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Project Overview

XPS: FULL: DSD: End-to-end Acceleration of Ge-
nomic Workflows on Emerging Heterogeneous Su-
percomputers, CCF#1439057, Sep 2014-Aug 2017.
The proposed research harnesses parallelism to acceler-
ate the pervasive bioinformatics workflow of detecting ge-
netic variations. This workflow determines the genetic
variants present in an individual, given DNA sequencing
data. The variant detection workflow is an integral part
of current genomic data analysis, and several studies have
linked genetic variants to diseases. Typical instances of
this workflow currently take several hours to multi-
ple days to complete with state-of-the-art software, and
current algorithms and software are unable to exploit and
benefit from even modest levels of hardware parallelism.
Most prior approaches to parallelization and performance
tuning of genomic data analysis pipelines have targeted
computation, |/O, or network data transfer bottlenecks
in isolation, and consequently, are limited in the overall
performance improvement they can achieve. This project
targets end-to-end acceleration methodologies and
uses emerging heterogeneous supercomputers to
reduce workflow time-to-completion.

The project focuses on holistic methodologies to accel-
erate multiple components within the genetic variant de-
tection workflow. It explores lightweight data reorgani-
zations at multiple granularities to enhance locality, in-
vestigates compute-, communication-, and 1/0 task co-
tuning, locality-aware load-balancing, and coordinated re-
source partitioning to exploit high-performance computing
platforms. A key goal of the proposed research is to de-
sign domain-specific optimizations targeting the mas-
sive parallelism and scalability potential of current het-
erogeneous supercomputers, so that the developed tech-
niques can be easily transferred and applied to dedicated
academic cluster and commercial computational environ-
ments. QOutreach efforts target undergraduate students
through recruiting workshops and attract them to inter-
disciplinary graduate programs. Curriculum development

activities emphasize cross-layer parallelism.

Genomic Workflow
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Figure: Research overview: end-to-end pipeline acceleration
methodologies, and mapping between the methodologies and the
task-specific optimizations.
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Figure: A simplified view of computational stages in a variant
detection pipeline. We indicate popular tools used for each stage

and the file 1/0 formats.

= Single Nucleotide Polymorphisms (SNPs) are the most
studied type of structural variation. SNPs are

nucleotide differences at a single position.

» SPRITE [1]| aims at end-to-end acceleration of the SNP

detection workflow, while retaining 1/0 formats.
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Figure: SPRITE, our HPC pipeline for SNP detection. We design
three new parallel tools—PRUNE, SAMPA, and PARSNIP—for

various stages of the SNP detection workflow.

» PRUNE is currently based on bwa. For parallelism, the
read files are partitioned and the reference sequence

replicated on every compute node.
« SAM file creation is optional.

« SAMPA performs a parallel sort of alighment output,
prepares data in an intermediate binary format

amenable to SNP calling.

PARSNIP

« PARSNIP is a simple counting-based SNP detection
tool. It reads SAMPA output to update a nucleotide
frequency table F.

« Parallelism through contig partitioning.
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Figure: The organization of the frequency table F used in PARSNIP.

L is the length of the contig being analyzed.

SPRITE and PARSNIP Evaluation

« SPRITE [2]| uses MPl+threads programming model.

= We use test data from the SMaSH variant detection
benchmarking toolkit.

» Comparisons to a ‘reference’ pipeline using bwa
(v0.7.10-r789), samtools (v1.1), freebayes (v0.9.20).

Performance Results

« SNP calling workflow on SMaSH Venter data set;
HuRef SNPs assumed to be the ‘ground truth’.

« 16 nodes of NERSC Edison system. Each node has two
Intel 12-core lvy Bridge processors and 64 GB memory.
Lustre shared file system with 72 GB/s peak 1/0O perf.

Pipeline Ref. Pipeline, 24 cores SPRITE, 384 cores

Stage Tool Time (min) Time (min) Speedup
Alignment bwa 393 26.36 14.91x
SAM file processing samtools 401 3.40 117.94x%
SNP Calling freebayes 889 1.55 573.55x%
Overall 1683 31.31 53.75X%

Table: End-to-end pipeline execution times and speedup. Note that
bwa and some phases of samtools are multithreaded.
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Figure: The compute phases of PRUNE achieve near-linear strong
scaling. Inter-process communication is negligible. File /O accounts

for nearly half the overall running time when using 384 cores.
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Figure: The total number of SNPs detected by PARSNIP depend on
a user-configurable threshold parameter.

Tool Precision Recall
PARSNIP 95.1 97.2
freebayes 948 97.2
mpileup 98.7 97.0
GATK 99.3 91.7

Table: SNP caller aggregate quality results. PARSNIP results are
obtained by setting the threshold parameter to 25.

Future Work

» Tuning SPRITE for alternate hardware configurations.
» PARSNIP GPU and Xeon Phi parallelization.

« Avoiding 1/0 in intermediate SAMPA step.

» Alternate intermediate and output representations.

« |/O Optimizations in alignment step.

= Alternatives to seed-and-extend alignment.

» Fine-grained index partitioning for alignment.

» Adding probabilistic models to PARSNIP.

« Parallel tools for structural variant detection.

» Lightweight in-memory data layout reorganizations.
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