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Antibiotic failure is one of the most worrisome threats to global health. Among the new therapeutic efforts that 
are being explored, the use of bacteriophages (viruses that kill bacteria), also known as ‘phages’, is being exten
sively studied as a strategy to target bacterial pathogens. However, one of the main drawbacks of phage therapy 
is the plethora of defence mechanisms that bacteria use to defend themselves against phages. This review aims 
to summarize the therapeutic approaches that are being evaluated to overcome the bacterial defence systems, 
including the most innovative therapeutic approaches applied: circumvention of phage receptor mutations; 
modification of prophages; targeting of CRISPR-Cas systems and the biofilm matrix; engineering of safer and 
more efficacious phages; and inhibition of the anti-persister strategies used by bacteria.
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Introduction
Antimicrobial resistance causes almost 5 million deaths annually 
worldwide and is predicted to become the leading cause of death.1

Bacterial antibiotic resistance is driven by natural evolution, and 
antibiotic resistance genes are common, even in DNA isolated 
from ancient sediments.1–3 However, the massive use of antibac
terial agents over decades, together with their release in untreated 
wastewater, exerts a selective pressure that has led to a global 
health crisis and could lead to an era without effective antibiotics.4,5

Throughout history, numerous different outbreaks of severe in
fectious diseases have been caused by heterogeneous pathogens 
(belonging to different phyla) that have acquired some resistance 
mechanisms. Examples of such bacterial pathogens include 
carbapenem-resistant Klebsiella pneumoniae,6,7 colistin-resistant 
plasmid-mediated Enterobacteriaceae,8–10 XDR Pseudomonas 
aeruginosa,11 carbapenem-resistant Acinetobacter baumannii,12

MDR Stenotrophomonas maltophilia,13–15 MDR Burkholderia 
cepacia13 and MRSA.16,17 The latter are some of the most com
mon examples, but there are many more.

Although some researchers remain optimistic about a re
newed antibiotic pipeline, vaccines or antibody–antibiotic conju
gates,18 every time a new antibiotic is introduced in the clinical 

setting, bacterial resistance arises against it as the result of accel
erated evolution.19

One of the most recently discovered antibiotics, teixobactin, 
was detected in 2015 by screening uncultured soil bacteria by 
using iChip technology.20

Teixobactin is a depsipeptide synthesized by the soil bacterium 
Eleftheria terrae and has shown extremely good efficacy and tox
icity profiles in vivo against Gram-positive bacterial infections.21

To date, the resistance reported against teixobactin is slow 
and very costly in terms of fitness;22 however, such successes 
are rare. The restoration of old strategies to combat resistant 
pathogens (such as phage therapy), together with the use of 
non-antibiotic compounds [antimicrobial peptides (AMPs) and re
purposed drugs], is gaining much attention.23,24

Bacteriophages
Bacteriophages, also called phages, are viruses that infect bac
teria. They are the most abundant organisms on Earth, being 
found in all environments including the soil, ocean, sewage and 
mammalian gut. It is thought that there are around 10 phages 
per bacterium, yielding an estimated 1031 viral particles.25

Phages are generally classified according to their life cycle into 
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lytic phages and lysogenic phages, although other types of phage 
infection are also possible, such as chronic infection or pseudoly
sogeny.26,27 Lytic phages attach to the bacterial surface, inject 
their DNA, use bacterial machinery to replicate and subsequently 
lyse the cells to release multiple viral particles; by contrast, lyso
genic phages inject their DNA and integrate it into the bacterial 
genome, so that it is passed on to progeny, where it may act as 
a vector for horizontal gene transfer (HGT). However, lysogenic 
phages can be induced and released from cells under stress si
tuations, provoking cell lysis.28

Bacteria–phage interactions: an arms race
Bacteria and phages are in a permanent state of co-evolution re
ferred to as an arms race, because when one develops a mech
anism to evade the other, this causes the latter to adapt and 
avoid this defence system (Figure 1). Thus, bacteria have evolved 
defence mechanisms to protect themselves from predators, 
while phages, in turn, have evolved counterdefence strategies 
to evade these systems.29–32 The main mechanisms of defence 
that bacteria have developed against phages are summarized 
in Table 1, and the phage resistance mechanisms are summar
ized in Table 2.

The use of phages for therapeutic purposes is of renewed 
interest in Western countries, where it fell into disuse in the 
1940s with the advent of commercial antibiotics. Due to the rising 
antibiotic resistance rates, the use of phages in therapy has re
gained interest. Currently, the following minimum criteria are re
quired for the use of phages for therapeutic purposes: (i) the 
phages must be strictly lytic in nature, lacking genes for lysogeny 
such as integrases and recombinases; (ii) they must have clear 
antimicrobial activity against the target pathogen; and (iii) bac
terial debris and endotoxins must be removed to below predeter
mined thresholds of safety.56 Although common in some eastern 
countries such as Georgia (Eastern Europe), phage therapy was 
completely abandoned with the advent of antibiotics in 
Western countries.57 However, phage therapy has shown prom
ising results, good safety profiles and efficacy in some relevant 
clinical cases,58–61 as discussed below. Importantly, a recent 
retrospective and observational study focused on 100 consecu
tive cases of personalized phage therapy in Belgium revealed 
that more than 77% of difficult-to-treat infections experienced 
some clinical improvement, with bacterial eradication achieved 
in 61% of the total cases considered, and only 15% presenting 
adverse events (among which, 7% were considered mild to mod
erate).62 Similarly, in 2023, Green et al.63 summarized several 
cases of patients treated with personalized phage therapy and 
also concluded that there were no major adverse reactions and 
phage–antibiotic synergy (PAS) was frequently observed, consist
ent with the previously mentioned 2023 report by Pirnay et al.62

