Disputes, Democracies, and Dependencies: A Reexamination of the Kantian Peace

Michael D. Ward University of Washington
Randolph M. Siverson University of California, Davis
Xun Cao University of Washington

Militarized interstate disputes are widely thought to be less likely among democratic countries that have high levels of trade and extensive participation in international organizations. We reexamine this broad finding of the Kantian peace literature in the context of a model that incorporates the high degree of dependency among countries. Based on in-sample statistical tests, as well as out-of-sample, predictive cross-validation, we find that results frequently cited in the literature are plagued by overfitting and cannot be characterized as identifying the underlying structure through which international conflict is influenced by democracy, trade, and international governmental organizations. We conclude that much of the statistical association typically reported in this literature appears from three components: (1) geographical proximity, (2) dependence among militarized interstate disputes with the same initiator or target, and (3) the higher-order dependencies in these dyadic data. Once these are incorporated, covariates associated with the Kantian peace tripod lose most of their statistical power. We do find that higher levels of joint democracy are associated with lower probabilities of militarized interstate dispute involvement. We find that despite high statistical significance and putative substantive importance, none of the variables representing the Kantian tripod is associated with any substantial degree of predictive power.

Kantian Peace

Are democracies less likely to have conflict with one another than other pairs of states? Yes, according to a growing body of research known as the “Democratic Peace.” This literature has evolved from exploring whether pairs of democratic countries have a reduced probability of war with one another (Maoz and Abdolali 1989) into a continued and broader examination of the covariates of militarized interstate disputes.¹ Most empirical scholarly literature on this topic uses a regression perspective, identifying those variables and factors thought to be important in explaining the occurrence of militarized interstate disputes (MIDs), assessing

by statistical significance the power of various hypotheses concerning the democratic peace.\footnote{For example, see recent work by Leeds (2003), Gartzke (2003), and Lemke and Reed (2001). Cederman (2001) and Cederman and Rao (2001) are examples of different approaches. More recently, several scholars have undertaken a “logical” examination of the Kantian peace (Doyle 2005; Rosato 2003, 2005; Slantchev, Alexandrova, and Gartzke 2005).}

Within this larger research program, one particularly prominent line of inquiry has explored the hypothesis that pairs of democracies that trade with each other and belong to and participate in the same international organizations will have reduced probabilities of being involved in militarized disputes with one another. “The Kantian Peace” (Oneal and Russett 1999) exemplifies this line of research on the democratic peace. Like many similar studies, it uses a general linear model to estimate the occurrence of militarized interstate disputes over the period 1886 to 1992. Many other studies have employed these or similar data along with various perturbations of the specified regression equation. The basic insight of this line of research has been that democracy, international commerce, and participation in international organizations are each shown to be independently pacifying forces in world politics. Oneal and Russett summarize their work by noting that “…analyses for the years 1885 to 1992 indicate that Kant was substantially correct: democracy, economic interdependence, and involvement in international organizations reduce the incidence of militarized interstate disputes” (1999, 33). Similar declarations are by now legion in scholarly writing and are also frequently found in the policy pronouncements of the governments of industrialized democracies.\footnote{See also important, recent work on this topic in Oneal and Russett (2005).}

In this article, we report results that cast doubt on whether the literature has accurately captured the mechanism that is thought to embody the Kantian peace. We do this not by a “battle of the stars,” comparing the significance of our variables to those reported in various other studies, but by examining the ability of standard kinds of approaches to stand up to in- and out-of-sample validation. Thus, we do not question the statistical significance of any published work on the Kantian peace, nor do we question the logic or the theoretical bases guiding these studies. Rather, we use it as an example to illustrate that such statistical models may not fare well in predicting conflicts, either in- or out-of-sample.

Why is this important? It might be that the conventional models are correctly specified, but that there is simply not much systematic variation to be captured. Alternatively, it might be that such models are missing a great deal of systematic variation because they ignore important features of the data-generating process in international relations.

Beck, King, and Zeng (2000) illustrate that large-N studies, such as those found in the Kantian peace literature and more broadly the empirical literature on international conflict, can be improved via the use of an out-of-sample forecasting heuristic. They note that “statistical analysts must be concerned about whether they are taking advantage of some idiosyncratic features of the data to improve fit at the expense of detecting structure” and assert that out-of-sample forecasts are considered the “gold standard” in terms of assessing model fit (21). In a subsequent paper, de Marchi, Gelpi, and Grynaviski (2004) challenge some claims in Beck, King, and Zeng (2000), but support the use of out-of-sample forecasting as an important heuristic, a point also made in Beck, King, and Zeng (2004). However, this is not yet among the standard practices in the international relations literature, and few scholars have made predictive out-of-sample assessments of their models.

The conjecture of Beck, King, and Zeng (2000) implicitly raises the question of how well the results of the Kantian peace capture the existence of militarized interstate disputes. Using the data in Oneal and Russett (1999) as an example from the literature, we replicated (exactly) their main empirical results (i.e., Table 1 therein, which analyzes data from 1886 to 1992). Using two plausible cutpoints, Table 1 illustrates the in-sample predictive power of one version of the Kantian peace (Oneal and Russett 1999). As is clear, this estimated model is not very accurate in identifying disputes, either predicting none at all, or having a high rate of false positives.\footnote{Indeed, the residuals of the estimated model produce perfect results, for almost any cut-point. The residuals actually contain all of the correct information about the existence of dyadic, militarized}
namely, standard approaches will tend to overpredict conflicts among dyads with low probabilities of conflict, but are likely to underpredict conflict among dyads with high prior probabilities of conflicts.

The second part of the table uses a cut-point of 0.009 and is open to two drastically different interpretations. On the one hand, for every 23 dyads that the model predicts to be in a dispute, only one turns out to be an actual dispute, while the other 22 (approximately) are not in a dispute. On the other hand, cases that are predicted to have disputes are about 23 times more likely to have disputes than are cases predicted to be absent disputes. This Rashomon-like effect is partially dictated by the very large number of dyads in the study not involved in disputes, thus yielding very low ratios whenever the nonconflicts are included in the calculations.

What is the nature of the disputes that are accurately predicted by this model of the Kantian peace? Major powers are frequent members in the set of countries that are correctly predicted to be involved in a militarized dispute. The United States is most frequently correctly identified as being in a dispute (some 151 times), followed by the Soviet Union (139), the United Kingdom (125), China (76), and France (70). The most frequently correctly predicted dyads are also unsurprising: the Soviet Union-Japan (35 instances), the United States-Soviet Union (26), India-Pakistan (27), Greece-Turkey (24), the Soviet Union-China (23), and the United Kingdom-Soviet Union (21).

The years immediately preceding World War I and II account for over 20% of the correct predictions. Recent predictions are also better, with an annual average of 19 disputes being correctly predicted in the post-1938 period, compared to eight in the pre-1939 era. In short, this model produces a large number of false positive predictions and illustrates that major and regional powers are more likely to underpredict conflict among dyads with high prior probabilities of conflicts, whereas our framework for modeling these interactions about the dependent variable. Hence, better in-sample predictions are produced by the residuals than are produced by the model.

