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What is the fate of the biofilm matrix?
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Since biofilms clearly are not accumulating, in this opin-
ion piece we hypothesize that the biofilms are used pri-
marily as nutrients; hence, the biofilm matrix does not
accumulate in the environment because it provides the
carbon, nitrogen, and phosphate building blocks for
hungry microorganisms. Given that there are little data
to support this hypothesis at present, we propose four
scenarios for biofilm matrix recycling.

The biofilm homes of bacteria and archaeal strains
cover the Earth and have an economic significance of
$5000 billion per year (C�amara et al., 2022); hence, it
behoves us to ponder their fate. The building blocks for
these homes are known as the matrix, which encom-
passes over 90% of the dry mass, and consists primarily
of extracellular DNA, polysaccharides and protein
(Flemming & Wingender, 2010). These homes are formed
by free-living microorganisms that adhere to a surface
(or one another), form a colony by propagating and by
cementing themselves in place, and un-cement them-
selves to disperse and conquer new territory. But after dis-
persal, where does the bulk of the biofilm go, i.e. what is
the fate of the matrix (Figure 1).

UBIQUITY OF BIOFILMS

Wherever water is in the liquid state, microorganisms
will form biofilms (Wood et al., 2011); hence, biofilms lit-
erally are everywhere. Biofilm formation was recog-
nized as early as the 1930s (Henrici, 1933), and as
much as 80% of the microbial world exists as biofilms

(Flemming & Wuertz, 2019). Moreover, biofilm forma-
tion in Bacteria and Archaea is an ancient adaptation
that occurred at least 3 billion years ago (Hall-Stoodley
et al., 2004). The prevalence of biofilms is explained by
the recognition that microorganisms are frequently
under stress (Song & Wood, 2021) and make biofilms
as a response to this stress (Jefferson, 2004; Zhang
et al., 2007). Compared to the planktonic lifestyle, their
biofilm homes provide protection from predation, phage
and environmental insults as well as provide greater
opportunities for food and sex (Visnapuu et al., 2022).

GENETICS OF BIOFILM FORMATION

Biofilm formation is elegantly regulated rather than primar-
ily a response to physical phenomena like fluid flow
(O’Toole et al., 2000). Hence, gene expression and pro-
tein production govern initial attachment, microcolony
development and dispersal. For example, a wide range of
microorganisms increase the level of the internal signal
cyclic diguanylate (c-di-GMP) via diguanylate cyclases to
reduce motility as they increase biofilm formation (Boyd &
O’Toole, 2012) and decrease c-di-GMP via phosphodies-
terases to initiate dispersal (Rumbaugh & Sauer, 2020).
Since c-di-GMP levels are enhanced upon surface recog-
nition by cell appendages (Kimkes & Heinemann, 2019),
this second messenger is involved at all stages of biofilm
formation. Therefore, c-di-GMP concentrations may be
manipulated by proteins like BdcA from Escherichia coli
which triggers biofilm dispersal by decreasing c-di-GMP
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in a wide range of bacteria including E. coli, Pseudomo-
nas aeruginosa and Rhizobium meliloti (Hong et al.,
2012; Ma et al., 2011a; Ma et al., 2011b). Most recently,
the genetic basis of biofilm formation has been shown to
include biofilm maintenance (Katharios-Lanwermeyer
et al., 2022), by enzymes such as the tyrosine phospha-
tase TpbA/diguanylate cyclase TpbB system of P. aerugi-
nosa (Pu & Wood, 2010; Ueda & Wood, 2009). Based on
this intricate regulation, microorganisms frequently use
different matrix components, and the same species may
use different ratios and different matrix components
depending on its environment (Visnapuu et al., 2022).

DISASSEMBLY OF BIOFILMS

Since there is a genetic basis for biofilm formation, it
stands to reason then that there is a genetic basis for
biofilm disassembly. Therefore, there should be
enzymes used by cells to degrade each matrix building
block used by different microorganisms so residents
can disperse from their homes. Dispersal is necessary
and occurs due to both feast (to expand territory) and
famine (to forage) conditions as well as due to environ-
mental stress (e.g. oxygen depletion) (Petrova &
Sauer, 2016). Dispersal also occurs as a result of

environmental cues, like nitric oxide that activates
phosphodiesterases to reduce c-di-GMP (Barraud
et al., 2009), rhamnolipids that reduce adhesion
between biofilm cells (Zezzi do Valle Gomes &
Nitschke, 2012) and trigger a genetic response in
sulfate-reducing bacteria (Wood et al., 2018), and cis-
decenoic acid (Davies & Marques, 2009) that increases
motility and metabolism (Rahmani-Badi et al., 2015).
Since biofilms are frequently composed of polysaccha-
rides, analogues of polysaccharides may also be used
for dispersal (Poosarla et al., 2017).