PAS is a well-known phenomenon consisting of an improved 
outcome after the combination of phage and antibiotics, relative 
to their separate effects.64,65

The synergism between conventional antibiotics and a pre- 
adapted lytic phage (K. pneumoniae phage M1) was made use 
of to resolve a severe fracture-related infection in a 30-year-old 
bomb victim in Belgium.65 Pre-adapted phages were considered 
those mutants with broadest infectivity after 15 rounds of the 
Appelman protocol, which consists of growing phages iteratively 

on mostly refractory bacterial isolates, until the adapted phage 
can lyse the phage-resistant strains.66 Although ceftazidime/avi
bactam reduced K. pneumoniae bacterial counts in mature bio
films, they did not completely eradicate them, and high doses 
of the lytic phage M1 alone failed. Nonetheless, combinations 
of phage M1 and moderate concentrations of ceftazidime/avi
bactam were significantly more effective, which also suggests a 
synergistic effect.65 Similarly, P. aeruginosa phage PNM and colis
tin (0.5 mg/L), aztreonam (8 mg/L) and gentamicin (2 mg/L) dis
played strong synergistic activity against one of the P. aeruginosa 
isolates that caused severe post-liver transplantation sepsis in a 
toddler.67 A similar synergistic phenomenon was observed with 
another P. aeruginosa isolate, although the effect was slightly 
less intense with colistin. Finally, the treatments allowed a se
cond liver transplantation and resulted in complete resolution 
of the infection.67 The most significant case reports using phages 
against antibiotic-resistant isolates are summarized in Table 3.

The strategies of phage training (pre-adaptation) and PAS do 
not always produce the intended results, which is why it is neces
sary to look for methods that specifically circumvent bacterial de
fence mechanisms. This review summarizes some of the most 
relevant studies in this regard, in order to illuminate this increas
ingly vast field, while considering the defence mechanisms in re
lation to the latest advances in phage therapy.

Innovative strategies in phage therapy: 
counteracting bacterial defence mechanisms
One of the greatest disadvantages of phage therapy is possibly 
the frequent and rapid generation of phage-resistant bacterial 
mutants during treatment.77 In this regard, the strategy of coun
teracting these phage defence systems may be a useful way of 
enhancing the therapeutic outcomes of phages in clinical set
tings (Figure 2).

Figure 1. Original digital illustration (made in Adobe Photoshop from a 
sketch) representing the bacteria–phage ‘arms race’, a co-evolutionary 
state in which one develops a mechanism to evade the other and adapt. 
Bacteria display defence mechanisms to protect themselves from 
phages, while these evolve counterdefence strategies to evade these 
systems.
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Circumventing mutation of phage receptors
Binding between a phage and its receptor is a critical point in 
phage infection. However, bacteria have developed defence me
chanisms to block phage binding. To circumvent these mechan
isms and obtain better results in phage therapy, phage 
cocktails can be optimized.78 For example, phage combinations 
that target different receptors can be prioritized, thereby redu
cing the likelihood of resistance emergence. For example, Yang 
et al.79 designed a cocktail for treating P. aeruginosa that 

contained two phages, both with a different receptor, one target
ing the O antigen and the other targeting a truncated form of the 
O antigen that the pathogen produced when it became resistant 
to the initial O antigen-targeting phage. One of the phage 
mutants (PaoP5-m1) was found to be excellent for eliminating 
P. aeruginosa mutants with truncated O-antigen structures, as 
it was able to adsorb and infect all of the strains, regardless of 
their O-antigen structure. On the other hand, phages may encode 
enzymes capable of crossing barriers, such as biofilms, capsule 
layers or the outside of the cell, or the LPSs of the outer 

Table 1. Bacterial defence mechanisms against phages

General 
mechanism Specific mechanism Description Ref

Adsorption 
resistance

Modification of bacterial 
receptor

Either by (i) mutations of cell surface receptors; (ii) inhibitors that compete with the phage; 
or (iii) alteration of polysaccharide patterns that hide the receptor molecules.

29

Biofilms Adsorption of the phage to its bacterial receptor becomes restricted when bacteria form 
biofilms.

33

Outer-membrane vesicles 
(OMVs)

Fragments of the outer membrane of Gram-negative bacteria containing phage receptors 
may be secreted and act as a bait, leading to phage adsorption and resulting in less 
successful infections.

34–36

Blocked uptake Prophages SIE mechanism: prevention of infection by other phages. 37

Small molecules Anthracyclines, aminoglycosides and viperins: molecules with anti-phage properties, can be 
secreted by bacteria.

38

Restriction Restriction modification Methyltransferase adds methyl groups to the host DNA to distinguish it from the foreign 
material (especially viral DNA), and the restriction endonuclease recognizes the viral DNA 
and cuts it.

39

CRISPR-Cas Bacteria capture short sequences (protospacers) of invading phages and integrate them in 
their chromosome (CRISPR array). For subsequent phage infections, the system activates 
and degrades the phage DNA.

40

Other 
mechanisms

Abortive infection systems 
and CBASS

Cells prevent the release of functional virions at the expense of their host cell survival (e.g. 
inducing programmed cell death).

41,42

TA The bacterial toxin induces a global metabolic latency so that phage infection does not 
progress (no successful phage replication or assembly).

