process models of emotion and cognition, Bayesian statistics, EMA
Publications
Oravecz, Z., & Vandekerckhove, J. (2020). A joint process model of consensus and longitudinal dynamics. Journal of Mathematical Psychology, 98, 102386. DOI: 10.1016/j.jmp.2020.102386.
Leonard, K.S., Evans, M.B., Oravecz, Z., Smyth, J. M., & Symons Downs, D. (2020). Effect of Technology-Supported Interventions on Prenatal Gestational Weight Gain, Physical Activity, and Healthy Eating Behaviors: a Systematic Review and Meta-analysis.Journal of Technology in Behavioral Science. DOI: 10.1007/s41347-020-00155-6.
Heshmati, S., Oravecz, Z., Brick, T. R., & Roeser, R. W. (2020). Assessing psychological well-being in early adulthood: Empirical evidence for the structure of daily well-being via network analysis. Applied Developmental Science. DOI: 10.1080/10888691.2020.1766356
Oravecz, Z., Dirsmith, J., Heshmati, S., Vandekerckhove, J., & Brick, T. R. (2020). Psychological well-being and personality traits are associated with experiencing love in everyday life. Personality and Individual Differences, 153, 109620. DOI: 10.1016/j.paid.2019.109620.
Osotsi, A., Oravecz, Z., Lu, Q., Smyth, J. M., & Brick, T. R. (2020). Individualized modeling to distinguish between high and low arousal states using physiological data. Journal of Healthcare Informatics Research, 4, 91-109. DOI: 10.1007/s41666-019-00064-1
Booij, S., Wigman, J., Jacobs, N., Thiery, E., Derom, C., Wichers, M., & Oravecz, Z. (2020). Cortisol dynamics in depression: application of a continuous-time process model. Psychoneuroendocrinology, 115. 104598. DOI: 10.1016/j.psyneuen.2020.104598
Ji, L., Chen, M., Oravecz, Z., Lu, Z.-H., & Chow, S.-M. (2019). A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent Variables and Covariates: Development, Evaluation, and Application to Family Processes. Structural Equation Modeling. 1-26. DOI: 10.1080/10705511.2019.1623681
Oravecz, Z., & Brick, T. R. (2019). Associations Between Slow- and Fast-Timescale Indicators of Emotional Functioning. Social Psychological and Personality Science. 10(7), 864-873.
Li, Y., Ji, L., Oravecz, Z., Hunter, M., Brick, T. R., & Chow, S.-M. (2019). dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 13(5), 302-311.
Heshmati, S., Oravecz, Z., Pressman, S., Batchelder, W., Muth, C., & Vandekerckhove, J. (2019). What does it mean to feel “loved”? Cultural agreement and individual differences. Journal of Social and Personal Relationships. 36(1), 214–243.
Roberts, N., Oravecz, Z., Sprague, B., & Geier, C. (2019). A Novel Hierarchical LATER Process Model: Evaluating Latent Sources of Variation in Reaction Times of Adult Daily Smokers. Frontiers in Psychiatry. 10, 474.
Kolanowski, A., Behrens, L., Lehman, E., Oravecz, Z., Resnick, B., Boltz, M., Van Haitsma, K., Galick, E., Ellis, J., & Eshragi, K. (2019): Living Well With Dementia: Factors Associated with Nursing Home Residents’ Affect Balance. Research in Gerontological Nursing. DOI: 10.3928/19404921-20190823-01
Oravecz, Z., Wood, J., & Ram, N. (2018). Fitting continuous time stochastic process models in the Bayesian framework. In van Montfort, Oud, & Voelkle. Continuous Time Modeling in the Behavioral and Related Sciences, 55-78.
Batchelder, W. H., Anders, R., & Oravecz, Z. (2018): Cultural Consensus Theory. In Eric-Jan Wagenmakers & John T. Wixted (Eds.), The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Volume V: Methodology (p. 221-264). New York, NY: John Wiley & Sons.
Anders, R., Oravecz, Z. & Alarioa, F.-X. (2018): Improved Information Pooling for Hierarchical Cognitive Models through Multiple and Covaried Regression. Behavior Research Methods. 50(3), 989-1010.
Oravecz, Z., & Muth, C. (2018): Fitting growth curve models in the Bayesian framework. Psychonomic Bulletin and Review. 25(1), 235-255.
Muth, C., Oravecz, Z., & Gabry, J. (2018): User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99-119.
Baribault, B., Donkin, C., Little, D. R., Trueblood, J., Oravecz, Z., van Ravenzwaaij, D., White, C. N., de Boeck, P., & Vandekerckhove, J. (2018): Metastudies for robust tests of theory. Proceedings of the National Academy of Sciences. 115(11), 2607-2612.
