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Abstract: Autoinducer 2 (AI-2) is a ubiquitous metabolite but, instead of acting as a “universal sig-
nal,” relatively few phenotypes have been associated with it, and many scientists believe AI-2 is 
often a metabolic byproduct rather than a signal. Here, the aim is to present evidence that AI-2 
influences both biofilm formation and motility (swarming and chemotaxis), using Escherichia coli as 
the model system, to establish AI-2 as a true signal with an important physiological role in this 
bacterium. In addition, AI-2 signaling is compared to the other primary signal of E. coli, indole, and 
it is shown that they have opposite effects on biofilm formation and virulence. 
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1. Introduction 
Quorum sensing (QS) is the process by which bacteria communicate via secreted sig-

nals (autoinducers); once the concentration of the autoinducers reaches a threshold, the 
signal is detected, and gene expression is altered [1]. The roles of QS are diverse and in-
clude population density detection, virulence, biofilm formation, and the maintenance of 
the stress response [2]. Although inhibitors of QS (quorum-quenching compounds) are 
still promoted as a means to reduce virulence without promoting resistance [3], these 
compounds will indubitably and unfortunately fail. The main problem is that the inhibi-
tion of QS leads to pleiotropic effects that affect growth; hence, lab strains and clinical 
isolates rapidly evolve resistance to these compounds [4–6]. Clearly, it is imperative to 
have a better understanding of QS in order to be in a position to better control bacteria to 
prevent diseases, such as stomach cancer and ulcers caused by Helicobacter pylori and 
Lyme disease by Borrelia burgdorferi [7], and to utilize them for synthetic biology applica-
tions. Therefore, in this opinion piece, we probe the physiological role of AI-2 by focusing 
on the best-studied bacterium, Escherichia coli. 

2. Autoinducer-2 
Commensal E. coli has several QS pathways, including one system based on indole 

(Figure 1) [8–10], which is produced by TnaA from tryptophan, and another system based 
on autoinducer 2 (AI-2) (Figure 1) [11], which is produced by LuxS from S-ribosylhomo-
cysteine [12]. It appears AI-2 is used primarily for communication inside the gastrointes-
tinal tract at 37 °C, while indole is used primarily at lower temperatures (30 °C and lower) 
when the bacterium is outside of its eucaryotic host [9]. Although E. coli can detect ho-
moserine lactones through the autoinducer-1 sensor SdiA (a LuxR homolog), it lacks a 
homoserine lactone synthase to produce the homoserine lactone signal, so E. coli uses 
SdiA to eavesdrop on signals of other bacteria [13]. Moreover, there is an interaction be-
tween these systems in that SdiA has been shown to be important for indole signaling in 
E. coli [8]. 
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Once produced by LuxS, the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione is con-
verted spontaneously into R-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-THMF) in 
E. coli (Figure 1), and R-THMF is the active form of AI-2 [7]. Hydrophilic AI-2 is trans-
ported from the cell by the membrane protein TqsA [14]. Once a threshold concentration 
is reached in the late exponential phase, AI-2 is imported into E. coli through its recogni-
tion by the AI-2 receptor LsrB [15]. In addition to LsrB in E. coli, LuxP (e.g., Vibrio harveyi) 
and the dCACHE-domain proteins PctA/TlpQ (Pseudomonas aeruginosa) are receptors for 
AI-2 [15], so there are at least three forms of AI-2 receptors in different bacteria. Further-
more, upon import, AI-2 is phosphorylated by LsrK in E. coli, and phosphorylated AI-2 
binds and inhibits the repressor LsrR, which leads to changes in gene expression primarily 
at 37 °C [9]. 

Figure 1. Comparison of the phenotypes affected by (A) autoinducer 2 (AI-2) and (B) indole. Curved black arrows indicate 
cell motility/movement, QS is quorum sensing, EHEC is Escherichia coli O157:H7, and flagella are indicated by two lines at 
one of the cell poles. Human cells are indicated by pink hexagons. Green lightning indicates the application of indole. The 
R-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-THMF) form of AI-2 is shown. 

3. AI-2 and Biofilm Formation 
Although indole reduces both pathogenic [16] and non-pathogenic E. coli biofilm for-

mation [17], AI-2 increases E. coli biofilm formation (Figure 1). Initially, QS was linked to 
biofilm formation using non-E. coli species and based on non-AI-2 signaling, specifically, 
for homoserine lactone increasing Pseudomonas aeruginosa [18]. Later studies, with Vibrio 
cholerae [19], Serratia liquefaciens [20], and Streptococcus mutans [21], confirmed the link of 
QS to biofilm formation. 

The first report of AI-2 and biofilm formation was indirect and based on masking AI-
2 signaling in E. coli with the QS inhibitor (5Z)-4-bromo-5-(bromomethylene)-3-butyl-
2(5H)-furanone (henceforth furanone) from the alga Delisea pulchra; in this report, biofilm 
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formation was reduced by 60 µg/mL furanone [22]. Later reports of AI-2 influencing bio-
film formation were based on luxS mutants rather than purified AI-2. For example, a luxS 
mutation in Streptococcus gordonii influenced mixed-species biofilm formation with Por-
phyromonas gingivalis [23], a luxS mutation had a small impact on the architecture of 
Klebsiella pneumoniae (although there was no effect for a luxS mutant for intestinal coloni-
zation and colonization on polystyrene) [24], and a luxS mutant increased biofilm for-
mation in Helicobacter pylori [25]. Unfortunately, these early results related to AI-2 via luxS 
mutations do not provide compelling evidence due to pleiotropic changes resulting from 
the luxS mutations. 