43,44

QS Phage adsorption is reduced in the presence of some auto-inducers of the QS network. 45,46

Table 2. Phage evasion mechanisms against bacterial defences

Mechanism Description Target References

Alternative adsorption to 
bacterial surface

Modification of receptor binding protein (RBP) by acquiring mutations that allow 
recognition of the mutated version of the receptor, or sometimes even a completely 
different receptor.

Receptor 47

Bacterial capsule 
degradation

Enzymes like depolymerases allow phages to degrade the extracellular 
polysaccharides present in the bacterial capsules. In some phages, the RBPs 
themselves have intrinsic depolymerase activity.

Capsule 48,49

Evasion of Abi Mutation of specific genes in the phage. Abi systems 50

Evasion of restriction 
modification

Reduction in the number or masking of restriction targets incorporating modified 
bases.

RM systems 51,52

Evasion of TA Inhibition of a protease that would normally cleave the antitoxin or encoding own 
antitoxin protein.

TA systems 53,54

Evasion of CRISPR-Cas (i) Single nucleotide substitution; (ii) complete deletion in the protospacer region or in 
the conserved motif adjacent to PAMa; (iii) anti-CRISPR systems (acr-aca).

CRISPR-Cas 
systems

55

aPAM, protospacer adjacent motif.
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membrane. These proteins are usually located in tail fibres, tail 
spikes or baseplates. Depolymerases, for example, are a type of 
enzyme used by phages to access receptors hidden by polysac
charides, or in cases where the polysaccharide chain is the recep
tor itself, to cleave it, thus stabilizing the binding.80

Prophage modification
Although phage therapy uses lytic phages, most bacteria have 
prophages in their genomes, often resulting in a well- 
documented phage resistance mechanism known as ‘superinfec
tion exclusion’ (SIE).37,81 In this situation, a prophage residing in a 
host cell prevents infection by other similar phage by blocking in
jection of DNA.82 However, the presence of prophages in the gen
ome is not always related to SIE defence mechanisms.81,83,84

Many researchers have claimed that the competitive advantage 
of lysogens over prophage-free competitors reflects the mutual
istic (rather than parasitic) relationship between prophages and 
bacteria.85–87

An interesting approach that paves the way for alternative re
search aimed at a better understanding of phage therapy is to 
target these prophages, more specifically using the gene cI, re
pressor of the lytic cycle, as a therapeutic target. Disruption of 
the repressor-operator cI by interaction with a small molecule 
leads to activation of the lytic phase in prophages, thus allowing 
them to infect their non-lysogenic counterparts and leading to 
their elimination.88

The conversion of a lysogenic phage into a lytic phage display
ing activity against multiple clinical isolates of A. baumannii is 
also an example of the use of engineered phages for therapeutic 
purposes.89 In this research, the authors combined the mutant 
phage with subinhibitory concentrations of different antibiotics 
and observed a decrease in the frequency of occurrence of 
phage-resistant bacteria; they also found that combinations in
cluding the converted lytic phage increased the survival of in
fected Galleria mellonella larvae. Along the same line, a 
three-phage cocktail composed of engineered phages was admi
nistered IV every 12 h for at least 32 weeks to a 15-year-old cystic 
fibrosis patient with a disseminated Mycobacterium abscessus in
fection.74 Importantly, one of these phages (ZoeJ) was lysogenic 
and converted into a lytic phage by mutation of its repressor 
gene. This M. abscessus isolate was resistant to all antibiotics 
tested: clarithromycin, amikacin, tobramycin, ciprofloxacin, moxi
floxacin, cefoxitin, co-trimoxazole, doxycycline and linezolid. The 
phage treatment resulted in a drastic clinical improvement at all 
levels: sternal wound closure; enhanced liver and lung functions; 
resolution of infected skin nodules; and weight increase. No ad
verse effects were observed after this first use of therapeutic 
phages to treat a human mycobacterial infection.74

Prophage induction therapy (a term coined by Lakshminarasimhan 
in 2022) can potentially be applied to clinical settings to target 
antibiotic-resistant strains of bacteria. Some researchers have in
vestigated this phenomenon in the gut environment and con
cluded that medications (including non-antibiotic drugs) 
inhibiting bacterial growth led to an increase in phage particles 
due to prophage induction.90 Importantly, the authors considered 
this factor an important driver of phage–bacteria dynamics in the 
gut. One advantage of the prophage induction therapy versus the 
administration of exogenous lytic phages is that the viral particles 

released from the pathogenic bacteria will be highly localized, 
with lower titres than used for phage therapy, thus minimizing ac
tivation of the immune response.88

Clustered regularly interspaced short palindromic 
repeats (CRISPR-Cas) targeting
CRISPR-Cas systems are the only adaptive immune system ob
served to date in the prokaryotic world. These are composed of 
short repeated sequences where spacers become intercalated, 
conforming the CRISPR-array; this is usually followed by the en
coding sequences of CRISPR-associated endonucleases (Cas). 
Spacer sequences are phage DNA fragments that are cut and in
tegrated into the bacterial CRISPR array, so that bacteria can rec
ognize future infections by phages that they have previously 
encountered and degrade the DNA of the phages via the Cas en
donucleases.40 The main way that phages evade prokaryotic 
CRISPR-Cas immunity is by using anti-CRISPR proteins. These ba
sically consist of Acr proteins (typically small proteins of 80–150 
amino acids) that inhibit bacterial CRISPR-Cas activity by binding 
directly to the Cas protein, thereby inactivating it, so that the 
phages can successfully replicate in the bacterial host.91 Acr pro
teins and the Aca (Acr-associated) proteins work via diverse 
mechanisms to inhibit critical steps of CRISPR immunity, includ
ing cas gene expression,92 assembly of CRISPR ribonucleoprotein 
complexes,93,94 recognition of target nucleic acids,95,96 and 
recruitment of effector nucleases.95 Therefore, the use of phages 
carrying specific acr (or other CRISPR-Cas evasion mechanisms) 
could be a promising therapeutic approach against MDR bacteria, 
and further research is needed in this regard.97

