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ABSTRACT
Ubiquitous finger motion tracking enables a number of exciting

applications in augmented reality, sports analytics, rehabilitation-

healthcare etc. While finger motion tracking with cameras is very

mature, largely due to availability of massive training datasets,

there is a dearth of training data for developing robust machine

learning (ML) models for wearable IoT devices with Inertial Mea-

surement Unit (IMU) sensors. Towards addressing this problem,

this paper presents ZeroNet, a system that shows the feasibility of

developing ML models for IMU sensors with zero training over-

head. ZeroNet harvests training data from publicly available videos

for performing inferences on IMU. The difference in data among

video and IMU domains introduces a number of challenges due

to differences in sensor-camera coordinate systems, body sizes of

users, speed/orientation changes during gesturing, sensor position

variations etc. ZeroNet addresses these challenges by systematically

extracting motion data from videos and transforming them into

acceleration and orientation information measured by IMU sensors.

Furthermore, data-augmentation techniques are exploited that cre-

ate synthetic variations in the harvested training data to enhance

the generalizability and robustness of the ML models to user di-

versity. Evaluation with 10 users demonstrates a top-1 accuracy of

82.4% and a top-3 accuracy of 94.8% for recognition of 50 finger

gestures thus indicating promise. While we have only scratched the

surface, we outline a number of interesting possibilities for extend-

ing this work in the cross-disciplinary areas of computer vision,

machine learning, and wearable IoT for enabling novel applications

in finger motion tracking.
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1 INTRODUCTION
Finger motion tracking enables exciting IoT applications in sports

analytics [2], healthcare and rehabilitation [28, 65], sign languages

[13], augmented reality (AR), virtual reality (VR), etc. Analysis of

finger motion of aspiring players can be compared to experts to

provide automated coaching support. In the context of healthcare,

finger motion stability patterns are known to be bio-markers for

predicting motor neuron diseases [12, 22]. AR/VR gaming as well as

precise control of robotic prosthetic devices are some of the other

applications that benefit from finger gesture tracking [11, 43].

Motivated by the above applications and coupled by recent innova-

tions in machine learning (ML) and the availability of large scale

training data, there is a surge of recent research [18, 31, 42] in

computer vision that track accurate finger poses from monocular

videos. Given that they do not require depth cameras, the range of

applications enabled is far reaching. However, such vision based

techniques are affected by issues such as occlusions and the need

for good lighting conditions to capture intricate finger motions.

In contrast to vision, the main advantage of wearable IoT devices

lies in enabling ubiquitous tracking without external infrastructure

while being robust to lighting and occlusions. However, unlike

vision, there is a dearth of large scale training data to develop robust

ML models for wearable devices. Towards overcoming this gap,

this paper presents a system called ZeroNet. This system requires

zero training overhead for developing robust ML models for finger

motion analytics using smart-ring based Inertial Measurement Unit

(IMU) sensors. In particular, ZeroNet harvests training data from

public videos of finger motions and develops ML models that can

be used for inferences on smart-rings with IMU sensors.

Such a method of learning from one domain for performing infer-

ences on a different domain has been explored before. Unsupervised

domain adaptation [64, 67] can adapt distributions between source

(video) and target (IMU) domains such that the model learnt on

source domain is used for inference on target domain. However,

such techniques are hard to apply to our problem domain since

this still requires enough real training data (atleast in unlabelled

form) from IMU to achieve sufficient convergence of the domain

adaptation process. Furthermore, each user’s finger motion pattern

as well as natural variations in sensor wearing positions could lead

to different distributions in the sensor data [15, 20] thus entailing

https://doi.org/10.1145/3450268.3453537
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more training data for each setting. On the other hand, ZeroNet
performs comparable to models developed with semi-supervised

domain adaptation [27, 83] which need partial labelled real IMU

data and even outperforms models fully trained on our own real

IMU dataset (details in Sec. 6). Given lack of large training datasets

under diverse conditions for smart-rings, we believe ZeroNet’s abil-
ity to provide promising accuracy without any training cost is an

important first step to bootstrap applications. With enough appli-

cations, more data can potentially be generated via crowd-sourcing

approaches to further push the accuracy of domain adaptation.

Fig. 1 illustrates the architecture of ZeroNet with the following

sequence of actions. (i) Appropriate sources of publicly available

videos (YouTube, ViMeo, Flickr etc.) are first identified as candi-

dates for training data. (ii) Finger locations are then extracted from

these videos using computer vision techniques [19, 73]. (iii) Appro-

priate motion metrics that can be captured from IMU (acceleration,

orientation etc) are then derived from these finger locations. (iv)

The training data thus extracted from videos is further enlarged

using data augmentation techniques (introducing variants of ro-

tations, speed of gestures, temporal clipping etc) to create a large

and high quality training dataset. (v) Such synthetic datasets are

used for training ML models (vi) Finally, the trained models can

be deployed directly for inferences on wearable devices with zero

training overhead. Inspired by favorable usability reviews of smart-

rings in monitoring activity in gym, sleep etc.,[46–48] we place a

sensor on the finger for gesture inferences (details in Sec. 3).

Although in a similar spirit to recent works [38, 55, 66, 74] showing

the feasibility of harvesting training data from videos for identify-

ing upto ten classes of human activities, ZeroNet differs from the

above works in following ways: (i) Shows the feasibility of harvest-

ing training data from videos for a gesture recognition problem

involving intricate finger motions. (ii) The harvested training data

from videos is combined with data augmentation techniques to

enable better generalizability of ML models. (iii) Shows the ability

of recognition over 50 classes – a five fold higher number of classes

than prior work extracting training data from public videos.

