Exploring GPU Architectural Optimizations for Recurrent Neural Networks (RNNs)

Suchita Pati
University of Wisconsin-Madison
Motivation

- RNNs heavily used in several important applications
Motivation

- RNNs heavily used in several important applications
- GPUs used for RNNs, but not as well studied as CNN
- RNN architecture different than CNN
- Existing CNN optimizations not very effective
Motivation

• RNNs heavily used in several important applications

Understand RNN requirements and holistically rethink GPU arch!
Background and Challenges

- RNNs used to recognize and predict sequences
Background and Challenges

• RNNs used to recognize and predict sequences

\[
\begin{align*}
x &= \text{input} & U &= \text{input weight} \\
\text{o} &= \text{output} & W &= \text{recurrent weight} \\
\text{s} &= \text{hidden state} & V &= \text{output weight}
\end{align*}
\]
Background and Challenges

- RNNs used to recognize and predict sequences

\[
\begin{align*}
 x &= \text{input} & U &= \text{input weight} \\
 s &= \text{hidden state} & W &= \text{recurrent weight} \\
 o &= \text{output} & V &= \text{output weight} \\
 t &= \text{timestep}
\end{align*}
\]

- They need to remember previous inputs
- Have real-time deployment constraints
Background and Challenges

- Contain loops to remember information
 - sequential dependency **limits parallelism**
- Batching difficult due to strict SLA
 - poor data reuse - **high memory bandwidth**
- Read and write activations between timesteps
 - requires **high memory bandwidth**
No need to wait for the entire timestep computation to finish!
Proposal - Compute

• Compute multiple timesteps in a pipelined parallel fashion
Proposal - Compute

• Map each timestep’s computation to a different (set of) Streaming Multiprocessors (SM)
Proposal - Compute

- Map each timestep’s computation to a different (set of) Streaming Multiprocessors (SM)
Proposal - Compute

- Map each timestep’s computation to a different (set of) Streaming Multiprocessors (SM)
Proposal - Compute

- Map each timestep’s computation to a different (set of) Streaming Multiprocessors (SM)
Proposal - Compute

- Send partially computed activation matrix from the producer SMs to the consumer SMs
Proposal - Compute

- Send partially computed activation matrix from the producer SMs to the consumer SMs
Proposal - Compute

- Send partially computed activation matrix from the producer SMs to the consumer SMs
Proposal - Compute

- Send partially computed activation matrix from the producer SMs to the consumer SMs
Proposal - Compute

- Send partially computed activation matrix from the producer SMs to the consumer SMs
Proposal - Memory

- **Prior work:** Use shared memory for activations [P-RNN ICML ‘16]
Proposal - Memory

- **Prior work:** Use shared memory for activations [P-RNN ICML ‘16]
- **We propose:** Use L1 cache for activations
 - Enables larger recurrent layer sizes
 - Requires only one copy
Proposal - Memory

- **We propose:** Use L1 cache for activations
 - Reduce memory bandwidth
 - locking cache ways
 - no need to synchronize with global memory
Proposal - Memory

• **We propose:** Use L1 cache for activations
 – **Reduce memory bandwidth**
 • locking cache ways
 • no need to synchronize with global memory
 – **Reduce Communication Overhead**
 • propagate updated activations directly to the consumers’ L1 cache

Use Stash [ISCA ’15]!
Evaluation

• Simulation environment: GPGPU-Sim
 – CUDA-based GPU simulator
 – Simulates Pascal and Volta architectures
 – Supports cuDNN and cuBLAS [ISPASS ‘19]
 – Ongoing work to enable execution of RNN kernels

• Initial workload: DeepBench
 – Training and inference of RNNs
 – Vanilla, LSTM and GRU
 – Varying hidden units, timesteps, batch size, seq. length.

• Other workloads:
 – DeepSpeech2, Persistent-RNN, Simple Recurrent Units (SRU)
Summary

• RNN challenges:
 – Dependencies between timesteps that limit parallelism
 – Poor temporal locality -- high memory bandwidth required
Summary

• **RNN challenges:**
 – Dependencies between timesteps that limit parallelism
 – Poor temporal locality -- high memory bandwidth required

• **Insight: exploit pipeline parallelism**
 – Extract parallelism through pipelining computations
 – Eliminate redundancy by using globally visible memory for activations
 – Optimize coherence protocol to exploit producer-consumer parallelism
Summary

• RNN challenges:
 – Dependencies between timesteps that limit parallelism
 – Poor temporal locality -- high memory bandwidth required

• Insight: exploit pipeline parallelism
 – Extract parallelism through pipelining computations
 – Eliminate redundancy by using globally visible memory for activations
 – Optimize coherence protocol to exploit producer-consumer parallelism

• Potential to:
 – Improve parallelism – increase GPU efficiency
 – Reduce memory bandwidth requirement – improve performance
 – Enable larger hidden layer RNN – enable better accuracy
Summary

• RNN challenges:
 – Dependencies between timesteps that limit parallelism
 – Poor temporal locality -- high memory bandwidth required

• Insight: exploit pipeline parallelism
 – Extract parallelism through pipelining computations
 – Eliminate redundancy by using globally visible memory for activations
 – Optimize coherence protocol to exploit producer-consumer parallelism

• Potential to:
 – Improve parallelism – increase GPU efficiency
 – Reduce memory bandwidth requirement – improve performance
 – Enable larger hidden layer RNN – enable better accuracy

Rethinking GPU architecture holistically can significantly improve performance and efficiency!!
QUESTIONS?