Biofilm targeting
As previously mentioned, biofilm populations are particularly 
prone to being resistant to antimicrobials and phage attack. 
Under most conditions, biofilms will allow phage-susceptible 
bacteria to be protected from phage exposure, if they are growing 
alongside other cells that are phage resistant; this phenomenon 
has implications regarding the ecology of phage–bacteria inter
actions, as well as in the development of phage-based antimicro
bial therapeutics.98 In turn, some phages possess genes coding 
for extracellular polysaccharide depolymerases that can specific
ally degrade the polysaccharidic components of biofilms and fa
cilitate the access of phages to deeper layers.99

The interaction between phages and bacteria depends on the 
ability of the phage particles to diffuse through the biofilm, in 
which cells aggregate and adhere, sometimes hiding phage re
ceptors.98,100 One interesting example of how a bacteriophage 
can adapt to biofilm-growing bacteria is the study conducted 
by Blasco et al.101 in 2022, in which phages of A. baumannii exhib
ited genomic rearrangement: 10 ORFs were lost and four new 
ORFs were produced, all of them encoding tail proteins. As a result 
of this recombination event, a depolymerase-expressing pheno
type was visible in 81% of the strains tested. In the same study, 
a phage cocktail was made with this mutated and adapted 
phage, together with a phage known to have a depolymerase 
(B3), and strong activity against 24-h-old biofilms (measured by 
cfu—enumeration and crystal violet staining) was observed.

Tkhilaishvili et al.102 tested the anti-biofilm activity of a 
Staphylococcus aureus-specific phage, Sb-1, and observed that 
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Sb-1 degraded the extracellular matrix formed after 24 h and also 
targeted persister cells. These researchers assessed the minimum 
biofilm eradicating concentration (MBEC) and performed confocal 
laser scanning microscopy (CLSM), which revealed that tail en
zymes present in Sb-1 degraded the extracellular polysaccharide 
component of the matrix of S. aureus ATCC 43300. This is consist
ent with the findings of Son et al.,103 who reported that a depoly
merase present in the lytic S. aureus SAP-2 phage was able to 
disrupt 48-h-old biofilms [evaluated after safranin staining and 
scanning electronic microscopy (SEM)]. In another study, 
Gutiérrez et al.104 reported that lytic phages were a promising op
tion for fighting biofilm formation in staphylococcal infections. In 
fact, the results of the study confirmed that lytic phages disrupted 
4-h-old biofilms, measured by quantification of cfu and crystal 
violet staining. With the same pathogen, Alves et al.105 combined 
the use of the S. aureus phage K and a newly isolated phage, 
DRA88, and observed a reduction in growth of a 48-h-old S. aureus 
biofilm, as observe by crystal violet staining. Rahman et al.106

combined the phage SAP-26 with erythromycin, vancomycin 
and rifampicin to treat 24-h-old S. aureus biofilms and obtained 
a reduction of approximately 28% in the biofilm, as measured 
by viable cell count, with SAP-26 alone. Erythromycin and vanco
mycin decreased viable cell counts by 25% and 17%, respectively. 
However, treatment of the biofilm with the combination of phage 
and rifampicin yielded a 65% reduction in growth. The combina
tions of phage–azithromycin and phage–vancomycin reduced 
the cell counts by 60% and 40%, respectively, after 24 h.107

Another study focusing on the eradication of in vitro biofilms 
using phages is that conducted by Akturk et al.,108 in which 
they generated dual-species (S. aureus and P. aeruginosa) 
24-h-old biofilms in an in vitro artificial dermis model and treated 
it with specific phages targeting these pathogens (SAFA and 
EPA1, respectively) and gentamicin. The most effective treatment 
concerning reduction in viable cells was obtained after multiple 
doses of EPA1 + SAFA + gentamicin, whereas the lowest reduction 
was produced by application of phages only, followed by another 
dose of the combined phage treatment.

Many studies have revealed the potential use of phages to 
eradicate biofilm formation by MDR strains.107 For example, 
Khalifa et al.109 evaluated the lytic activity of an isolated phage 
from sewage water, EFDG1, against various Enterococcus faecalis 
and Enterococcus faecium strains, and observed effective activity 
against planktonic and 2-week-old biofilms, measured by crystal 
violet staining and CLSM. Importantly, this phage acted on vari
ous clinical isolates regardless of their antibiotic resistance pro
file. In addition, the EFDG1 phage efficiently prevented ex vivo 
E. faecalis root canal infection, which may be important to pre
vent persistent infections associated with root canal treatment 
failure.