The odds of having a dispute in the set of dyads predicted to not have a dispute is $24/125 = 0.00218$, while the odds of a dyad that is predicted to have a dispute actually having one is $141/22487 = 0.0507$. The ratio of these two odds is approximately 23.

Our findings will demonstrate that the dependencies are powerful, overwhelming the impact of covariates typically associated with reduced probabilities of interstate conflict: joint democracy, high levels of trade, and participation in international organizations. Using out-of-sample predictive tests, our framework for modeling these dependencies dominates the standard approach offered in the bulk of the empirical literature in international relations. In the next section we offer a model that focuses on the frequently ignored dependencies that characterize international politics in order to offer an improved model of the Kantian peace.

\[\text{Afghanistan, Argentina, Australia, Bahrain, Bangladesh, Canada, Czechoslovakia, Denmark, Egypt, France, Germany, Greece, Hungary, Honduras, Italy, Kuwait, Morocco, the Netherlands, Niger, Norway, Oman, Pakistan, Poland, Portugal, Qatar, Saudi Arabia, Senegal, South Korea, Spain, Syria, Turkey, the United Arab Emirates, the United Kingdom, and the United States.}\]
A Bayesian, Hierarchical, Bilinear, Mixed-Effects Model

Dyadic data in international relations are rife with dependencies. For example, because states have relatively stable policies it is reasonable to expect that data emanating from a single country are likely to be correlated, as are data directed to a single country by others. Similarly, dyads are likely to have data correlated over time. The social relations model introduced a method to decompose variance in such data into sender and receiver effects as well as permit within-dyad correlations via the analysis of variance (ANOVA) protocol (Warner, Kenny, and Stoto 1979; Wong 1982).7

The social relations model (SRM) grows out of interest by psychologists to separate the independent and interactive effects of groups versus individuals. The basic insight provides a way of conceptualizing and acquiring unbiased estimates of actor, partner, and relationship effects and their interrelationships. The social relations model emerged in the study of family relations as systems of interacting, adaptive relationships. Strong, affectionate relations among the various dyads in a family, for example, have been shown to have powerful effects on the developmental health of children in that family. There was a dissatisfaction in the field of psychology with studying these dynamics using conceptual frameworks and methods that assumed all the objects of study were independent of one another and that the appropriate locus of inquiry was either the individual or the dyad or triad. Kenny (1985) introduced the social relations model in part to focus attention on the analysis of dyads as dependent phenomena. The development of the social relations model is presented first by Kenny (1981), but the canonical citation is from the mid-1980s (Malloy and Kenny 1986). A widely cited volume was penned on this topic in the mid-1990s (Kenny 1994), and recently a book devoted to data analytic approaches to the SRM was published (Kenny, Kashy, and Cook 2006). Literally hundreds of articles in the field of psychology use this widely appreciated approach to confronting the dependencies in dyadic data. In short, by separating actor, partner, relationship, and reciprocity effects from one another, this model focuses on, rather than ignores, the interdependencies among actors in a family, or other systems of highly interconnected and dependent actors such as international politics.

The idea of further decomposing the variance in the context of dyadic data was developed (Gill and Swartz 2001; Li and Loken 2002) to permit the statistical analysis of normally distributed dyadic data using additive effects. These ideas have been extended to a generalized linear model that incorporates third-order dependence via a bilinear effect (Hoff 2005) similar in spirit to that first introduced by Gabriel (1998).

There is strong interdependence among the observations in many international relations data sets. A first-order dependency is the inclination for states to behave toward others in a consistent manner, or, alternatively, for a state to be the object of consistent policies from others. Often this is captured in a time-series context, though below we offer a different conceptualization.8 Consider, for example, the behavior of the United States toward Cuba in the years since Fidel Castro announced he was a Marxist-Leninist. The range of variation is narrow. By the same token, for an extended period Libya was the object of a consistent set of policies by a relatively large number of other states. The existence of first-order dependencies is widely recognized, and many forms of time-series analysis take them into account, including, of course, pooled cross-sectional methods. The problem, as alluded to above, is that the dependencies do not stop with the first-order, but become more complex, and these have not thus far been accommodated, or even generally recognized, in most analyses of international relationships. Controlling for time dependence does not eliminate other higher-order dependencies.9

When analysis moves away from the policies of individual states over time to embrace other complicated sets of relationships, higher-order dependencies are likely to become rife in the data, as we have argued above. But what does “higher-order dependencies” mean? Second-order dependence refers to what is often described as reciprocity in the context of directed relationships. The study of arms races is one area in which this has been frequently investigated in a single pair of countries. In the years before World War I, did the French military budget

7In the context of transactions, the language of sender and receiver is clear. However, in the context of conflict, it is more complicated, since many disputes are protracted and while initiators of episodes can often be specified, it is oversimplistic to assign prime mover status to that country. In what follows, we use sender and receiver to represent different sides of a dyadic relationship. Every country is a potential sender and a potential receiver. This sociomatrix is square, having all countries arrayed along the columns and rows. A country is the sender in a particular militarized dispute if it is among that set of countries identified to have first taken militarized action, according to the MID data.

8There is a long tradition of looking at these kinds of dependencies in pairs of countries, and even among triads. Much of this literature began with the insights of Richardson (1960) and continued with disaggregated events data (Goldstein and Freeman 1990).

9Raknerud and Hegre (1997) use time dependence on common trends to induce mean independence among dyads.
depend in some significant part on what the French believed the Germans would spend? Similarly, did the Germans gear their spending on what they anticipated the French would do? Given the obvious answers to these questions, is it possible to consider the arms acquisition policies of a state in isolation from what other salient states are doing? Interactions in international conflicts also often evince similar reciprocity at the dyadic level. For instance, India’s aggressive behavior towards Pakistan is likely to induce similar behavior from Pakistan. Many pairs of countries show evidence of this type of reciprocity, both in the conflictual as well as cooperative realms, even though reciprocity can still be asymmetric such that one actor in the dyad responds more strongly, or weakly, than the other. The prevalence of reciprocity—a second-order dependence among observations—in directional network data in the study of international relations challenges the basic assumption of observational independence. It can neither be ignored nor assumed away and therefore needs to be explicitly modeled.