The first direct demonstration that AI-2 was responsible for influencing biofilm for-
mation was the 4- to 24-fold increase in biofilm formation in microtiter plates for three E. 
coli strains upon the addition of 11 µM of purified AI-2 [11]. Moreover, AI-2 failed to stim-
ulate biofilm formation for an lsrK AI-2 regulation mutant, and AI-2 stimulated biofilm 
formation five-fold in flow cells [11]. A decade later, the Sourjik group rediscovered that 
AI-2 increases E. coli biofilm formation and extended the original results to show AI-2 
increases aggregation through the adhesin antigen 43 and curli [26]. They [26] also con-
firmed that the AI-2 Lsr uptake/processing pathway influences E. coli biofilm formation 
[27]. 

4. AI-2 and Chemotaxis 
The first indication that AI-2 affects E. coli motility was that the QS inhibitor furanone 

at 13 µg/cm2 inhibited E. coli swarming motility [22]; critically, the furanone also inhibited 
E. coli AI-2 signaling by 26,600-fold [22]. Next, furanone was shown to repress 44 of the 56 
genes induced by AI-2, including those for chemotaxis (e.g., aer, cheABRWYZ, tap, tsr, trg) 
and motility (e.g., motAB, flgABCDEFGHIJKLMN, fliACDFHIKLMNOPQ) [28]. Therefore, 
AI-2 induces chemotaxis and motility genes in E. coli, and masking AI-2 signaling with 
furanone reduces motility and biofilm formation. 

 The first direct report of AI-2 as a chemoattractant for any species was the 2008 dis-
covery that Escherichia coli O157:H7 (EHEC) is attracted to purified AI-2 [29]. For EHEC, 
AI-2 also increases both swimming motility and attachment to HeLa cells [29]. For non-
pathogenic E. coli, microfluidic devices were used a year later to show AI-2 is an attractant 
[30]. Later, similar to their studies on biofilm formation, the Sourjik group confirmed that 
AI-2 attracts E. coli [26]. Furthermore, as with biofilms, indole signaling is opposite that of 
AI-2 since indole repels enterohemorrhagic EHEC [31], whereas AI-2 attracts EHEC [29] 
(Figure 1). 

The mechanism by which AI-2 is detected in E. coli was determined to be the chemo-
tactic receptor Tsr, which previously was known for its recognition of L-serine [32]; LsrB, 
the AI-2 receptor, was also shown to be necessary [32]. As with chemotaxis and biofilm 
formation, chemotaxis through Tsr was corroborated by the Sourjik group [26]. Further-
more, the Manson group also verified that AI-2 increases biofilm formation in E. coli and 
found that biofilm formation in this strain is enhanced by chemotaxis to AI-2 [33]. There-
fore, AI-2 stimulates biofilm formation in E. coli by increasing aggregation and chemotaxis 
(Figure 1). 

5. AI-2 and Virulence 
The two main E. coli signals influence pathogens in an opposite manner—indole de-

creases EHEC chemotaxis, motility, biofilm formation, and adherence to epithelial cells at 
the physiologically relevant concentration of primarily 0.5 mM [31]; these results that in-
dole decreases EHEC virulence were largely confirmed 12 years later by the Sperandio 
group [34,35] (Figure 1). Indole from E. coli also reduces the virulence of P. aeruginosa by 
masking its QS [36], prevents P. aeruginosa from resuscitating [37] from the dormant per-
sister state [38], and tightens the epithelial cell junctions of the human host [39]. Indole 
and its derivatives also kill persister cells [40,41]. In contrast, AI-2 at 100 µM to 500 µM 
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increases EHEC chemotaxis, motility, and adherence to epithelial cells and induces bio-
film-related genes [29]. Moreover, AI-2 induces the expression of 23 genes of the locus of 
enterocyte effacement of EHEC [29]. Hence, in pathogenic E. coli, indole reduces patho-
genicity, while AI-2 increases it. 

6. Perspectives 
The discovery that the E. coli AI-2 signal secreted by cells attracts other E. coli cells 

and leads to increased biofilm formation indicates that E. coli cells actively seek other E. 
coli cells to form communities [42]. Hence, it illustrates how bacteria can seek kin to in-
crease their fitness, i.e., cells seek others to build communities (biofilms) to protect them-
selves from myriad stresses [43] and to increase their pathogenicity. 

The chemoattractant property of AI-2 has also led to several synthetic biology appli-
cations. For example, biological nanofactories have been devised that detect and bind can-
cer cells and then produce AI-2 at the surface of the cancer cells, which attracts E. coli 
homing cells that internalize the synthesized AI-2 and then produce a biomarker or po-
tentially an anti-cancer compound from an AI-2-induced promoter [44]. In this way, 
healthy cells could be discriminated from diseased ones. Therefore, the better understand-
ing of the roles AI-2 and indole play in E. coli physiology has had a significant impact, 
both in our understanding of how communities are formed and in synthetic biology. 
Hence, AI-2 and indole are true and important signals in E. coli. 
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