two approaches for protein engineering, experimental
random mutagenesis versus computational protein engineer-
ing, a Nobel Prize has been given only for the experimental
approach [12]. Moreover, over two decades, we have had suc-
cess in using random protein engineering to create better
catalysts and regulators by using DNA shuffling with mono-
oxygenases [13–17], dioxygenases [3], epoxide hydrolases
[18], toxin/antitoxin systems [19] and biofilm regulators
[20–23]. However, we have never had success in using com-
putational protein engineering for improving either enzyme
activity or protein binding. The crux is that these compu-
tational models should be vetted more thoroughly before
their predictions are accepted, and experimentalists should
use these programmes with discretion.
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