To discuss fully third-order dependence, some formalism is helpful. We define \(y_{ij} \) as some measure of the relationship between actors \(i \) and \(j \). This may be a measure of the flow between actors, as in the case of data on international commerce or even a measure of whether a “linkage” exists between the actors. If the value of \(y_{ij} \) is identical to \(y_{ji} \) for all \(ij \) pairs, the data are said to be undirected (and symmetric). Third-order dependence includes (a) transitivity, (b) balance, and (c) clusterability (Wasserman and Faust 1994). Transitivity follows the familiar logic of “a friend of a friend is a friend.” In particular, for directed binary data, triad \(ijk \) is transitive if whenever \(y_{ij} = 1 \) and \(y_{jk} = 1 \), we also observe that \(y_{ik} = 1 \). A triad \(ijk \) is said to be balanced if all pairs of actors relate to one another in an identical fashion, specifically: \(y_{ij} \times y_{jk} \times y_{ki} > 0 \). The idea is that if the relationship between \(i \) and \(j \) is “positive” then both will relate to another unit \(k \) identically. If \(y_{ij} \) is positive, then to observe balance, \(y_{jk} \) and \(y_{ki} \) are either both positive or both negative. Clusterability is a relaxation of the concept of balance. A triad is clusterable if it is balanced or the relations are all negative. The notion that “a friend of a friend is a friend” captures the concept of transitivity in directed binary network data setting and is illustrated in Figure 1. Consider a triad of countries \(\{ijk\} \). This triad is composed of three dyads \(\{ij\}, \{jk\}, \) and \(\{ki\} \). In a network context, there are six possible links if the data are directional and three if data are nondirectional. If we know that country \(i \) considers \(j \) as an ally and country \(j \) is allied with \(k \), then the probability that \(k \) will also be allied with \(i \) is likely to be higher than for another country outside of this network, since these countries are at least indirectly connected in the alliance network by virtue of their separate linkages to country \(j \).

In other words, knowing something about the relationship between countries in the first two dyads in a triad often tells us something about the relations in the third dyad. Treating dyads \(\{ij\}, \{jk\}, \) and \(\{ki\} \) as independent from each other, as the way we routinely do in empirical analyses of international relations data, usually ignores important patterns in these data.

The concept of balance implies the putative stability in a triad; a large set of balanced triads is therefore called a balanced graph or balanced network. Clusterability is a relaxed version of balance: a triad is clusterable if it is balanced or the relations are all negative. \(^{10}\) The cold war, for example, members of the NATO pact all had mostly cooperative relations with one another, as did members of the Warsaw Treaty Organization (the first WTO), but members in each “cluster” had relatively hostile relations across these two blocs. Thus, while the entire network was not necessarily clustered into one grouping, networks composed entirely of negative links are quite rare outside of academic departments.

\(^{10}\)Networks composed entirely of negative links are quite rare outside of academic departments.
individual countries could be clustered in terms of their probability of having positive relations with those clustered nearby and negative relations with those located in different clusters, further away. This kind of third-order dependence is generally prevalent in network data, and transitivity, balance, and clusterability are commonly found in dyadic IR data sets that capture international transactions among countries.

As we think about third-order dependencies, knowing the relation between i and j as well as between j and k may reveal something about the relationship between i and k, even when we do not directly observe it. Hoff, Raftery, and Handcock (2002, 1091) note:

In some social network data, the probability of a relational tie between two individuals may increase as the characteristics of the individuals become more similar. A subset of individuals in the population with a large number of social ties between them may be indicative of a group of individuals who have nearby positions in this space of characteristics, or “social space.” Note if some of the characteristics are unobserved, then a probability measure over these unobserved characteristics induces a model in which the presence of two individuals is dependent on the presence of other ties.

In other words, the “social space” summarizing these unobserved characteristics is another “image” of the third-order dependence in these dyadic data. We describe how to estimate and map these latent positions such that position in a latent space represents these dependencies. Stated differently, once the higher-order dependencies are taken into account, the dyadic data can be analyzed by techniques such as regression that assume the data are independent of one another.

Conditional on the inclusion of a latent dimension that captures the dependence of the observation on one another, the dyadic data can be treated as independent, and the coefficients can be estimated by well-known techniques. If the data are truly independent, estimations under these two scenarios will be equivalent, indeed identical. However, if there is clustering or dependence of the observations on one another in the manner specified above, they will diverge substantially. Our hypothesis is that evidence for the Kantian peace argument is based on a faulty assumption of the independence of international events and that once these dependencies are incorporated into the model, a different picture will emerge. The latent variables capture this dependence and allow us to more precisely estimate the effects of the independent variables upon the probability of conflict.

Using the social relations reformulation to capture sender (initiator), receiver (target), and higher-order dependencies in the MID data, we explore a model analogous to the original specification in Oneal and Russett (1999). This model is analogous, but has two distinct advantages. First, it permits the direct estimation of important dependencies in the dyadic data. These dependencies have implications not only in the means but also in the covariance structures of the data. Second, because the model has a hierarchical format it is unnecessary to force nondyadic variables to have a dyadic character (or vice versa), an unfortunate practice that is widespread in the empirical literature. Each partner to any particular interaction has associated covariates at both the country and dyad level. The hierarchical specification allows relational as well as country-specific linkages to be coherently included in a single model. Often researchers have tried to deal with dyadic data by creating dyadic versions of all the variables. Joint democracy is an example of such a variable. But we will have much richer analyses when we have models that allow for covariates that are dyadic as well as for covariates that may selectively affect the initiators and targets of dyadic actions. For example, Oneal and Russett (1999) include only covariates that are entirely dyadic in operationalization, a procedure that is typical in the literature. Many extant studies have multilevel covariates, but often these levels are homogenized to one level.11 As a result, there is a distinction in the literature between dyadic and monadic studies of the Kantian peace. Our conceptualization emphasizes that both “monadic” and “dyadic” covariates coexist, at least plausibly, and this framework provides a standard way of incorporating them that also has the benefit of taking advantage of the social relations conceptualization. There are individual and dyadic effects that are neither transparent nor identical in groups that have highly dependent relations. A multilevel approach helps to tease out these specificities. As a result of these advantages we have been able to adopt a simple approach to measuring the three putative foundations of the Kantian peace: democracy, trade, and international organizations.

The Kantian strand of the democratic peace theory asserts that dyadic levels of democracy will tend to suppress the likelihood of international conflict and will absolutely prevent the occurrence of war. High levels of economic interaction also have an independent effect in

11 An exception to the contrary is Hegre’s early study using Cox regression (2004).
suppressing the probability of conflict, as does joint participation in international organizations. Each of these causal covariates is thought to operate independently. A variety of control variables is often employed, typically including a measure of the capability of the state, such as the level of economic development, measured as gross domestic product (GDP), the size of the country as measured by population, and the amount of democracy in a particular country. At the same time it is often argued that countries that are proximate have a greater opportunity and therefore likelihood of interstate conflict. Thus, some measure of distance between countries is almost always included in contemporary models. We include all of these in our specification, as well. What is different is that the standard models assume that the observations are independent. Thus, they assume that the estimated coefficients apply equally to every one of a set of independent observations.

The specific variables we employ are patterned after the major results in the literature. Dyadic variables \(x_{ij} \) capture the pillars of the Kantian peace: (1) joint governance structures measured as the product of the polity score of sender and receiver, (2) the imports of the sender from the receiver, and (3) the number of international organizations in which both are members. Like most empirical studies, we also added a measure of the distance between pairs of countries; we use the distance in kilometers between the capital cities. In the dyadic context, \(i \) and \(j \) index the sending and receiving countries. For both sender and receiver, three country-level covariates \(x_i \) capture the population, the economic size measured in terms of gross domestic product, as well as the regime type of each country. Detailed information on each of the covariates and their sources may be found in Appendix A.