Helm, J., Castro-Schilo, L., DeCastellarnau, A., Zavala-Rojas, D., & Oravecz, Z. (2018): Bayesian Estimation for the True Score Multitrait-Multimethod Model with a Split-Ballot Design. Structural Equation Modeling, 25 (1), 71-85.
Wood, J., Oravecz, Z., Vogel, N., Benson, L., Chow, S.-M., Cole, P., Conroy, D., E., Pincus, A., L., & Ram, N. (2017): Modeling Intraindividual Dynamics using Stochastic Differential Equations: An Examination of Age-Related Differences in Affect Regulation. Journal of Gerontology: Psychological Sciences, 73 (1), 171-184.
Westerman, S., Grezellschak, S., Oravecz, Z., Moritz, S., Lüdtke, T., & Jansen, A. (2017): Untangling the complex relationships between symptoms of schizophrenia and emotion dynamics in daily life: Findings from an experience sampling pilot study. Psychiatry Research, 257, 514-518.
Oravecz, Z., Huentelman, M. , & Vandekerckhove, J. (2017): Sequential Bayesian updating for Big Data. In M. Jones (Ed.), Big Data in Cognitive Science (pp. 13-33). Sussex, UK: Psychology Press (Taylor & Francis).
Helm, J. L, Castro-Schilo, L., & Oravecz, Z. (2017): Bayesian Versus Maximum Likelihood Estimation of Multitrait-Multimethod Confirmatory Factor Models. Structural Equation Modeling, 24 (1), 17-30.
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2016): Bayesian Data Analysis with the Bivariate Hierarchical Ornstein-Uhlenbeck Process Model. Multivariate Behavioral Research, 51, 106-119.
Oravecz, Z., Muth, C., & Vandekerckhove, J. (2016): Do people agree on what makes one feel loved? A cognitive psychometric approach to explore consensus on felt love. PLoS ONE, 11, (4).
Oravecz, Z., Anders, R. & Batchelder, W. (2015). Hierarchical Bayesian modeling for test theory without an answer key. Psychometrika, 80, 341-364.
Oravecz, Z., Faust, K., Levitis, D., & Batchelder, W. (2015). Studying the existence and attributes of consensus on psychological concepts by a cognitive psychometric model. American Journal of Psychology, 128, 61-75.
Ebner-Priemer, U., Houben, M., Santangelo, P., Kleindienst, N., Tuerlinckx, F., Oravecz, Z., Verleysen, G., Van Deun, K., Bohus, M., & Kuppens, P. (2015). Unraveling affective dysregulation in borderline personality disorder: A theoretical model and empirical evidence. Journal of Abnormal Psychology, 124, 186-198.
Loken, E., Oravecz, Z., Tucker, C., & Linder, F. J. (2015). Psychometric Analysis of Residence and MOOC Assessments. Paper presented at 2015 ASEE Annual Conference and Exposition, Seattle, Washington 10.18260/p.24621.
Anders, R., Oravecz, Z., & Batchelder, W. (2014). Cultural Consensus Theory for Continuous Responses- A Latent Appraisal Model for Information Pooling. Journal of Mathematical Psychology, 61, 1-13.
Oravecz, Z., Faust, K. & Batchelder, W. (2014). An extended Cultural Consensus Theory model to account for cognitive processes for decision making in social surveys. Sociological Methodology, 44, 185-228.
Oravecz, Z., Vandekerckhove, J. & Batchelder, W. (2014). User’ guide to Bayesian Cultural Consensus Toolbox (online supplement).
Oravecz, Z., Vandekerckhove, J. & Batchelder, W. (2014). Bayesian Cultural Consensus Theory. Field Methods, 26, 207-222.
Oravecz, Z., & Tuerlinckx, F. (2011). The linear mixed model and the hierarchical Ornstein-Uhlenbeck model: Some Equivalences and differences. British Journal of Mathematical and Statistical Psychology, 64, 134-160. doi:10.1348/000711010X498621
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological Methods, 16, 468-490. doi:10.1037/a0024375
Kuppens, P., Oravecz, Z., & Tuerlinckx, F. (2010). Feelings change: Accounting for individual differences in the temporal dynamics of affect. Journal of Personality and Social Psychology, 99, 1042-1060. doi:10.1037/a0020962
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2009). A hierarchical Ornstein-Uhlenbeck model for continuous repeated measurement data. Psychometrika, 74, 395-418. doi:10.1007/s11336-008-9106-8