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Existing work

B Vision: Can track 3D finger poses from videos

Affected by occlusions and need good lighting

B wearables: robust to lighting and occlusions

— Gloves: intrusive

L—» IMU, EMG, ... : only discrete gestures



Our system: NeuroPose

EMG Signals
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Our system: NeuroPose

Real Hand Ground Truth Our System
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Background
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Encoder-Decoder Network
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Robust to different users?

@Training data - Small amount data %
_. from different users

f Semi-Supervised
{ Domain Adaptation

Pre-trained User-Adapted
Model Mode|




RNN Network

Output: Hand Poses

Input: Multi Channel EMG Input



Evaluation Result




Evaluation platform
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Domain adaptation significantly reduces errors over users

50 - [90%-ile . Imulti-user model

error bars with domain adapt.
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Robustness to different conditions

90%-ile I user dependent
- lerror pars I 90%-ile user independent
y oo error bars with domain adapt.
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Encoder-Decoder-ResNet outperforms others
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Conclusion

NeuroPose shows the feasibility of fine grained 3D tracking of 21 finger joint
angles using EMG devices for arbitrary finger motions.

Develop fusion of anatomical constraints with sensor data into machine
learning algorithms for higher accuracy.

Implementation on embedded platforms and extensive evaluation
over diverse users.
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