Harvesting training data from videos for performing inferences on

IMU is challenging because: (i) The IMU and camera have differ-

ences in sensing modalities, coordinate systems etc., thus requiring

careful pre-processing to transfer knowledge between the two do-

mains. (ii) The speed/orientation of gesturing, and body sizes can

differ across users. Similarly, the sensor wearing position and orien-

tation can vary due to natural errors in sensor placement. (iii) The

distribution of training data and test data will not match since they

come from different sources. Appropriate techniques are needed to

generalize the model developed from video-based training data to

perform accurate inferences on wearable devices.

In solving the above challenges, ZeroNet exploits a number of op-

portunities. (i) The sensor and camera coordinates can be appropri-

ately aligned by measuring the orientation of the wearable device

to perform coordinate transformations. (ii) ZeroNet approximates

IMU-like sensor data from location estimates extracted from videos

by performing systematic finite differences of locations to derive ac-

celerometer data. Similarly, the angle between finger joints and the

vertical plane is extracted from videos to approximate a dimension

of the orientation data. (iii) Towards handling body size diversity,

the location data from each video is normalized to a measurement

corresponding to a uniform body size (for example, by scaling the

data by the ratio of the shoulder length of the person in video to a

standard shoulder length). (iv) Towards enhancing the robustness

and generalizability of ML models, we augment the training data

by creating synthetic variants of the data with varying speeds and

magnitudes of acceleration. In addition, variants of data with minor

shifts in rotations is also added to provide robustness to varying

finger orientations or sensor positioning/displacement.

We implement ZeroNet on a wearable platform of a button shaped

off-the-shelf Mbient Sensor[9] worn as a ring on fingers. We extract

training data for 50 gestures of finger motion from a popular public

video source of American Sign Language (ASL) tutorial [8]. We

develop a CNN based model using this data by exploiting the above

enumerated opportunities. Testing results on 10 users achieves

a top-1 accuracy of 82.4% and a top-3 accuracy if 94.8% which

demonstrates the feasibility of our system. An implementation on

Samsung Galaxy S20 smartphones using TensorflowLite validates

the low latency and energy efficiency of the system.

A summary of our contributions in the paper include:

(i) Showing the feasibility of harvesting training data from videos for
performing inferences on IMU for finger gesture tracking.
(ii) A systematic pipeline that fuses data processing and data aug-
mentation techniques for better generalizability of ML models
(iii) Evaluation with 10 users that shows a top-1 accuracy of 82.4%
and a top-3 accuracy of 94.8% over 50 gestures.

The rest of the paper will expand upon this idea. Sec. 2 provides

a background on the nature of data in the domains of videos and

IMU, while Sec. 3 introduces the IMU platform . Sec. 4 will design a

signal processing pipeline for systematically transforming video-

based training data into IMU-based data. Sec. 5 will discuss data

augmentation techniques to handle the domain difference between

training and test data as well as for creating robust model that

is generalizable to any new user. Sec. 6 will provide results from

our experiments. Sec. 7 will survey related research and finally we

conclude with limitations and future directions in Sec. 8.

2 BACKGROUND
The success of human activity recognition in machine learning

depends on the availability of large scale annotated datasets. For ex-

ample Human 3.6m [30] has 3.6 million images of various activities

such as eating, walking, discussing, sitting, providing-directions,

talking on phone, making purchases etc. Similarly, the popular

ImageNet database consists of 14 million images. In contrast, for

wearables, Daphnet [14] gait dataset has 5 hours of walking data
from 10 subjects and PAMP2 dataset[54] has 7.5 hours of sensor

data from 9 subjects. Such datasets are very small in comparison

to vision datasets. Moreover to the best of our knowledge, such

datasets do not exist for finger motion tracking that use the recently
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Figure 1: The flow of operations in ZeroNet. 3D finger pose and locations are first extracted from videos. The location and pose
information is transformed into acceleration and orientation that can be captured by inertial sensors. Data augmentation
techniques are then introduced to create robust synthetic training datasets. The ML models developed on such datasets are
generalizable and directly used for inferences on wearable devices (smart-ring worn on finger) without any training overhead.

emerging platform of smart-rings. Towards overcoming this gap,

this section briefly discusses extracting finger locations from video

data for harvesting training data. We also discuss the nature of IMU

data to be approximated with video data.

2.1 Video Data
Large amounts of video datasets are publicly available. For example,

there are several YouTube videos of sports activities, movie clips of

human activities, sign language news etc. Exploiting such datasets

for harvesting training data can significantly reduce the overhead

of training data generation on wearable devices. In this paper, we

harvest training data from a popular public tutorial of sign language

gestures [8]. We show the feasibility of recognition of 50 most

popular finger gestures without any training data from IMU.

We exploit state-of-the art computer vision techniques for extract-

ing motion data from the videos for training ML models. Fig. 1

shows an example of a frame from our video dataset. We exploit

techniques in [73] that can extract finger joint locations from simple

RGB images, also shown in Fig. 1. In particular, Xiang et al [73] use

an efficient representation called 3D part orientation fields (POF)

to encode 3D orientation of all body parts in a 2D image space. The

POFs are learnt by a CNN trained over a large dataset thus learning

to predict 3D deformable mesh model of the whole body, face, and

fingers. While RGB images do not contain depth information, the

CNN model exploits the known priors of shape and pose models

of human body in addition to applying constraints of temporal

smoothness for extracting 3D motion information. As shown in Fig.

1, the whole body shape is extracted from which we only identify

the finger locations from the red highlighted region. The extracted

finger locations is used by ZeroNet to develop ML models for IMU

data as elaborated in further sections.

