RSVP: A hybrid model of Register Sharing and Value Prediction

Kleovoulos Kalaitzidis, INRIA
André Seznec, INRIA
Value Prediction [Lipasti&al.96][Mendelson&al.97]

- Breaks true data dependencies to extract more ILP:
 - The result of an instruction is predicted before scheduled execution.
 - Dependent instructions (*consumers*) can speculatively execute ahead of their *producer*.

```
I1 → I2 → I3 → I4
```
Value Prediction [Lipasti&al.96][Mendelson&al.97]

- Breaks true data dependencies to extract more ILP:
 - The result of an instruction is predicted before scheduled execution.
 - Dependent instructions (consumers) can speculatively execute ahead of their producer.
Value Prediction schemes [Sazeides&al.97]

Instruction-based VP schemes:

- **Context-agnostic:**
 - **Last Value**: Pred = Result of last instance
 - **Stride**: Pred = Result of last instance + constant

- **Context-aware:**
 - **FCM**: Pred based on results of n recent instances
 - **VTAGE**: Control-flow based Last Value Predictor (use of global branch history)
 - **DVTAGE**: Hybrid VTAGE and Stride
Last Value Prediction

Predict:
- Inst PC
 - Last Value Table
 - Prediction
 - Last Value
 - Confidence
 - Saturated

Update:
- Confidence++
- Equal
- Reset/Update
- Committed Value
Last Value Prediction

Predict:

- Inst PC → Last Value Table
- Last Value Table → Prediction
- Prediction → Last Value
- Last Value → Confidence
- Confidence → Saturated

Update:

- Confidence++ → Equal
- Equal → Saturated
- Saturated → OoO Engine
- OoO Engine → Commit Value
- Commit Value → Equal
- Equal → Confidence++
- Confidence++ → Reset/Update
Last Value Prediction

Predict:

Instance \([n+p]\) to predict last committed value

Update:

Previous instance \([n+(p-1)]\) not committed yet
Proposal

Combine Last Value Prediction with an Equality Predictor

- **Equality Predictor** identifies equality between consecutive occurrences of the instruction.

- When equality fits in the instruction window, the two consecutive instructions **share the same destination register**.

- **Last Value Prediction** is selected when the previous instance of the instruction is not inflight.
Introducing Last Value Equality Prediction

- **Last Committed-Value Table:**
 - 3-way set associative (13bits tag)
 - 3-bit saturating confidence counter
 - 64-bit value

- **Equality Table:**
 - 3-bit saturating counter
 - 1-bit equality indicator

- **Result Buffer**: Circular-FIFO double size of the instruction window storing committed results.

- **Fully Associative Instruction Window:**
 - Entries associated with the instruction-PC
 - Keeps destination register index
Introducing Last Value Equality Prediction
Microarchitecture Design

- VP procedure [Perais & Seznec.14]:
 - Index Last Value Equality predictor at Fetch.
 - Consider only confident predictions.
 - Squash the pipeline on a misprediction or fault register sharing.
 - Validate **beyond the OoO engine**, at commit.
 - Update predictor using the committed value.

![Diagram of Microarchitecture Design]

- **Fetch**
- **Decode**
- **Rename**

- **Last Value Equality Predictor**
- **Validation + Squashing @commit**
- **Selector**

- **n-issue Out-of-order Engine**
 - **Fully Associative Instruction Window**
 - **ROB**
 - **IQ**
 - **PRF**
 - **FUs**

- **In-order Frontend**

- **PC**
What we expect

- Keep benefits of **Value Prediction**.

- Offload Value Prediction logic by exploiting equality between inflight instructions with **Register Sharing**.
 - A chain of inflight instances will have their result ready as soon as the oldest one has retrieved it
What we expect

- Keep benefits of **Value Prediction**.

- Offload Value Prediction logic by exploiting equality between inflight instructions with **Register Sharing**.
 - A chain of inflight instances will have their result ready as soon as the oldest one has retrieved it

> **Conclude to simplified speculation technique based on the trivial model of Last Value Prediction (not history-based a la TAGE).**
Thank you architects!