Another example is the study conducted by Lehman et al.,110

who evaluated the effect of pretreating hydrogel-coated silicone 
catheters with mixtures of P. aeruginosa and Proteus mirabilis 
phages. The authors used a multiday continuous-flow in vitro 
model with artificial urine medium, in which they produced 
single- and dual-species biofilms during 96 h. They obtained a 
2–4 log reduction in biofilm counts for both species over a period 
of 48 h. The results of this study suggest that pretreatment of ca
theters with phage cocktails can significantly reduce mixed- 
species biofilm formation. In a similar way, Fu et al.111 showed 

the potential of a phage cocktail to prevent P. aeruginosa biofilms 
forming on hydrogel-coated catheters in an in vitro model sys
tem. The authors observed a reduction in the biofilm viable 
counts, determined by cfu counts and SEM. Both studies suggest 
the potential of applying phage cocktails to the surfaces of in
dwelling medical devices to minimize biofilm formation.110,111

Furthermore, Pallavali et al.112 assessed the effect of lytic 
phages on 96-h-old biofilms of P. aeruginosa, K. pneumoniae, 
Escherichia coli and S. aureus, and observed a reduction of nearly 
80% in the biomass of biofilms, quantified after cfu enumeration 
and crystal violet staining. Moreover, Alves et al.113 showed that a 
novel bacteriophage cocktail reduced and dispersed P. aeruginosa 
biofilms under static and flow conditions, therefore having a 
therapeutic ability to control P. aeruginosa infections. For the static 
model, after contact for 4 h with the phage suspension at an moi 
of 10, more than 95% of 48-h-old biofilm biomass was eliminated, 
as measured by crystal violet staining. On the other hand, in the 
48-h-old biofilm flow model, slower activity was observed by 
CLSM; however, 48 h after addition of phage cocktail the biofilm 
had dispersed. Another example is the case of the phages 
ϕMR299-2 and ϕNH-4, which were able to eliminate the 
24-h-old biofilm of P. aeruginosa in vitro (using cystic fibrosis 
lung airway cells) and in vivo (using a murine lung model).114,115

Furthermore, Lu et al.116 reported enhanced dispersion of biofilms 
with engineered phages, designed from the T7 E. coli phage ex
pressing the dispersin B (DspB). The engineered enzymatic phage 
reduced bacterial biofilm cell counts by 99.97%.

Other studies have demonstrated the potential of a combined 
therapy to eradicate biofilms. For instance, the E. coli phage T4 
was used in combination with the antibiotic cefotaxime to eradi
cate 24-h-old E. coli biofilms. The results revealed that the add
ition of T4 reduced the MBEC of cefotaxime against E. coli 
biofilms by between 2- and 8-fold, indicating that the combin
ation of T4 and cefotaxime significantly enhanced biofilm eradi
cation.117 In a similar way, 8-day-old K. pneumoniae biofilms 
were also eradicated using a combination of phage at an moi 
of 0.01 with amoxicillin (512 µg/mL). The results of this study 
showed a significant reduction in the bacterial counts in biofilms 
after application of combined therapy.115 In addition, a 12-h-old 
biofilm of K. pneumoniae was treated by a combination of phage 
KPO1K2 at an moi of 1 and ciprofloxacin (1 mg/mL), and no sig
nificant differences in biofilm removal (quantified by cfu counts) 
were obtained. However, the combined treatment significantly 
prevented the emergence of resistance.118 Other groups used 
the phage T4 of E. coli and PB-1 of P. aeruginosa in combination 
with tobramycin at different concentrations (2 and 0.5 µg/mL, re
spectively) to remove 48-h-old biofilms. The combined treatment 
led to a 99.99% decrease in the survival of E. coli biofilms mea
sured by cfu/mL count relative to the use of tobramycin alone. 
However, the combination of tobramycin and P. aeruginosa 
phage was as effective as tobramycin alone, although the com
bination reduced the emergence of antibiotic- and phage- 
resistant cells.119 Finally, Zhang et al.120 reported that a mixture 
of RNA phages of P. aeruginosa and chloride reduced the 72-h-old 
biofilm growth by 94% and removed it in 88% of the cases; the 
biofilm growth was measured by crystal violet staining.

In general, the main two approaches implemented in regard to 
the administration of phages to control biofilms are IV bacterio
phage therapy and the direct injection of bacteriophages to the 
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site of biofilm on surgical intervention. The first example is docu
mented by Doub et al.,121 but unsuccessful therapeutic out
comes were obtained since the patient continued to have 
culture-positive S. aureus knee infection, suggesting the inability 
of IV therapy to eradicate the biofilm infection. The second route 
of administration is documented by Tkhilaishvili et al.,122,123

who treated a chronic relapsing periprosthetic knee infection 
and chronic osteomyelitis of the femur, caused by an MDR 
P. aeruginosa, with a combined treatment between antibiotics 
(colistin, meropenem and ceftazidime) and phages, locally 
applied during surgery.

A systematic review analysing 68 articles on this topic in
cluded correlation analysis that revealed some phage para
meters relevant to the treatment outcome: higher phage 
concentrations were strongly associated with better biofilm con
trol; and phages with higher burst sizes and shorter latent periods 
were the best candidates for controlling biofilms.124

The most significant cases of biofilm removal using phages are 
summarized in Table 4.