2.2 IMU Sensor Data
Inertial Measurement Units (IMU) consists of accelerometer, gyro-

scope, and magnetometer sensors widely embedded in wearable IoT

devices for enabling a number of applications in gesture recognition,

augmented reality, smart health etc. We provide a brief overview

of the 3D orientation of an object since it plays a critical role in

modeling the data captured by these sensors.

Consider a global frame of reference pointed towards "Up", "East",

and "North" directions (Fig. 2). Consider an object (e.g., IMU sensor)

whose local frame of reference is also shown in the figure. While the

two frames are perfectly aligned in Fig. 2(a), there is a misalignment

between the two frames as shown in Fig. 2(b). The 3D orientation of

an object captures this misalignment between the local and global
frames of reference. Consider a vector 𝑉 whose representation in
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Figure 2: (a) Perfectly aligned local and global frames (b)Mis-
alignment between local and global frames. Orientation cap-
tures the misalignment between local and global frames

Figure 3: Button sized IMU worn as a ring

the local and global frames are 𝑉𝑙 = [𝑋𝑙 𝑌𝑙 𝑍𝑙 ], and 𝑉𝑔 = [𝑋𝑔 𝑌𝑔 𝑍𝑔]

respectively. The 3D orientation of the object can be mathematically

quantified using a 3 × 3 rotation matrix 𝑅 which rotates the vector

between the two frames of reference as indicated below.[
𝑋𝑙 𝑌𝑙 𝑍𝑙

]
𝑅 =

[
𝑋𝑔 𝑌𝑔 𝑍𝑔

]
When an accelerometer sensor is under rest, it measures the pro-

jection of the gravity vector on its three axes [59]. Similarly, the

magnetometer sensor measures the projection of the earth’s mag-

netic field on its three axes. Since the acceleration due to gravity

and the geomagnetic field are globally known vectors, the local

measurements of these values using the sensors can ideally be used

for computing the rotation matrix 𝑅 described above to quantify the

orientation of an object. However, in reality, the mobility of the sen-

sor can corrupt the measurements of gravity by the accelerometer,

as well as the electromagnetic interference can interfere with the

magnetometer. Therefore, the gyroscope sensor data which mea-

sures the change in orientation (angular velocity) can be fused with

estimates of orientation from accelerometer and magnetometer to

compute accurate 3D orientation estimates of an object [82].

An accelerometer sensor measures the superposition of the gravity

and acceleration due to the linear motion of the wearable device.

The measurement is relative to the sensor’s local frame of reference.
Therefore, the orientation estimates as discussed above is useful not

only in converting the accelerometer measurements to the global
frame of reference but also in subtracting the component of gravity

from the acceleration measurements.

3 PLATFORM DESCRIPTION
We begin with a simple platform with a ring-like sensor worn on

the index finger as shown in Fig. 3. Note that all fingers are involved

in gesturing, but we place the sensor only on the index finger. While

we believe this is sufficient to show the feasibility of harvesting

training data from videos, this will cause miss-classifications among

gestures with similar motion of the index finger and different mo-

tion of other fingers. However, surprisingly, the accuracy with just

index-finger data is significant with very few miss-classifications

due to the specific reason noted here (details in Sec. 6). While the

miss-classification rate might increase with number of classes, we

discuss opportunities with additional techniques and sensors in

Sec. 8. The majority of the study places the sensor on the index

finger since it is more frequently involved in gestures in our video

dataset. However, we also conduct experiments to understand the

best placement option among other fingers (Sec. 6).

Smart rings that can pair with phones wirelessly to stream informa-

tion as well a monitor activity are already available on the market

[5, 6]. For example, the Oura ring [6] is popular as a sleep tracking

device and weighs between 4 and 6 grams, which is even lighter

than conventional rings, and packaged in a stylish design. It is low

intrusive with users finding it comfortable for wearing day and

night, gym, pool etc [46], thus receiving favorable online reviews

for usability [46–48]. However, most of these platforms are closed

and do not provide access to raw sensor data. Therefore we use a

button-shaped sensor from MbientLabs [9] snugly fit on the finger

like a ring as shown in Fig. 3. The sensor streams data wirelessly to

a smartphone which runs the ML models for gesture recognition.

The ring generates 9 axis IMU data - 3 axes each for Accelerometer,

Magnetometer, and Gyroscope. This forms the input to ZeroNet.

4 SYNTHETIC TRAINING DATA FROM
VIDEOS

The 3D locations captured from the video will be transformed into

synthetic accelerometer and orientation data for training the ML

models. A natural first step would be to simply double differenti-

ate the index finger location as extracted from the video to obtain

the acceleration of the index finger. However, such a simple dif-

ferentiation will not emulate the accelerometer data because of a

number of differences between IMU and video data. In this sec-

tion, we elaborate these differences together with approaches in

ZeroNet to address these differences. We begin by discussing the

basic pre-processing steps.

4.1 Pre-processing
A number of simple but critical pre-processing steps are needed to

match the distribution of the video and IMU dataset. We enumerate

the main steps here: (i) A low pass filtering with a cutoff frequency

of 10Hz was applied on both video derived acceleration and IMU

acceleration. (ii) The orientation data extracted from videos posses

a characteristic shape mainly because of the noise in the camera

data. Simply using these orientation estimates made the CNNmodel
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Figure 4: The camera’s motion data in Torso Coordinate
Frame can be aligned with the sensor measure data relative
to Local Frame using orientation estimates of sensor

memorize the shape and overfit. Thus, we regularized the orienta-

tion data using a smooth, low parametric function so as to prevent

the CNN model from memorizing the noise in the data.