The model is:

\[
\theta_{ij} = \beta_d x_{ij} + \beta_s x_i + \beta_r x_j + a_i + b_j + u_i' v_j + \epsilon_{ij},
\]

where

\[
\beta_d x_{ij} = d \in \text{dyadic effects: joint democracy, imports, joint IO membership, distance}
\]

\[
\beta_s x_i = s \in \text{sender effects: population, GDP, democracy}
\]

\[
\beta_r x_j = r \in \text{receiver effects: population, GDP, democracy}
\]

\[
a_i = \text{random effect of sender}
\]

\[
b_j = \text{random effect of receiver}
\]

\[
u_i' v_j = \text{separate latent positions for sender and receiver}
\]

\[
\epsilon_{ij} = \text{error}.
\]

We modeled the probability of a militarized dispute \(y_{ij} \) with a logistic link function:

\[
P(y_{ij} = 1 | \theta_{ij}) = \frac{e^{\theta_{ij}}}{1 + e^{\theta_{ij}}}.
\]

This setup not only adds to the standard logistic model covariates that are specific to senders and receivers, but also includes both sender and receiver random effects, along with an estimate of the unmeasured latent positions of each country in the militarized interstate dispute network. These latent positions \((u_i \) and \(v_j \) index the propensities for country pairs to have similar interaction patterns toward other countries as a result of unmeasured similarities. The latent positions of two countries will be similar if countries are responsive to one another or if they have similar response patterns involving other countries. Latent similarity captures transitivity and balance, and reveals clustering. One strong benefit of this specification is that in addition to the latent positions, four additional quantities of interest are developed. Each reflects some aspect of the higher-order dependencies. Since we model the random effects as being multivariate normal, we can estimate their covariance structure: \(\sigma_d^2 \) is the variance of the sender random effects and \(\sigma_r^2 \) the variance of the receiver random effects. Additionally, the covariance between these two components is given by \(\sigma_{dr} \). These terms may be thought of as first-order components. In a similar way, the covariance of the errors across dyads, i.e., the covariance of the errors between \(\epsilon_{ij} \) and \(\epsilon_{ji} \), can also be parameterized as \(\rho \sigma_e^2 \), allowing a specific measure of reciprocity to be estimated \((\rho). \) This is a second-order effect. Finally, the latent vectors for senders and receivers capture the third-order dependencies. In this simple way, higher-order dependencies are posited in new quantities of interest that have been previously assumed to be nonexistent or unimportant. For the first time, it is possible to estimate these quantities. Hoff (2005) provides details and

12The often made claim that correcting standard errors by clustering on dyads controls for the dependence of dyadic observations is incomplete and frequently misleading. The adjustment of standard errors within panels does not address the dependence of the observations on one another in the same time period, but is a useful postestimation strategy to obtain better estimates of standard errors in certain situations.

13Open source software written for the \(\mathcal{R} \) computer language is available to estimate general bilinear mixed effects models at http://www.stat.washington.edu/hoff/Code/GBME/.

14We estimate these positions in three dimensions each, but employ multidimensional scaling to display them in two dimensions below. See Cao (2007) for another application of the bilinear mixed-effects model in the study of domestic economic convergence.
full conditional for this model. The following moments are defined for the e_{ij}:

\[
E(e_{ij}) = \sigma^2_i + \sigma^2_j + \sigma^2_{ij}
\]

\[
E(e_{ij}e_{ji}) = \rho \sigma^2_i + 2\sigma_r
\]

\[
E(e_{ij}e_{ik}) = \rho \sigma^2_i
\]

\[
E(e_{ij}e_{kj}) = \sigma^2_i
\]

\[
E(e_{ij}e_{ki}) = \sigma_r
\]

where r represents the receiver and s the sender. The quantity σ^2_r is the dependence among dyadic observations with a common target; σ^2_j the dependence among dyadic observations with a common source; and ρ captures the reciprocity, or correlation within a dyad. Standard approaches assume that all of these quantities of interest, as well as the latent positions, are zero. But this assumption is neither plausible theoretically, nor borne out in empirical analyses we report below.

Statistical Results

Since it has been demonstrated that the empirical results for the Kantian peace are stronger in the period following the end of World War II (Box-Steffensmeier, Reiter, and Zorn 2003; Gowa 1999), we have focused on militarized interstate disputes over the last 50 years, estimating the model in 11 specific years: \{1950, 1955, \ldots, 1995, 2000\}. Table 2 provides one “big table of numbers” for the Bayesian estimation of the hierarchical, bilinear random effects model for the year 2000, as an illustration of our basic results.\(^{15}\) It is important to note that the 95% empirical credible limits for all the dyadic variables representing the Kantian peace argument include zero. Stated differently, the three traditional explanatory variables that undergird the notion of a Kantian peace do not have strong, unambiguous empirical effects in the most recent year available for analysis. However, as we show below, in most other years the patterns are more supportive of the notion that higher levels of democracy tend to reduce conflict probabilities; in most years dyadic democracy levels exert a modest, negative impact on the probability of a militarized interstate dispute.\(^{16}\)

The results in Table 2 also demonstrate that the higher-order dependencies posited are prominent in these data. These dependencies are represented, in part, by the common sender variance, the sender-receiver covariance, and the common receiver variance. Each is large and important. Taken together, these three components exert a vastly stronger influence on the probability of a militarized dispute among pairs of countries than the standard covariates. Together they are substantially larger than the error variance. It is also worth noting that the dyadic reciprocity of the democratic peace in this particular year is large, a result similar to the large autoregressive coefficients widely reported in empirical literature on the Kantian peace. The size of these components serves to underscore the importance of dependencies in these dyadic data on militarized interstate disputes. These results hold in all years we examined.\(^{17}\)

We present a graphical display of the estimated coefficient for each of the four dyadic variables for each of the 11 years we analyzed in Figure 2. Note that the variances of the estimates are reduced in more recent yearly time slices and that the effect of each variable moves around considerably from year to year, in contrast to the assumptions

Table 2: Bayesian Estimates for 2000, Using Equation (1)

<table>
<thead>
<tr>
<th>Coefficients for Year 2000</th>
<th>2.5%</th>
<th>Mean</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-82.78</td>
<td>-55.59</td>
<td>-34.32</td>
</tr>
<tr>
<td>Dyadic Effects:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polityi × Polityj</td>
<td>-0.08</td>
<td>-0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Importij</td>
<td>-0.40</td>
<td>-0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>IGOij</td>
<td>-0.22</td>
<td>0.02</td>
<td>0.26</td>
</tr>
<tr>
<td>Distanceij</td>
<td>-8.18</td>
<td>-5.55</td>
<td>-3.94</td>
</tr>
<tr>
<td>Sender Effects:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populationi</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>GDPi</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Polityi</td>
<td>-0.54</td>
<td>0.39</td>
<td>1.37</td>
</tr>
<tr>
<td>Receiver Effects:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populationj</td>
<td>-0.03</td>
<td>-0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>GDPj</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Polityj</td>
<td>-0.65</td>
<td>0.35</td>
<td>1.30</td>
</tr>
<tr>
<td>Dependencies:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Sender σ_a^2</td>
<td>170.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sender-Receiver $\sigma_{a,b}$</td>
<td>125.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Receiver σ_b^2</td>
<td>148.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reciprocity ρ</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Error Variance σ_e^2</td>
<td>270.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{15}\) Full results for the other 10 years estimated are available on the replication archive for this project: http://faculty.washington.edu/mdw/data.html.