Engineered phages
Phage engineering is also a very important and powerful tool for 
increasing the likelihood of successful phage therapy; in particu
lar, great effort has been made to extend the host range of 
phages by genetic engineering, as this is a major limitation of 
the application of phages in therapy. This strategy could signifi
cantly reduce the amount of work needed to search for phages 
to treat specific bacteria and could lead to the selection of a 
few well-studied phages that could become ‘scaffolds’ for the 
generation of customized phages. Furthermore, this would re
duce the variability between treatments and enhance translation 
to clinical applications.132

Yehl et al.133 targeted regions in the tail fibre of coliphage T3 
for mutagenesis, in order to create highly diverse phage libraries 
that were screened to identify phages with altered host ranges. 
The authors showed that these engineered phages not only 
had a broader host range, but they were also able to suppress 
bacterial resistance to phage infection. They targeted naturally 
occurring phage-resistant bacterial mutants, which could po
tentially delay or even prevent the onset of phage resistance.134

One example of this is a study in which phages containing 
engineered anti-CRISPR (acr) genes were explored by including 
type I anti-CRISPR genes (acrIF1, acrIF2 and acrIF3) in the 
P. aeruginosa phage DMS3/DMS3m to obtain the potential to 
block bacterial replication and infection.135 The results indi
cated that bacterial inhibition required the production of Acrs 
to be above a specific threshold, so that successful phage repli
cation may be dependent on the competition between CRISPRs 
and Acrs. This work led to an innovative treatment in which 
anti-CRISPR phages could be used to treat intractable 
Pseudomonas disease.

Additionally, natural, engineered and chemically synthesized 
genomes and re-engineered functional phages that infect 
Gram-negative bacteria and acid-fast mycobacteria have been 
assembled and shown to be efficient.136

A plethora of studies have used genetically modified phages 
to enhance their potential for biofilm control.137 Some of these 
are listed below. For example, expression of enzymes such as 

depolymerase or DspB is used to enhance phage activity.116

Alternatively, insertion of restriction endonuclease genes or 
modified holin genes or deletion of export protein genes have 
been explored to minimize inflammatory responses and thus 
improve phage therapy outcomes.138–140 One example of the 
latter is the endosialidases of some coliphages, specialized 
tail spike proteins that degrade the polysialic acid (polySia) 
capsule of E. coli K1, not only reducing the virulence of the 
pathogen but, importantly, limiting the tissue damage and 
the inflammatory processes that occur in response to bacterial 
invasion.141

Simultaneously, Park et al.142 integrated a CRISPR-Cas system 
targeting the nuc gene (encoding a thermostable nuclease 
uniquely present in S. aureus, so that the microbiome will not 
be affected) into the temperate phage ϕSaBov. They also 
removed the virulence factors and infected CTH96 S. aureus 
strains and did not recover any viable cells after treatment 
with an moi of 100. The authors conducted in vivo studies 
with a skin infection model in C57BL/6 mice and obtained a 
reduction in cfu of more than two orders of magnitude after 
applying ϕSaBov-Cas9-nuc embedded into a hydrogel, relative 
to ϕSaBov-Cas9-null. To increase the host specificity, the 
ϕSaBov tail fibre protein was complemented with that from 
the phage ϕ11, which exhibited a broader spectrum, resulting 
in the specificity being extended to the human pathogenic 
clones ST1, ST5, ST8 and ST36.142 Furthermore, this same group 
studied the effects of ϕSaBov-Cas9-nuc on biofilms, both in vitro 
and in vivo, and enhanced clearance in the biofilm using 108 pfu/ 
mL of the CRISPR-Cas-transformed phage ϕSaBov-Cas9-nuc.143

Altogether, these findings provide evidence that engineered 
phages may be a viable alternative approach for use in patients 
with difficult-to-treat bacterial infections, including those caused 
by MDR bacteria that do not respond to conventional antibiotic 
therapy, and also to treat phage-resistant bacteria that have ac
quired immunity via the CRISPR-Cas system. The most relevant 
studies concerning engineered phages are summarized in 
Table 5.

Anti-persister strategies
Persister cells are a subpopulation of bacteria in a dormant state: 
they neither grow nor replicate and can re-establish infections 
once antibiotic stress has been removed.151

Persister cells involved in biofilm

The subpopulations of resistant phenotypes within the biofilm 
have been referred to as persisters.152

Phages have two properties that make biofilms susceptible to 
their action: they produce enzymes that degrade the extracellu
lar matrix; and they can infect persister cells, remaining dormant 
within them, but reactivating when cells become metabolically 
active;125,126 the phages themselves may be the main actors in 
this reactivation.153 Furthermore, ‘Trojan horse’ strategies where 
phages are used in a first instance to destroy biofilms and acti
vate persister cells, rendering them more susceptible to the anti
biotics subsequently introduced, can be considered an elegant 
pathway to synergy. This strategy takes advantage of the ability 
of some phages to revert resistance to antibiotics, resensitizing 
bacteria.65
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Toxin–antitoxin (TA) targeting

TA modules are generally encoded by two adjacent genes: a 
stable toxin; and an unstable antitoxin, which is degraded under 
stress conditions by protease systems,154 leading to activation of 
the toxin that often results in reduced bacterial metabolism.155

One of the main functions of the TA systems is to provide bacteria 
with another phage resistance mechanism, using the toxin as a 
general metabolic switch. Therefore, these systems would be a 
good target for increasing the success of phage therapy. For ex
ample, genetically engineered phages that harbour genes encod
ing toxin inhibitors, or molecules that protect the degradation of 
the antitoxin by Lon proteases, could potentially be used in phage 
therapy.53

Quorum sensing (QS) targeting

QS is bacterial cell-to-cell communication mediated by the produc
tion and recognition of small molecules called autoinducers.156