4.2 Extraction of Acceleration
Coordinate differences: The location data captured by cameras

is relative to the camera’s frame of reference. However, the locations

can be transformed into torso coordinate frame (TCF) as shown in

Fig. 4. We chose our x-axis as the line joining the two ends of the

shoulder when the user is in a stable pose. Similarly, we chose the

z-axis to be in the plane of the torso but perpendicular to x-axis.

The y-axis is perpendicular to these two axes. Since we extract

entire shape of the human body using the work in [73], we identify

the appropriate shoulder and torso joints corresponding to the TCF.

We then project the extracted locations from the camera into TCF.

On the other hand, the acceleration measured by the sensors will be

in the local frame of reference which depends on the instantaneous

orientation of the sensor as depicted in Fig. 4. Therefore, ZeroNet
first converts the acceleration into the global frame of reference. The
difference between the global frame and the user’s facing direction

can be roughly computed when the sensor is in vertical free-fall

position or if the user is walking a few steps [56, 60]. We adopt this

approach in this paper for computing the difference between TCF

and global frame. Thus, the acceleration is first converted to global
frame, and then to TCF by using the orientation estimates of the

sensor. After this transformation, the acceleration due to gravity is

subtracted from the result since the accelerometer measurement

includes the sum of gravity and linear acceleration. The video and

IMU data will now be comparable with each other.

Fig. 5(a) compares the z-axis accelerometer data with double dif-

ferentiated data of video locations before such coordinate transfor-

mations for a hand gesture. Evidently, the two data look dissimilar.

On the other hand, after performing appropriate transformations,
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Figure 5: (a) The acceleration data from camera and video do
notmatch before coordinate alignment between TCF and LF
(b) The data from the two domains match well after coordi-
nate alignment between TCF and LF

the two sources of data look similar as depicted in Fig. 5(b), which

indicates the z-axis acceleration along TCF.

Double differences: While we considered tools like IMUSim [75]

to convert location data from videos to IMU data (e.g. acceleration),

there is no support for simulating finger joints. Therefore, we per-

form finite double differences as indicated by the equation below,

as also explored in prior work [66, 74].

𝑎𝑡 =
𝑝𝑡−Δ𝑡 + 𝑝𝑡+Δ𝑡 − 2 · 𝑝𝑡

Δ𝑡2

This extracts accelerometer data 𝑎𝑡 from locations 𝑝𝑡 extracted

from videos. While the IMU provides instantaneous acceleration,

the finite time double differences is only an approximation. Choos-

ing a smaller Δ𝑡 reduces the error in approximation due to finite

differences. However, smaller Δ𝑡 also decreases the signal to noise

ratio (SNR) of the generated acceleration signal because the change

in location may be too small over a small time interval whereas

the noise in the data is independent of time. We choose a value of

Δ𝑡 as 0.1s which provides a tradeoff that works well in practice.

An example is depicted in Fig. 5(b) where finite differences are

performed after the preprocessing steps such as low pass filtering.

Body size normalization and camera parameters: Difference

in body sizes of users can create differences in the recorded sensor

data even for the same gesture. In addition, the primary unit of esti-

mate of locations from images is in pixels. Extraction of location in

units of cms from public videos will need information or estimates

about the camera parameters [42]. Towards handling body size

differences as well as to eliminate the need for camera parameters,

we normalize all location estimates from camera to the size of a

standard human. In particular, we measure the shoulder length in

pixels and scale it with factor such that the shoulder length is 27

cm. Such scaled locations are used for deriving synthetic accelerom-

eter data. During testing, the accelerometer measurements from

a human are similarly scaled depending on how their shoulder

length compares with the standard length (27 cm). Fig. 6 shows an

example of comparison between video and IMU data before and

after normalization. Experimentally validated, the normalization

step enables better similarity in sensor data despite the difference

in body sizes of users and not having the camera parameters.

4.3 Extraction of Finger Orientation
Fig. 7 shows the metacarpophalangeal (MCP) and proximal inter-

phalangeal (PIP) joints of the index finger. The angle made by the
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Figure 6: (a) The data from video and IMU domains can vary
widely inmagnitude because of differences in body sizes and
units of measurements (b) Normalization techniques in Ze-
roNet renders the data from the two domains comparable

line joining these two joints with the vertical plane can be extracted

from these videos. The same piece of information can be extracted

from the orientation estimates of the IMU as indicated in the below

equations.

𝑦𝑝𝑟𝑜 𝑗,𝑥𝑧 = 𝑅𝑓 ∗ 𝑅

0

1

0

 −
[
0 1 0

]
𝑅𝑓 ∗ 𝑅


0

1

0


𝑎𝑛𝑔𝑙𝑒 = arccos

𝑦𝑇
𝑝𝑟𝑜 𝑗,𝑥𝑧


0

0

1


|𝑦𝑝𝑟𝑜 𝑗,𝑥𝑧 |

Here, 𝑦𝑝𝑟𝑜 𝑗,𝑥𝑧 denotes the projection of the direction of the finger

(line joining MCP and PIP joints) on the XZ plane. The sensor is

roughly aligned such that its local y-axis is along the direction

of the finger, but no careful calibration is needed. 𝑅 is the 3 × 3

rotation matrix, 𝑅𝑓 indicates the misalignmentment between the

user’s facing direction and the magnetic north. We compute this by

adopting ideas from past work [56, 60]. Thus, the 𝑎𝑛𝑔𝑙𝑒 between

MCP-PIP joints and the vertical axis as indicated above will be used

as a virtual orientation data for training the ML models in ZeroNet.
While the orientation estimates of a IMU sensor is 3 dimensional, we

restrict ourselves to extracting the 1 dimensional 𝑎𝑛𝑔𝑙𝑒 information

as discussed above mainly because: (i) We can extract it reliably

and compares well with the same information extracted from IMU.