\(^{16}\) Similar results can be found in Bennett (2006).

\(^{17}\) All the results from the generalized bilinear model in each of the 11 years analyzed may be found on the replication Web site for this project.
made in standard, pooled analyses. In particular, the impact of the number of joint memberships in international organizations moves from exerting a modest suppression on militarized interstate disputes in the 1950 through 1970 era, to exhibiting a slight, but always positive impact thereafter. This suggests that international organization membership does not, in recent years, reduce the probability of militarized interstate conflict, but may actually be associated with a greater number of dyadic disputes. In the same way, with the exception of 1990, both the impact of joint democracy and international trade within dyads appears to exert a much smaller impact on the probability of militarized disputes in recent years. This goes against any claim that the forces of the Kantian peace are getting stronger as more countries become democratic.

On the other hand, the second row of estimates illustrates that the level of democracy in each country in a dyad generally has an association with increased probability of conflict in militarized interstate disputes. Thus, democracies appear to be more likely to be the first-mover, or initiator, in a militarized dispute, and they are more likely to be targets of militarized disputes, though this effect seems to be diminishing. It is the confluence of democracy on both sides of the dyad that is associated with fewer instances of
conflict, a result that is entirely consistent with the bulk of research on the broader topic of the democratic peace.

Analyzing Decades

In addition, we analyzed each decade since 1950, using a bilinear model as specified above. One distinct difference in these analyses is that we counted the number of disputes for each dyad pair during the decade, rather than a simple binary indicator of dispute. As a result, we employed a Poisson link function in the bilinear model. The results are presented visually in Figure 3. These results show that imports tend to reduce the probability of disputes, though in the 1970s this effect was positive, and the 1975 analysis presented earlier had credible intervals spanning zero. Similar to results for individual years, the impact of IGO membership is frequently positive, rather than negative, as the Kantian peace argument would suggest. Distance has a strong negative impact on the probability of MIDs, and its decade-averaged impacts appear to be increasing in magnitude.

Compared to the annual results, however, the joint democracy variable has strong and consistently negative impacts on the probability of interstate conflict, exactly as predicted by the Kantian peace argument. To the extent that both partners are more democratic, their joint probability of getting into a dispute with each other is reduced. The separate impact of the level of democracy on both sides of a dyad is shown to be generally negative, but often indistinguishable from zero. Generally, the level of democracy in the initiator is more a powerful retardant for dispute involvement than is the level of democracy in the target. In short, we find more support for the democratic pillar of the Kantian peace in the decade-based analyses.

Predicting Militarized Interstate Disputes

How well does the general bilinear model predict militarized interstate disputes? First, we return to the yearly analyses. Incorporating the higher-order dependencies for the annual data from the year 2000, the model correctly classifies 63 out of 114 militarized interstate disputes (52%, for a cut-point of 0.0048), accompanied by only 12 false positives. We also provide predictions mirroring our earlier experiment reported in Table 3, which reflects data for a single year. Thirty-seven disputes are correctly identified by our model using a cut-point of 0.50, with only six false positives. There is a substantial number of false negatives...
Table 3 The Predictions from the Bilinear, Mixed-Effects Model for the Year 2000

<table>
<thead>
<tr>
<th>Cut-point: 0.50</th>
<th>Nondisputes</th>
<th>Disputes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Nondisputes</td>
<td>23,442</td>
<td>77</td>
</tr>
<tr>
<td>Predicted Disputes</td>
<td>6</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cut-point: 0.0048</th>
<th>Nondisputes</th>
<th>Disputes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Nondisputes</td>
<td>23,436</td>
<td>51</td>
</tr>
<tr>
<td>Predicted Disputes</td>
<td>12</td>
<td>63</td>
</tr>
</tbody>
</table>

Note: Thirty-seven dispute involvements are correctly identified with a 0.50 cut point, but sixty-three are found when the posterior mean is used.

Table 4 The Predictions from the Bilinear, Mixed-Effects Model for the Year 1950

<table>
<thead>
<tr>
<th>Cut-point: 0.50</th>
<th>Nondisputes</th>
<th>Disputes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Nondisputes</td>
<td>5,663</td>
<td>33</td>
</tr>
<tr>
<td>Predicted Disputes</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cut-point: 0.0063</th>
<th>Nondisputes</th>
<th>Disputes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Nondisputes</td>
<td>5,661</td>
<td>29</td>
</tr>
<tr>
<td>Predicted Disputes</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

(77). Using the ex post ante mean to determine the prediction threshold, 63 correct dyadic MID involvements are predicted, with 12 false positives and 51 false negatives. It appears that the model is making reasonable predictions, correctly identifying about one-half of the observed disputes, accompanied by a relatively low rate of false predictions.18 Importantly, of the 75 predicted disputes about 85% are actual disputes. Not every year has results comparable to those for the most recent year. In some single years, there are very few actual MIDs. Other years have much more modest predictive success. For example, in 1950 (shown in Table 4) only a few militarized dispute involvements are correctly predicted; however, seven disputes are correctly predicted out of a possible 36—almost 20%, accompanied by only three false positives. As shown in Table 5 in 1960, 1975, and 1980, the model fails to predict a single conflict.

We present in Figure 4 the latent positions of countries in 1950. These are shown in two plots, one for the MID initiator latent space, on the left, the other the target latent space, shown on the right. Colors correspond to geographical positions, so that similar countries are proximate to one another. For example, the countries of North and South Asia are shown in an aquamarine/turquoise tone. China and North Korea, besides being the largest vectors in the latent space, are located close to one another, virtually overlapping. This illustrates that they have similar patterns (in 1950) of initiation of militarized disputes with other countries. Other groupings in this latent mapping illustrate the clustering of European countries (shown in maroon and also in purple hues). The corresponding illustration of receiver latent space for 1950 also shows considerable geographic clustering. The basic idea of these latent clusters is that they capture the extant dependencies in the data, incorporating them into the model, so that conditional on these latent clusters, the dyadic data may be treated as independent and identically distributed.

Even in years that are sparse in the number of MID involvements, the model still performs better than previous models. Table 5 illustrates the predictions of the model using the posterior mean for each year as the cut-point. These results, of course, were generated in-sample. It is a much more demanding task to generate good out-of-sample results, where the predictions are not a direct consequence of the data that generated them. We now turn to such an approach, introduced in political science by Beck, King, and Zeng (2000).