Several studies clearly show that QS also affects the susceptibility 
of bacteria to phage infection and the coordination of defence strat
egies against phages.45,157–159 Inhibition of QS may be important to 
enhance phage therapy, as recently demonstrated by 
Høyland-Kroghsbo et al.,160 who observed overexpression of QS 
genes in P. aeruginosa infected by the JBD44 phage, demonstrating 
that QS up-regulates the phage defence systems in the bacterial 
hosts. The QS network modulates several phage defence mechan
isms to appropriately combat infections, shaping the outcomes of 
phage–host interactions and representing a crucial target to im
prove phage therapy. In the same line, Shah et al.161 found that 
Pseudomonas lysogenic phage DMS3 encoded a QS anti-activator 
protein, Aqs1, which acted as an inhibitor of LasR, the master regu
lator of QS. The authors also found that Aqs1 protein silences mul
tiple anti-phage defence mechanisms simultaneously, such as Abi 
systems. Therefore, infection studies with DMS3ΔAqs1 resulted in 
100-fold fewer viable cells, which proved that the presence of 
Aqs1 inhibited Abi-mediated resistance.

Consistently, other studies have linked the inhibition of QS and 
improved phage infection; for instance, Mion et al.162 demon
strated the role of the disruption of QS, a strategy known as quor
um quenching (QQ), to reduce bacterial virulence and increase 
both antibiotic and phage treatment efficiency. These research
ers used the QQ enzyme SsoPox-W263I, a lactonase able to de
grade acyl-homoserine lactones (AHLs), to reduce the virulence 
and biofilm formation by clinical strains of P. aeruginosa from dia
betic foot ulcers, thereby enhancing the susceptibility of phage 
and antibiotic-sensitive and phage-resistant bacteria to bacterio
phages and antibiotics. The study results revealed a reduction of 
more than 70% in biofilm formation in 6 of 10 strains. Another ex
ample is the study by Qin et al.,163 who showed the effect of a QS 
inhibitor, a penicillic acid, on infection of the strain PAK-AR2 and 
PAO1 of P. aeruginosa. The results show that supplementation 
with the QS inhibitor increased the productive infection of the 
cells by the P. aeruginosa lytic phage C11 and increased the burst 
size of lytic phage K5 by 45% when cells were infected at the 
logarithmic phase, relative to the control in the absence of peni
cillic acid. Finally, the study conducted by Severin et al.164 demon
strated that QS also up-regulated a different phage defence 
system in Vibrio cholerae, the cyclic oligonucleotide-based anti
phage signalling system (CBASS).Ta
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Nevertheless, if QS regulates multiple bacterial systems, 
inhibition of this network could in some cases lead to failure 
when phages are used as therapeutic agents. For example, 
Xuan et al.165 reported that QS up-regulated the expression of 
phage receptor in P. aeruginosa PAO1 (the O antigen of the 
LPS), increasing phage adsorption and infection rates. 
Furthermore, Broniewski et al.166 showed that a QS inhibitor de
creased the phage adsorption rates due to down-regulation of 
the type IV pilus, which acted as the phage receptor. This caused 
delayed lysis of bacterial cultures and favoured CRISPR immunity. 
Therefore, the results of this group suggested that the inhibition 
of QS may reduce rather than improve the therapeutic efficacy of 
pilus-specific phages. Similarly, Ghosh et al.167 demonstrated 
that a cocktail of different synthetic AHLs or AHL-producing 
strains led to induction of prophages in E. coli, 168 which could 
lead to the propagation of these and the subsequent integration 
in other commensal bacteria. Finally, similar situations have been 
observed in E. faecalis, V. cholerae and Pseudomonas spp., in 
which prophage induction was promoted after exposure to auto
inducer 2 (AI-2), autoinducer 3,5-dimethylpyrazin-2-ol (DPO) and 
2-heptyl-3-hydroxy-4-quinolone (PQS) respectively.169–174

Overall, prophage induction is a desirable feature in terms of 
evading phage resistance mediated by prophages (SIE) as well 
as provoking bacterial lysis; however, caution is required to prevent 

horizontal gene transfer and activation of prophage-encoded tox
ins, among other risks worthy of consideration.168,175

These studies confirm the current debate concerning the ef
fects of the QS network on phage defence systems and phage 
therapy outcomes.

(p)ppGpp and RpoS signalling

Most phages enter a more or less stable state of hibernation in 
deep-dormant host cells (persister cells) and do not produce 
the lysis of the bacteria cells. However, Maffei et al.172 found a 
newly isolated P. aeruginosa phage, named Paride, that can dir
ectly replicate and induce the lysis of deep-dormant hosts. 
Efficient replication of Paride on growth-arrested hosts specifical
ly requires cellular stress responses in the form of (p)ppGpp and 
RpoS signalling that are dispensable for infections of growing 
hosts. Interestingly, the authors showed that a combination of 
Paride and meropenem could sterilize deep-dormant cultures in 
vitro and greatly reduced a resilient bacterial infection of a tissue 
cage implant in mice.