(ii) We found that estimating rotation along the axis of the index

finger although possible in theory from the information extracted

from videos, proved to be unreliable and erroneous in practice.

5 GESTURE RECOGNITION MODELS WITH
SYNTHETIC TRAINING DATA

We explore two methods for exploiting the training data extracted

from videos for performing gesture recognition on IMU: (i) A simple

DTW based model (ii) A Convolutional Neural Network based

machine learning model

5.1 Dynamic Time Warping
We begin by using dynamic time warping (DTW) [16] to com-

pare the IMU data from an unknown user gesture to video-based

training dataset for gesture recognition. Briefly, DTW is a pattern

matching technique that inspects the overall shape of two signals

to determine their similarity. For example, Fig. 8(a) shows the z-axis

PIP jointMCP joint
Orientation

Figure 7: The angle depicted here can be extracted from
videos and used as a training data for inferences on IMU

0 0.5 1 1.5

Time in Seconds

-5

0

5

A
c
c
e

le
ra

ti
o

n
 (

m
/s

2
) Video

IMU

0 0.5 1 1.5

Time in Seconds

-5

0

5

A
c
c
e

le
ra

ti
o

n
 (

m
/s

2
) Video

IMU

Figure 8: (a) Accelerometer data for "More" extracted from
video of one user in comparison with IMU data of another
user (b) Data from IMU is compressed and stretched to
match with video by DTW

accelerometer data from IMU and the synthetic accelerometer data

extracted from a video of the same gesture. Although the overall

shape is similar, parts of the motion traces happen at a faster rate

or earlier for IMU while other parts happen slower. DTW uses a

dynamic programming optimization to minimally compress and

stretch the two sequences relative to each other such that they pro-

vide the best overlap. Fig. 8(b) shows the two sequences after DTW

optimization. DTW is known to do a good job of matching such

series with similar overall shape. The residual differences between

the two series determines the similarity score among them. The

similarity score of an unknown gesture is compared with all ges-

tures in the training data. The gesture with the best match would

correspond to the correct gesture with high probability. The 3-axis

accelerometer data and the orientation of the index finger is used

for performing the DTW matching as described above.

5.2 Convolutional Neural Networks
Towards increasing the robustness of recognition, we take a data-

driven ML approach in addition to DTW. The architecture of the

model is depicted in Fig. 9. The success of ML models depend on

availability of large scale high quality training datasets. In addition

to extracting the training data from videos, we exploit the following

data augmentation techniques to ensure stability, robustness, and

convergence of the above ML model.
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Figure 10: DTW alignment matrix between two sequences𝐴
and 𝐵. Pictures adopted from [1]

DTW based augmentation: The performance of gestures will

vary widely across users. The speed of hand motion is one of the

metrics that can vary across users. Various parts of the gesture

might be performed at a faster or slower pace by different users.

Towards making the ML models robust to such variations, we aug-

ment the training data by injecting such variations into existing

training data. In particular, we stretch and compress different parts

of the training data with different factors to create new training

data from existing samples.

Fig. 10 shows an example where two sequences A and B are aligned

using DTW. Fig. 10 (b) shows the correspondence between samples

in the two sequences, whereas Fig. 10 (a) depicts the same in matrix

form. Given a training data sample𝐴, we generate randommatrices

similar to Fig. 10 (a) to create dynamically stretched and compressed

versions of the training data sample. In creating these matrices,

we resample the original time series of the training data with a

stochastic non-uniform sampling such that compression/expansion

ratio varies between 0.25 to 2. Appropriate interpolation strategies

are used since the resampling positions may not coincide exactly

with the positions in the original time series. Fig. 11 shows an

example where two variants of new training data has been created

from an existing training data.

Orientation Variation: Similar to variations in gesturing where

users perform at different speeds, the orientation of the hand can

vary during motion. Such variations can also happen because of
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Figure 11: DTW synthetic training data
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Figure 12: Variation in orientation across users
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Figure 13: Examples of synthetic orientation data

minor changes in the sensor wearing position or orientation across

users. Fig. 12 shows an example where the same gesture is per-

formed by two users with a minor shift in the hand orientation. The

ML model must be robust for adapting to such natural variations.

Therefore we augment training datasets emulating variations in

hand orientation while gesturing. The injected variations range

from 0 to 10 degrees, but they are not random, rather they ensure

smoothness and continuity thus emulating a realistic gesture with

small changes in orientation. Fig. 13 shows examples of augmented

data with varying orientations for a given gesture.

Temporal Clipping:We also hypothesize that the start and end

periods of performance of gestures by several users will vary. Dif-

ferent users might start the gesture from slightly different positions

as well as end the gesture prematurely or continue with extra mo-

tions beyond the gesture. To help the model generalize under such

diversity, we augment training data by introducing versions of the

training data with minor extrapolations or trimming of samples at

the begin and end of the gestures. Fig. 14 shows an example where
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Figure 14: Examples of temporal clipping

two variants of synthetic training data are added with random

clipping at the beginning and end of an original training data.

6 IMPLEMENTATION AND EVALUATION
Implementation: The sensor frontend includes an Mbient sensor

[9] as described in Sec. 3 which is worn on the index finger as a

ring. The 9-axis IMU data including accelerometer, gyroscope, and

magnetometer data is streamed to a smartphone. ZeroNet is imple-

mented on a combination of desktop and smartphone devices. The

machine learning architecture is implemented using TensorFlow

[10] packages and the training is performed on a desktop with Intel

i7-8700K CPU, 16GB RAM memory, and Nvidia GTX 1080 GPU. We

use the Adam optimizer[36] with a learning rate of 1e-3, 𝛽1 of 0.9

and 𝛽2 of 0.999. To avoid over-fitting issues that may happen in

the training process, we apply the L2 regularization[17] on each

CONV layer with a parameter of 0.01 and also add dropouts[70]

with a parameter of 0.1 following each RELU activations. Once a

model is generated from training, the inference is done entirely

on a smartphone device using TensorFlowLite [26] on a Samsung

Galaxy S20 smartphone with Android operating system.