A Cross-Validation Experiment

We focus our discussion on the most recent 10-year period from 1990 to 2000.19 There are 130 countries for which data are available in this period, resulting in a dyadic matrix of 130×130, with the diagonal set by definition to 0. We randomly divide these dyads into two equally sized sets, a training (fit) set and a test set. The model is estimated using data from the training set. Estimated coefficients are then used in combination with the covariate data from the test set to generate predicted probabilities in the test set. This is an out-of-sample, cross-validation of the model. We treat the dependent variable as binary for any conflict during the decade and average covariates over the period. Several models are estimated. First we estimate the general bilinear latent space model, with three latent dimensions as specified in Equation 1. This model was estimated for the full data, and then it was estimated for the randomly generated 50% sample which comprises the

18One metric of “fit” is the Proportional Reduction in Error, variously known as the PRE or λ_P statistic, which is an index of the association between two nominal scales. Using 0.50 as the cut-point yields a PRE in 2000 of 0.27 and 0.45 when the cut-point is set to the posterior mean of 0.0048. We are indebted to Bruce Bueno de Mesquita for elaborating this point for us.

19Each decade was examined and produced similar results. Because of space limits, we only present the most recent decade.
FIGURE 4 The Estimated Latent Space for Initiators and Targets of Militarized Interstate Disputes in 1950

(a) Latent Space of MID Initiators, 1950
(b) Latent Space of MID Targets, 1950
(c) Legend

Table 5 The Predictions of the Basic Bilinear Model for 11 Separate Years

<table>
<thead>
<tr>
<th>Year</th>
<th>Cut-point</th>
<th>Correctly Predicted MID Involvements</th>
<th>False Negatives</th>
<th>False Positives</th>
<th>Correctly Predicted Zeros</th>
<th>MID</th>
<th>Dyads</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>0.0063</td>
<td>7</td>
<td>29</td>
<td>3</td>
<td>5661</td>
<td>36</td>
<td>5700</td>
<td>76</td>
</tr>
<tr>
<td>1955</td>
<td>0.0045</td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>6612</td>
<td>30</td>
<td>6642</td>
<td>82</td>
</tr>
<tr>
<td>1960</td>
<td>0.0031</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>10886</td>
<td>34</td>
<td>10920</td>
<td>105</td>
</tr>
<tr>
<td>1965</td>
<td>0.0039</td>
<td>6</td>
<td>50</td>
<td>4</td>
<td>14220</td>
<td>56</td>
<td>14280</td>
<td>120</td>
</tr>
<tr>
<td>1970</td>
<td>0.0029</td>
<td>12</td>
<td>36</td>
<td>2</td>
<td>16462</td>
<td>48</td>
<td>16512</td>
<td>129</td>
</tr>
<tr>
<td>1975</td>
<td>0.0022</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>19140</td>
<td>42</td>
<td>19182</td>
<td>139</td>
</tr>
<tr>
<td>1980</td>
<td>0.0021</td>
<td>0</td>
<td>40</td>
<td>4</td>
<td>18588</td>
<td>40</td>
<td>18632</td>
<td>137</td>
</tr>
<tr>
<td>1985</td>
<td>0.0030</td>
<td>2</td>
<td>54</td>
<td>2</td>
<td>18574</td>
<td>56</td>
<td>18632</td>
<td>137</td>
</tr>
<tr>
<td>1990</td>
<td>0.0030</td>
<td>2</td>
<td>53</td>
<td>1</td>
<td>18576</td>
<td>55</td>
<td>18632</td>
<td>137</td>
</tr>
<tr>
<td>1995</td>
<td>0.0023</td>
<td>6</td>
<td>49</td>
<td>6</td>
<td>23809</td>
<td>55</td>
<td>23870</td>
<td>155</td>
</tr>
<tr>
<td>2000</td>
<td>0.0048</td>
<td>63</td>
<td>51</td>
<td>12</td>
<td>23436</td>
<td>114</td>
<td>23562</td>
<td>154</td>
</tr>
</tbody>
</table>

Note: These illustrate the 3rd-order dependencies in the dyadic Militarized Interest Dispute data. The colors are chosen so that proximate countries have proximate colors.

The estimates from the fit set estimation were used to predict MIDs in the test set of data; this is labeled “Test Set: Latent,” in figures to follow. Next, using the fit set, we estimated a model that deleted the higher-order dependencies from Equation 1; this model is essentially a multilevel logistic regression that includes the dyadic as well as sender and receiver covariates. This is labeled “Test Set: Logit” below. Another model was estimated in the same fashion, except that the dyadic covariate that measures the distances among actors was deleted; this model is
Figure 5 Out-of-Sample Cross-Validations of a Logistic and Latent Space Model, Estimated on Training Data from 1990 to 2000 and Examined Against Test Data from the Same Period

Note: Results are also presented for a standard logistic model in which the distance covariate is deleted. This illustrates that the out-of-sample predictive power of the standard Kantian peace model rests in large part on the inclusion of geographic proximity of dyad pairs, rather than the explanatory power of covariates capturing the substance of the Kantian argument.

Figure 5(a) presents the Receiver Operator Characteristics curves for these estimations. The ROC curve presents the true positive prediction rate as a function of the false positive prediction rate, for all possible cut-points dividing the estimated probabilities into predicted events and nonevents. The light blue line illustrates that the in-sample accuracy of the latent space model is quite high. The out-of-sample ROC curve for this model is shown in blue, and is below the in-sample fit, illustrating that the model performs worse in out-of-sample tests, but that it still is fairly accurate. The red line presents the ROC curve for the standard logistic implementation of the model (which does not specify any higher-order dependencies). This line is interior to both blue lines, illustrating that it has worse fit compared to the other two estimations.

We present a green line which is a standard logistic model that is estimated without the inclusion of the distance variable in the specification. This model captures the ability of the Kantian tripod variables to accurately predict the absence and presence of militarized disputes in out-of-sample tests. Finally, the gray line close to the diagonal presents cross-validation results for the original Oneal and Russett model (including peace years corrections), using their specification and their data for the same decade. This model is the least successful in the cross-validation experiment. In general, including the higher-order dependencies allows one to have improved model performance, and it turns out that including distance as a covariate is more important than whether any of the covariates frequently used in this literature is included.

Figure 5(b) illustrates the out-of-sample predictive ability of a standard logistic regression compared to the specification which includes the latent representations of the higher-order dependencies in the data. In this figure we examine the 100 largest predicted probabilities of each of the estimated models, sorted from largest to smallest. We then examine each corresponding dyad to see whether a militarized dispute existed in that dyad. We keep a running total of the number of correctly predicted MIDs and plot it against the running number of dyads checked (from one to 100). For any given model, if the largest 100 probabilities corresponded to 100 dyads that were in militarized interstate disputes, then the plot of the cumulative success would fall along the line $y = x$; if no MIDs were found in...
the dyads with the 100 largest predicted probabilities, the line would be indicated by the line $y = 0$. Better models will have a cumulative predictive success that is closer to the diagonal. This kind of comparison complements the ROC curve and provides a more complete picture of the out-of-sample predictive performance than do single number summaries.