Anti-persister molecules

Innovative treatments to tackle dormant, persister bacterial 
cells, against which antibiotics are not efficient, are needed. 
In this context, phage therapy could be of benefit. An example 

Figure 2. Strategies to improve the efficacy of phage therapy, using bacterial defence mechanisms to phage infection as a target. RBD, receptor- 
binding domain.
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of the use of lytic phages against an imipenem-persister clin
ical isolate of K. pneumoniae has been reported by Pacios 
et al.173 in a study in which a lytic phage was used in combin
ation with the repurposed anticancer drug mitomycin C (also 
considered a natural antibiotic) and the conventional imipen
em. Both combinations resulted in the death of persister cells 
and decreased the emergence of in vitro resistant mutants. 
These results were confirmed in the in vivo G. mellonella mod
el, in which the combination significantly reduced the mortal
ity rate of the larvae. Briers et al.174 also described a novel 
artilysin (an outer membrane-penetrating, phage-derived 

endolysin), named Art-175, that is able to rapidly and effect
ively pass through the outer membrane of P. aeruginosa pers
ister cells and exert its bactericidal activity within the cell, 
without the need for any metabolic activity. Endolysins are 
peptidoglycan-degrading enzymes synthesized by phages, 
used at the end of their replication cycle to hydrolyse the pep
tidoglycan from within and allow the release of newly formed 
virions.33–35,175

All of these studies provide some insights into the treatment 
of persister cells, prone to forming biofilms that are difficult to 
eradicate.

Table 4. Treatments and innovation strategies: biofilm targeting

Authors (year) Mechanisms Species References

Pearl et al. (2008) 
Chegini et al. (2020)

Production of enzymes that degrade extracellular matrix and infect persister cell P. aeruginosa 
E. coli

125,126

Eskenazi et al. (2022) ‘Trojan horses’ strategies where phage was used to destroy biofilm and activate 
persister cell

K. pneumoniae 65

Dunsing et al. (2019) Phage carried depolymerase enzyme to counteract the defence of bacteria Pantoea stewartia 127

Blasco et al. (2022) Phage cocktail with a host-adapted phage Ab105-2ϕΔ404ad and phage 
vB_AbaP_B3 show strong antibiofilm activity

A. baumannii 101

Vidakovic et al. (2018) 
Chaudhry et al. 
(2020) 
Darch et al. (2017)

Phages are retained in biofilms; they confer protection barrier against other bacteria 
and phages

E. coli 
P. aeruginosa

128–130

Tkhilaishvili et al. 
(2018)

Anti-biofilm activity of phage Sb-1; Sb-1 degrades biofilm matrix and target persister 
cell

S. aureus 102

Son et al. (2010) Phage SAP-2 carried depolymerase enzyme able to disrupt the biofilm S. aureus 103

Gutiérrez et al. (2015) Lytic phages can be efficient biofilm-disrupting agent Staphylococcus species 104

Khalifa et al. (2015) Anti-biofilm activity of phage EFDG1 E. faecalis, E. faecium 109

Lehman et al. (2015) Effect of pretreating hydrogel-coated silicone catheters with phages; these phage 
cocktails can significantly reduce mixed-species biofilm formation

P. aeruginosa, Proteus 
mirabilis

110

Alves et al. (2014) Phage cocktail of phages K and DRA88 reduce biofilm formation S. aureus 105

Rahman et al. (2011) Application of phage SAP-26 in combination with different antibiotics against 
24-h-old biofilm

S. aureus 106

Akturk et al. (2023) In vitro dual-species biofilm in combination with gentamicin P. aeruginosa, S. aureus 131

Fu et al. (2010) Phage cocktails prevent biofilm formation on catheters in an in vitro model P. aeruginosa 111

Pallavali et al. (2021) Lytic phages against 96-h-old multispecies biofilms P. aeruginosa, 
K. pneumoniae, 
E. coli and 
S. aureus

112

Alves et al. (2016) Novel phage cocktail reduces and disperses biofilm under static and flow conditions P. aeruginosa 113

Alemayehu et al. 
(2012)

Phage ϕMR299-2 and ϕNH-4 eliminate P. aeruginosa in murine lung and on cystic 
fibrosis lung airway cell

P. aeruginosa 114

Lu et al. (2007) Dispersion of biofilm with ‘engineered enzymatic phages’ E. coli 116

Ryan et al. (2012) Combined therapy to eradicate biofilm: T4 phage with cefotaxime E. coli 117

Manmeet Sakshi Bedi 
et al. (2009)

Combined therapy to eradicate biofilm: phages of K. pneumoniae with amoxicillin K. pneumoniae 115

Verma et al. (2009) Combined therapy to eradicate 12-h-old biofilms: phage KP01K2 with ciprofloxacin K. pneumoniae 118

Coulter et al. (2014) Combined therapy to eradicate 48-h-old biofilms: phage T4 of E. coli and PB-1 of P. 
aeruginosa with tobramycin

E. coli, P. aeruginosa 119

Zhang et al. (2013) Mixture of RNA phages and chloride to reduce biofilm P. aeruginosa 120

Doub et al. (2022) Recalcitrant MRSA prosthetic knee and femoral lateral plate infection S. aureus 121

Tkhilaishvili et al. 
(2019)

Direct phage injection in a periprosthetic joint infection and osteomyelitis P. aeruginosa 122
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Conclusions
Because of the constant adaptation over hundreds of millions of 
years of co-evolution, bacteria and phages have acquired a pleth
ora of mechanisms to defend themselves against infection and 
to neutralize these defence systems. This review summarizes 
some of the most relevant bacterial and phage defence mechan
isms in order to throw some light on this increasingly vast topic, 
and it outlines the latest advances in phage therapy with particu
lar focus on targeting the main bacterial defence systems (muta
tion of phage receptors, prophages, CRISPR-Cas, biofilm, TA 
systems, QS). The latter two are involved in the development of 
persister cells. It is therefore essential to develop more anti- 
persister strategies to counteract these bacterial phenotypes. 
In this context, phage engineering is of particular interest to im
prove the potential use of personalized phages in therapy.
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