User Study: All reported results in the paper are generated from a

systematic user study campaign. The study evaluates the classifica-

tion accuracy of 50 gestures that represent the top 50 ASL words.

The training data is extracted from the following video source [8].

We recruit 10 users aged 21-32 and weighs between 47 to 96kgs. It

includes 7 males and 3 females. During the data collection process,

the user is first shown the video of a gesture. The user practices

performing the gesture several times. When the user feels comfort-

able performing the gesture correctly, we let the user perform the

gesture 5 more times and we record the sensor data during this

period. After this process, we repeat the procedure for the next

gesture until we finish collection of the data for all 50 gestures. The

entire recorded dataset during the study is solely used as a ’test

data’ since the training data is extracted entirely from videos.

We specifically aim to answer the following questions.

• What is the overall gesture recognition accuracy? (Figs. 15(a),
Figs. 20)

• Is the accuracy consistent across diverse gestures? (Figs. 15(b),
Figs. 15(c))

• How does the accuracy vary across users? (Figs. 15)

• In cases of errors in recognition, what is the rank of the correct

gesture among all the 50 gestures? (Figs. 16)
• How does the accuracy vary with the speed of gesturing? (Figs.
17)

• How does the accuracy vary with sensor placement on the

hand? (Figs. 18)
• What is the accuracy of the model transferred to the left hand?

(Figs. 19)
• What is the role of various techniques of data augmentation in

the final accuracy metric? (Figs. 21)
• How does the accuracy vary with the size of the synthetic

dataset? (Figs. 22)
• How does ZeroNet compare with models fine-tuned with real-

data or models fully trained on real data? (Figs. 22, Figs. 23)
• What is energy, latency, and compute profile of executing the

ML models on embedded devices? (Figs. 24)

Robustness to sensor wearing positions and diverse gesture
patterns: Fig. 15(a) depicts the overall accuracy as a function of

users. Evidently, the accuracy is stable across users, body sizes,

motion patterns etc. In addition, the sensors were mounted nat-

urally on the fingers with y-axis roughly along the direction of

the index finger. There was no special calibration and hence the

position/orientation across users would naturally vary. However,

the accuracy is robust to such variations. This is because of the

inbuilt robustness to such natural variations through the data aug-

mentation techniques incorporated in the design of ZeroNet. While

the top-1 accuracy is 82.4%, the top-3 accuracy is around 94.8%

which indicates promise for future improvements.

Accuracy over gestures: Fig. 15(b) shows the confusion matrix

over all 50 gestures in our dictionary. The performance is consistent

across all gestures. However, in certain special cases, such as the

gesture for "mother", and "father", there can be miss-classifications

because the index finger motion for these two gestures are very

similar. Fig. 15(c) shows the confusion matrix for top-3 accuracy

which shows a higher accuracy because in many cases of miss-

classifications the correct word is occupies the second or third

place in the rank of softmax probabilities.

Rank of incorrect gestures:We provide further breakup of cases

where the top identified gesture is incorrect. Fig. 16 shows the rank

of the correct gesture in case of erroneous detections. Evidently,

majority of the cases are rank-2 and 70.5%, 83.0% of cases are in

top-3 and top-5 ranks respectively. This indicates that appropriate

application specific prior information or context can be exploited

to further imporve the accuracy of ZeroNet.

Accuracy over speed: Fig. 17 provides a breakup of accuracy of

gestures executed at varying speeds. Note that in addition to some

gestures being inherently slow or fast paced, variations in pace can

also occur because of user diversity. Regardless of the reason of

variation, the accuracy is robust at various possible speeds.
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Figure 17: Accuracy over speed of gesturing

Accuracy vs Finger Position: An advantage of harvesting train-

ing data from videos is that optimal sensor placement can be de-

termined for any given application where there is a tradeoff in

number of sensors that can be used due to reasons including usabil-

ity, accuracy, power consumption etc. We conduct a small study to

determine the optimal sensor placement among index, middle, and

ring fingers for the top 20 gestures from our video dataset [8]. The

little finger and thumb were excluded in the study since it is not

comfortable to wear sensors on those fingers. Fig. 18 shows that the

top-1 accuracy values are 93.4%, 88.3%, and 85.1% for index, middle,

and ring fingers respectively. This indicates that the optimal sensor

placement among the three fingers is the index finger for the set of

gestures considered in this application.

Model transfer between right and left hands: Fig. 19 shows the
accuracy when the left hand was used in gesturing. This is useful

when the training data from videos of right-handed users is used

for performing inferences on left-handed users. The training data

captured from the right handwas appropriatelymirrored to emulate

a training data for the left hand. This includes making the x-axis

in Fig. 4 negative and projecting the acceleration and orientation
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Figure 18: ZeroNet can generate training data for any finger
position, thus facilitating optimal sensor positioning
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Figure 19: Model transfer from right to left hand

to the new TCF relative to the left hand. The transformed training

data was used to train the ML model in Fig. 9 to perform inferences

when the sensor is worn on the left hand. Evidently, the accuracy

for such inferences is same as the right hand.