The standard approach substantially underperforms models that include the latent representation of the higher-order dependencies in these data. The latent space approach is able to capture approximately twice the number of actual disputes that the logistic specification identifies. In order to gauge further which covariates were important, we selectively eliminated joint democracy, joint memberships in intergovernmental organizations, and measures of economic interdependence, as well as the country-level covariates. None of these made any difference in the outcome. Instead, we found that deleting the geographic proximity variable drastically undercut the out-of-sample predictive ability of the standard model. This is portrayed in Figure 5(b) by the green line. In short, these results suggest that (a) despite a strong in-sample descriptive performance, a typical approach to examining the Kantian peace is outperformed substantially by a model that includes the higher-order dependencies that characterize dyadic data and (b) most of the power of the standard Kantian peace model in out-of-sample tests is derived from the inclusion of geographic proximity of countries.

Figure 6 presents a map of countries’ positions in three latent dimensions estimated for the period from 1990 to 2000. The latent dimensions, represented here in two dimensions, are scaled to have unit length, but the size of the latent vector is proportional to the size of the acronym representing the country. Further, the initiators are scaled to be located interior to the latent representation of the targets. Three clusters of initiation are evident: one in Africa (indicated by the acronyms for Uganda and Rwanda), another in the Middle East (flagged by Iraq and Jordan), and a third, led by the United States. In terms of the dependencies at the other end of the Militarized Interstate Dispute, Namibia and the Democratic Republic of Congo lead an African cluster, Iraq is revealed as a likely target of United States–initiated disputes, while Jordan, Iraq, and North Korea are shown to be hostile toward the United States and many of its traditional allies. These dependencies are shown by the closeness of country positions in this representation of latent space. Actual militarized interstate disputes are shown in this figure by lines connecting the countries involved.

By way of summary, we observe that a bilinear, latent space approach allows coherent heuristics about models that are based on dyadic data. In particular, we learned that it is possible to make new inferences about the Kantian peace. Prime among these is that the Kantian peace tripod is shakier in some years than in others, and we need to understand better this temporal fragility. It seems most solid in years in which scant conflict occurs, but worse in years in which there is more conflict. Ideally a predictive model of conflict should be as strong when there are more conflicts as when there are fewer. Without such a property it is a less reliable guide to policy than would otherwise be the case and, moreover, it is less satisfying theoretically.

Perhaps more importantly, we also learned that interaction dependencies abound in existing data used to study the Kantian peace. Under the standard approach to the Kantian peace—and, we suspect—many other problems in international relations research, second- and third-order dependencies among the data overwhelm the impacts of the standard covariates thought to explain why democracies do not fight one another. This does not mean that empirical theories are incorrect, necessarily. It does mean that they are incomplete if they fail to take into account these contextual dependencies. In particular, we must recognize that countries have a character to their foreign policies that is broadly consistent, imposing a correlation in their actions toward others. Often this is the result of explicit coordination. For example, at the turn of the century, then Chancellor of Germany Gerhard Schröder and President of France Jacques Chirac...
held informal bilateral dinners every six weeks, reportedly in part to coordinate their foreign policies in opposition to the United States. Similarly, some countries elicit similar responses from many others, imposing a correlation in their dyadic behavior patterns. These features of the social relations model are missing from most models in international relations, even those that recognize consistent patterns within dyads over time. These results also show that context is neither impossible to take into account systematically, nor solely the domain of qualitative analysis.

Conclusion

The broad research program of the democratic peace has been an attractive research program to many in the field of international relations. This attraction is probably due to the coherence of the program, as well as to the fact that it offers the basis for theoretically informed, empirically supported policy advice, that, if adopted, ought to motivate the enhancement of democratic political institutions. The results of the Kantian peace research program contain similar implications for the promotion of democracy and increasing levels of trade and membership in international governmental organizations. However, in our reexamination none of these aspects receives strong empirical support in the analysis of data from single years. Instead the dependencies in the dyadic data among common senders and common receivers overwhelm the standard covariates thought to be supportive of the Kantian peace. However, when we pool the analysis for decades, we see that these components regain their statistical prominence. We might conclude that the Kantian peace is a longer term phenomenon that might not be visible in separate, yearly slices of data. However, there is an inescapable fact that undercuts this conclusion. When we conduct out-of-sample tests of the basic model, we find that despite high statistical significance, none of the variables representing the Kantian tripod is associated with any substantial degree of predictive success. Instead, it is only the distance variable that undergirds the predictions of the standard representation of the Kantian peace. This suggests that the extant results frequently cited in the quantitative literature on the Kantian peace are probably plagued by overfitting. However, the goal of these analyses is an identification of the process whereby international conflict is influenced by democracy, trade, and international organizations.

In comparison, the model that captures the dependencies among countries performs remarkably well in out-of-sample tests. While it is true that more complicated models will always do better in in-sample statistical tests, this is not true of out-of-sample examinations. Consequently, we have greater confidence in the contribution that our specifications of the dependencies can bring to the study of the Kantian peace and other international phenomena.

Our results should raise some skepticism about the robustness of the Kantian peace argument. That is not to suggest jettisoning the Kantian ideas. But it does suggest that our certitude about it needs tempering. To be sure, shared democratic political institutions in a dyad reduce the probability of conflict, but the overall effect is modest. Modest effects can, of course, be important. The idea that shared memberships in intergovernmental institutions reduces conflict shows great variation over time, and in recent years actually appears to have a modest positive effect—it is associated with more conflict, not less. Finally, support is virtually nonexistent for the idea that high levels of trade dampen conflict. The Kantian tripod rests on a weaker empirical basis than was previously thought.

In addressing these substantive problems we also attempted to cast light on three more general problems in some empirical work in international relations. The first problem is that dyadic data contain dependencies that are omitted by most popular procedures for analyzing international relations. Because regression-based approaches assume that the data are exchangeable and the errors independently and identically distributed, they are unable to capture the extent to which dependent data may actually reflect the ebb and flow of international politics. In reviewing the difficulties of analyzing dyadic international relations data, King noted that the thorniest problem is to unravel the dependencies in dyadic data that result in biased estimates of coefficients and covariance structures, and further suggested that “[a] logical methodological starting point for addressing the problems at hand would be based on Bayesian hierarchical, random effects, or split population models” (2001, 506).22

A second important problem concerns the basic inferential model that dominates popular practice in the

20These were the so-called Blaesheim meetings, named after the French village in which the first one occurred in January 2001.

21One early effort examined strategic dependencies in the context of endogenous choice calculus (Smith 1999). Another important initiative (Signorino 1999) extends the Quantile Response Equilibrium in the context of a solution to certain game-theoretic models of strategic choice.

22Clark and Regan (2003) have examined split population models, examining heterogeneity, but not dependencies, in different samples.
field of international relations and other disciplines. Since much research in international relations is based on observational studies that have a large number of cases, there is an appearance of statistical significance in almost all the findings in the literature, even considering the well-known publication bias for positive and statistically significant results. Actually, the prevailing popular statistical approach reflects the ability of the tests to detect small differences—i.e., the power of the tests—as well as the number of observations more than it reveals any underlying statistical significance of hypothesized causal linkages (Gill 1999; Savage 1957). This research tradition somehow expects more from tests of significance, an expectation (Gill 1999; Savage 1957). This research tradition somehow reflects the ability of the tests to detect small significant results. Actually, the prevailing popular statistical approach of observational data do not. As a result, statistical significance tests can be badly misleading in terms of producing information about the underlying data generating processes by allowing scholars to attribute statistical significance to summary characteristics known a priori to be different.