The enzymes known to degrade biofilm matrices for
dispersal include DNases, polysaccharide-degrading
enzymes and proteases (Petrova & Sauer, 2016). For
degrading matrix extracellular DNA during dispersal,
DNases are prevalent as they are found in ocean sedi-
ments (Corinaldesi et al., 2007) for both Bacteria and
Archaea (Wasmund et al., 2021). For degrading matrix
polysaccharides during dispersal, enzymes like disper-
sin B (β-N-acetylglucosaminidase from Actinobacillus
actinomycetemcomitans) (Kaplan et al., 2003) and the
glycoside hydrolase PslG from P. aeruginosa (Yu
et al., 2015) are widespread in bacterial genomes. For
example, the glycoside hydrolase N-acetyl-β-D-hexosa-
minidase DisH was identified as encoded in the genome of
the sulfate-reducing bacterium Desulfovibrio vulgaris and

F I GURE 1 Schematic of matrix recycling possibilities. (A) Dispersal destroys the matrix. (B) Vesicles containing matrix-degrading enzymes
(e.g. protease, glycoside hydrolase, DNase) recycle biofilm matrices. Representative biofilm protein is FimA from Escherichia coli (Protein Data
Bank 2M5G), polysaccharides are indicated by hexagon chains, and extracellular DNA is shown as a double helix. (C) Phages recycle biofilm
matrices. (D) Biofilm cells digest the matrix that remains after partial dispersal. White indicates areas of where the matrix has been removed and
purple indicates remaining matrix. For simplicity, dispersing cells are indicated in pink, black, and green with polar flagella whereas the biofilm
cells are shown without flagella
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then used to disperse its biofilms by degrading the N-acetyl
β-D-glucosamine in its matrix (Poosarla et al., 2017; Zhu
et al., 2018). For degrading matrix proteins during dis-
persal, specific biofilm proteases like LapG of Pseudomo-
nas fluorescens degrade the adhesion LapA (Newell
et al., 2011). In conclusion, enzymes to disassemble bio-
films are readily available and should exist for every biofilm
matrix component, to facilitate biofilm dispersal.

POSSIBLE FATES OF BIOFILM MATRICES

Given that (i) biofilms are everywhere (Flemming &
Wuertz, 2019), (ii) most cells in the environment are
starving (Schmidt, 2012; Song & Wood, 2021),
(iii) biofilms are potentially a good source of the nutrients
carbon (e.g. polysaccharides), nitrogen (e.g. protein)
and phosphorus (e.g. DNA), (iv) enzymes for matrix deg-
radation are readily available to assist biofilm dispersal
(above) and (v) biofilms do not accumulate long-term, it
is reasonable to conclude that biofilms may be readily
degraded as a source of nutrients. However, there are
little data at present to support this hypothesis. Note that
the biofilm matrix remains intact without cell activity, at
least on the timescale of 1 day (Zrelli et al., 2013).

Cannibalization of the content of dead cells by via-
ble cells that remain in the biofilm has been postulated
to occur (Flemming et al., 2016), and cannibalization
has been shown for Bacillus subtilis cells that produce
the biofilm matrix components Eps and TasA (L�opez
et al., 2009). Hence, lysed cells may be used to build
more biofilm mass, but at present there is little evidence
for the use of the matrix itself as a nutrient by surviving
or surrounding cells. Similarly, although DNA (10%
phosphorus by weight) in oceans could supply 50% of
the phosphorus required by procaryotes (Dell’Anno &
Danovaro, 2005), and DNA has been shown to be uti-
lized as a carbon and phosphorus source as well as for
energy for species such as Shewanella spp. (Pinchuk
et al., 2008), DNA in the biofilm matrix has not been
shown to be directly utilized for nutrients.

If not directly degraded for nutrients, one possibility for
the fate of the biofilm matrix is that the matrix is destroyed
primarily upon dispersal; hence, there is little mystery as
to the long-term fate of biofilms [Figure 1(A)]. For exam-
ple, as much as 80% of P. aeruginosa biofilms may be
dispersed by sudden nutrient addition (Sauer et al.,
2004). Moreover, since Pseudoalteromonas distincta
ANT/505 secretes vesicles with polysaccharide-
degrading enzymes (Dürwald et al., 2021), another possi-
bility is that vesicles from multiple species, each
containing matrix-degrading enzymes, rapidly remove old
biofilms [Figure 1(B)]. Also, since phage tail tip proteins,
like that of the Klebsiella pneumoniae phage RAD2,
encode depolymerases to degrade O-glycosidic bonds of
polysaccharide components of the biofilm matrix
(Dunstan et al., 2021; Visnapuu et al., 2022), and since

phages outnumber bacteria 10:1 (Chibani-Chennoufi
et al., 2004), phages may recycle biofilm matrices in their
Sisyphean propagation that results in 1024 infections per
second [Figure 1(C)]. Additionally, the biofilm matrix that
remains after dispersal may be utilized for nutrients by the
remaining cells in the biofilm after partial dispersal or by
cells outside the biofilm, with the enzymes used for matrix
degradation for nutrients distinct from those used for dis-
persal [Figure 1(D)], such as extracellular aminopeptidase
PaAP from P. aeruginosa (Zhao et al., 2018). Also, dead
biofilm cells may release polysaccharide matrix-degrading
enzymes (Ma et al., 2009), like glycoside hydrolases
(Zhao et al., 2018), to provide food for the remaining bio-
film cells.

To experimentally test some of these possibilities,
reference and environmentally relevant biofilms should
be visualized non-destructively over significant time-
scales (e.g. weeks) to discern the fate of biofilms, per-
haps by using lectin-based stains (Poosarla et al.,
2017) or DNA-based stains like PicoGreen (Sanchez-
Torres et al., 2010). To facilitate this analysis, some
isotope-labelled precursors of matrix components could
be fed during biofilm formation. In conjunction, cells
could be lysed and their debris removed from the bio-
film matrix (e.g. via ampicillin for E. coli), and the matrix
could be tested as a carbon/nitrogen/phosphorus/
energy source with various planktonic species. The
importance of vesicles and phages for the fate of the
biofilm matrix should perhaps be investigated by
removing phages and vesicles by filtration. Myriad per-
mutations on these basic themes are possible, of
course, but the crux is determining the fate of biofilms
is a compelling pursuit.
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