Performance comparison across techniques: Fig. 20 provides a
breakup of accuracy across techniques. Basic DTW already achieves

a reasonable accuracy of 59.4%. On the otherhand, the accuracy of

the basic CNN model is slightly lower than DTW because of the

inability to generalize to diversity in user motion patterns. However,

data augmentation techniques in ZeroNet can make the CNN model

robust to speed of gesturing, sensor positions, orientation variation,

noise etc, thus boosting the accuracy to 82.4%.

Breakup of performance gain fromdata augmentation:DTW
based augmentation, rotation based augmentation and time clip-

ping individually achieve accuracies of 70.7%, 53.4%, and 60.8%

respectively as shown in Fig. 21. DTW-based augmentation per-

forms the best while the other techniques also offer non-trivial gain
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Figure 22: Diversity in synthetic data leads to better general-
ization of the CNN model

in performance relative to a baseline without data augmentation.

However, combining all of them yields the best performance.

Training with Synthetic vs Real Data The first bar in Fig. 22

shows the performance accuracy of training with real data alone.

Evidently, the small size of the data leads to overfitting and poor

generalization thus leading to overall low accuracy. On the other

hand, the last bar depicts the effect of training with synthetic data

which together with data augmentation techniques leads to better

generalization of the ML models and higher accuracy.

Effect of the size of synthetic data: Fig. 22 depicts the perfor-

mance of the CNN model as a function of the size of the synthetic

data. The x-axis label denotes the size of the synthetic data in mul-

tiples of the size of the real data. Evidently, higher size of synthetic

data creates more robustness in the training examples that the ML

model sees during training. Thus, the overall accuracy improves
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Figure 24: The power consumption profile the CNN model
is better than simple DTW because of builtin optimizations
in TensorFlowLite [26]

with size, ultimately saturating when the size of the synthetic data

is 40 times of the real data.

ML models fine tuned with real IMU data: The CNN model

that was trained in ZeroNet using synthetic IMU data from videos

was fine-tuned [52, 76] with real IMU data. Fig. 23 depicts the per-

formance over users. Leave-one-out cross-validation was adopted

across users. The fine tuning improves the performance onlymarginally.

We believe this is because the data augmentation techniques suf-

ficiently cover the space of variations thus generalizing the CNN

model to the maximal extent.

Energy, latency, and compute: we use Batterystats and Battery

Historian[7] toolkits for profiling the energy of the TensorflowLite

model for inference using CNN and the DTW-based classification

model. We compare the difference between energy consumption in

two states (i) When the device is idle with screen on. (ii) The device

is making inferences at a rate of 2 gestures per second. The idle

display-screen on discharge rate 4.95% per hour while the discharge

rates for various techniques is depicted in Fig. 24. Evidently, the

power consumption profile of the CNN model is very low. We

believe the CNN model is more efficient than the simple DTW

because of inbuilt optimizations within the TensorFlowLite library

[26]. The latency results are very much correlated with power

consumption results. In particular, each classification takes 2.2𝑚𝑠 on

average with CNN whereas it takes 266.4𝑚𝑠 with the DTW model.

We believe the overall power consumption and latency profiles of

the CNN model enables energy efficient real time performance.
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7 RELATEDWORK
Inertial Sensors: Inertial sensors have been used in many local-

ization and gesture tracking applications. UnLoc [72] fuses infor-

mation from smartphone sensors for extracting characteristic fin-

gerprints in indoor environments for localization. RisQ [49] rec-

ognizes smoking gestures for appropriate intervention measures

using smartwatches. Similarly, smartwatches are used for eating

activity recognition [58] and measuring calorie intakes. Smart rings

are also being used for ASL gesture recognition in recent times

[39, 40]. DUI [41] detects blood alcohol level based on user per-

formance on smartphone activities. Other applications have been

explored in the areas of augmented and virtual reality, sports an-

alytics, smart-health, and security [35, 45, 50, 77]. In contrast to

these works that create training datasets with user studies, crowd-

sensing etc, ZeroNet exploits harvesting training data from publicly

available videos.

Vision:Depth cameras including kinect[4] and leap motion [3] sen-

sors have revolutionized the gaming industry by gesture interfaces.

Use of depth camera is one way to capture finger motion. However,

advances in machine learning, availability of large training datasets

as well as techniques for creation of synthetic datasets have enabled

precise tracking of finger motion even from monocular videos that

do not contain depth information [18, 31, 42]. While such works are

truly transformative in nature, we believe wearable based solutions

have benefits over vision based approaches which are susceptible to

occlusions, lighting, and resolution. In addition, wearable devices

offer ubiquitous solution with continuous tracking without the

need of an externally mounted camera.

Radio Frequency (RF): RF including WiFi, RFID, and mmWave

hardware have been used for a number of human activity recogni-

tion applications.WiSee [51] can detect hand gestures bymeasuring

doppler shifts fromWiFi reflections. 3D pose of the human body has

been detected even behind occlusions such as Walls using wireless

body reflections [33, 81]. Heart rate, breathing, and physiological

signals of interest to healthcare applications have been detected

using RF signals [79, 80]. Google project Soli [63] can detect fine

grained finger gestures using mmWave reflections. While RF based

tracking, like vision, is completely passive, we believe the advan-

tage of wearable device is being completely ubiquitous without the

need for any external infrastructure.

Transfer Learning from Videos: Deep Inertial Poser [29] uses

synthetic data from motion capture videos (from cameras like

ViCON[69]) instead of public videos for training human pose track-

ing algorithms with 6 on-body IMUs. Such motion capture cam-

eras can provide high quality training data with mm level accuracy.

However, creating such datasets requires 6-8 costly ViCON cameras.

We believe using publicly available videos is an easier alternative.