Finally, many studies have focused solely on statistical significance as a measure of “fit,” while at the same time avoiding evaluations of the out-of-sample fit of estimated model predictions with actual data. Regression diagnostics are only one heuristic, not the terminus of scientific investigation. Indeed, they can often be misleading by suggesting confidence in results that are highly uncertain. We show that a predictive (out-of-sample) heuristic helps to protect scholars from making statistical inferences that may be problematic. In this regard, we underscore Beck, King, and Zeng’s (2000) insights about using predictive cross-validation for model assessment in international relations. The basic idea is quite simple: a good model will not only have estimated quantities of interest that are informative, but it also should accurately map the covariate information into the dependent variable in a new set of similar data. In terms of predicting the pattern of militarized interstate disputes, this does not appear to be the case for Kantian peace theory.

One weakness of work on this topic to date is the absence of any substantial consideration of time dependencies, despite our demonstration that other dependencies are important. Given that many research reports use the time series corrections of Beck and Katz (1995, who have now somewhat revised their earlier recommendations; Beck and Katz 2004) but ignore the second- and third-order dependencies, it seemed reasonable to focus on the latter as a way of opening up a new line of thinking about dependencies. In the long run it will be important to include temporal as well as higher-order dependencies in our models of interstate interaction. However, no one has yet solved this problem.

Appendix A. Data

All the data employed in this study, as well as more detailed results from our empirical estimations, are available on the replication archive for this project.

A.1. Country-Level Data

A.1.1. GDP. Data on the annual Gross Domestic Product were taken from Kristian Skrede Gleditsch’s “Expanded Trade and GDP Data, version 4.1” (2002). These data in 1999 U.S. dollars are available at http://privatewww.essex.ac.uk/~ksg/exptradegdp.html.

A.1.2. Democracy and Autocracy. We use the annualized polity score (called Polity2), which ranges from −10 for highly authoritarian states to +10 for highly democratic societies, to gauge the domestic institutions in each country. These data are available from http://www.cidcm.umd.edu/inscr/polity/, with registration. Some of these data were updated with information on so-called “micro-states” from the separate database maintained by Gleditsch’s (2003) Modified Polity P4 and P4D Data, Version 1.0., available at http://privatewww.essex.ac.uk/~ksg/Polity.html.

A.1.3. Population Data. Data on population were taken from Kristian Skrede Gleditsch’s population data archive, “Expanded Population Data,” University of Essex.

A.2. Dyadic Data

A.2.1. Militarized Interstate Disputes. We employed the Militarized Interstate Disputes database (version 3.02) which is maintained by Ghosn and Bennett, and described in Codebook for the Dyadic Militarized Interstate Incident Data, Version 3.0, 2003. These data and the documentation are available at http://cow2.la.psu.edu/. The dependent variable in this study is the existence of a militarized dispute between any two pairs of countries in a given year,

23Research on this topic is presently underway on several fronts. Ward and Peter Hoff are supported by a National Science Foundation grant (SES-0631531) to study “Longitudinal Network Modeling of International Relations Data.” Anton Westveld’s recent (2007) doctoral dissertation worked out the covariance structures for simple time dependencies in social networks. Other ideas being explored include the incorporation of both partial adjustment mechanisms and hidden Markov models.
A.2.2. **Dyadic Democracy.** The product of the polity score for any given pair of countries defines the jointly democratic characteristics of regime types in the two countries.

A.2.3. **Trade.** Imports were taken from Gleditsch’s “Expanded Trade and GDP Data, version 4.1” (2002). These data are available at http://privatewww.essex.ac.uk/~ksg/exptradegdp.html. The trade data are used in billions of current year U.S. dollars.

A.2.4. **International Governmental Organizations.** We used the IGO data on international governmental organizations with at least three independent states as members (Version 2.1) maintained by Pevehouse and Nordstrom and described in Pevehouse, Nordstrom, and Warnke, “Intergovernmental Organizations, 1815-2000: A New Correlates of War Data Set, 2003.” These data are at http://cow2.la.psu.edu/.

A.2.5. **Distance.** Distance was calculated using the Haversine formula with data on latitude and longitude of capital cities taken from the world.cities database maintained as part of the maps package in the R statistical programming package. These are available from cran.r-project.org. Distance was calculated in 1000s of Kilometers.

A.3. **Countries Analyzed**

We used all the data available to us for each year, which resulted in a superset of 165 countries over the period from 1950 to 2000: Afghanistan, Albania, Algeria, Angola, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahrain, Belgium, Benin, Burkina Faso (Upper Volta), Bhutan, Belarus, Bangladesh, Bolivia, Botswana, Brazil, Burundi, Bulgaria, Cambodia, Canada, Cameroon, Cote D’Ivoire, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cuba, Cyprus, Czechoslovakia, Czech Republic, Denmark, Djibouti, Dominican Republic, Democratic Republic of Congo (Zaire), Democratic Republic of Vietnam, Ecuador, Egypt, Equatorial Guinea, Eritrea, Estonia, Ethiopia, Finland, Fiji, France, Gabon, Gambia, German Democratic Republic, German Federal Republic, Ghana, Germany, Guinea-Bissau, Greece, Georgia, Guatemala, Guinea, Guyana, Haiti, Honduras, Hungary, India, Indonesia, Ireland, Iran, Iraq, Israel, Italy, Jamaica, Jordan, Japan, Kenya, Kuwait, Kyrgyz Republic, Kazakhstan, Laos, Latvia, Liberia, Lebanon, Lesotho, Libya, Lithuania, Mauritania, Former Yugoslav Republic of Macedonia, Madagascar, Malaysia, Mauritius, Malawi, Mexico, Moldova, Mali, Mongolia, Morocco, Myanmar, Mozambique, Namibia, Nepal, New Zealand, Nicaragua, Nigeria, Niger, Norway, Netherlands, Oman, Pakistan, Panama, Paraguay, Peru, Philippines, Papua New Guinea, Poland, Portugal, People’s Republic of Korea, Qatar, Republic of Korea, Romania, Russia, Republic of Vietnam, Rwanda, South Africa, El Salvador, Saudi Arabia, Senegal, Serbia, Sierra Leone, Singapore, Slovakia, Slovenia, Somalia, Spain, Sri Lanka, Sudan, Swaziland, Sweden, Switzerland, Syria, Tajikistan, Taiwan, Tanzania, Thailand, Turkmenistan, Togo, Trinidad and Tobago, Tunisia, Turkey, United Arab Emirates, Uganda, United Kingdom, Ukraine, Uruguay, United States of America, Soviet Union, Uzbekistan, Venezuela, Arab Republic of Yemen, Yemen, People’s Republic of Yugoslavia (Serbia), Zambia, and Zimbabwe.

References