More recently, several innovative works [38, 55, 66, 74, 78] have

explored the use of YouTube-like videos for training human activity

recognition (HAR) on wearable sensors. In contrast to such works

that classify tens of large scale motion activities (running, sitting,

eating etc.), ZeroNet performs recognition of fine grained finger

motions over a larger class of gestures with potential to applica-

tions in augmented and virtual reality, sign language recognition

etc. In addition, ZeroNet fuses the harvested training data with

data-augmentation techniques for better robustness of ML models.

Data Augmentation: Data augmentation enriches the quality of

datasets to help ML models generalize well and exhibit higher

accuracy and robustness with limited quantity of training data.

Transformation such as rotation, scaling, translation and elastic

distortions on images have been explored to create more training

data from existing datasets. [21, 57, 61, 71]. Similarly, image crop-

ping, flipping, color shifting, and whitening are other techniques to

create new training data from existing datasets [37]. In the area of

automatic speech recognition (ASR), data augmentation techniques

such as frequency axis distortions[34], speech rate variations, vo-

cal tract normalization[32] etc have been explored to improve the

accuracy. In a similar spirit, ZeroNet incorporates ideas in data aug-

mentation for IMU datasets for better accuracy, robustness, and

generalizability of ML models. This is particularly important in the

context of IMU data since there is no large scale public datasets like

computer vision or speech. Data augmentation techniques have

been explored in the context of wearable sensing for parkinson dis-

ease gait monitoring [68] and construction activity monitoring [53].

More recently, data augmentation for human activity recognition

has been extensively studied in [20] for several benefits including

robustness to sensor wearing positions. In contrast to these works,

ZeroNet performs a fusion of data extraction from videos and com-

bines it with data augmentation techniques to enable inferences on

IMU devices without any training overhead.

Transfer Learning,DomainAdaptation, andZero-shot Learn-
ing: Transfer-learning based domain adaptation is popular in vision

and speech. For example, AlexNet model [37] pretrained on Ima-

geNet database [24] has been fine-tuned for classifying images in

medical domain[83], remote-sensing [27] and breast-cancer [44].

Similarly, a pre-trained BERT language model [25] has been fine-

tuned for tasks in text-summarizing [76], question answering [52]

etc. Adversarial domain adaptation [67] using generative adversar-

ial networks (GAN) is popular. Here, an unsupervised game theo-

retic strategy is used to transform the distribution of the feature

representations from the target-domain into the distribution of the

source-domain on which the model was trained. If successful, the

model trained on the source domain is directly useful for perform-

ing inferences on a target domain. Similarly, other architectures for

learning feature transformations to adapt the feature representa-

tions from a source domain to a target domain have been proposed

[64]. However, such techniques are hard to apply to our problem

domain since this still requires enough real training data (atleast in

unlabelled form) from IMU to achieve sufficient convergence of the

domain adaptation process. Furthermore, each user’s finger motion

pattern as well as natural variations in sensor wearing positions

could lead to different distributions in the sensor data [15, 20] thus

entailing more real training data under each setting. On the other

hand, ZeroNet performs comparable to semi-supervised domain

adaptation techniques [27, 83] which need partial labelled real IMU

data and even outperforms models fully trained on our own real
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IMU dataset. We believe ZeroNet’s ability to provide promising

accuracy without any training overhead is a first step towards gen-

erating data for unsupervised domain adaptation. Our approach is

related to zero-shot learning [62], where a ML model is trained to

predict classes for which no training examples has been observed.

Appropriate representations are learnt for both training examples

and class labels. By learning the mapping between representations

of known training examples and their classes, the mapping between

representations of a new example is made even if it belongs to an

unseen class. One difference between ZeroNet and classical zero-

shot learning is that zero-shot learning needs training data from

the target domain for some classes, whereas ZeroNet does not need
training data for any classes.

8 DISCUSSION AND FUTUREWORK
Exploiting large scale video datasets: ZeroNet only scratches

the surface in harvesting training data from videos. 300 hours of

videos are uploaded to YouTube every minute for human activities

ranging from sports, tutorials, physical exercises, speech, daily

activities (cooking, eating, jogging) etc. Exploiting more videos for

building ML models can enhance the robustness.

Automated data augmentation: In ZeroNet, the amount of per-

turbations introduced in the data for augmentation is fixed. Auto-

mated data augmentation [23] is an active area of research where

the parameters for data augmentation can be modeled as a learning

problem. We plan to incorporate the innovations from this area

into ZeroNet as a part of the future work.

Augmented and Virtual Reality applications: AR and VR ap-

plications benefit from fine grained tracking of hand and finger

locations. Towards pushing the limits of accuracy, ZeroNet will
exploit video-based training data for free form tracking of 3D finger

joint locations. Similar to our analysis on finding the optimal finger

to place the sensor, enough training data can be generated from

videos for analyzing the tradeoff between number and position of

placement of sensors and the expected accuracy.

9 CONCLUSION
Application of ML models for finger gesture recognition can en-

able a number of exciting applications. However, unlike computer

vision and speech, there is a dearth of large scale training data

for developing robust and sophisticated ML models. Towards ad-

dressing this problem, this paper presents ZeroNet that extracts
training data from publicly available videos of annotated finger

gestures. Appropriate data augmentation techniques are exploited

to increase the robustness and generalizability of ML models to

natural patterns in user gesturing. A systematic user study with

10 users over 50 gestures demonstrates a top-1% accuracy of 82.4%

and a top-3% accuracy of 94.8% with zero training overhead. While

the results are promising, we believe we have only scratched the

surface. Exploiting the availability of large scale video datasets that

are publicly available can enhance the start of the art in a number of

applications including augmented reality, virtual reality, healthcare

and rehabilitation etc.
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