Continuing with the theme of optical SETI from last week, this week’s Howard et al (2004) paper discussed the results of an optical SETI experiment which searched for pulsed beacons around thousands of stars. Following with the other optical SETI papers we have encountered, the authors compare the merits of searches in the optical/NIR with searches for microwave/radio signals. If one’s figure of merit for the efficiency of technique is the signal-to-noise achieved for a fixed transmitter power, then optical methods are comparable to those of radio.
They further motivated this search by presenting the “Fundamental Theorem of Optical SETI”, which is a statement of the observation that even at our early stage of technology (Earth “2000”), we can already generate artificial optical pulses could appear to outshine the brightness of the Sun by a factor of 10^4. This follows a similar line of reasoning as the Schwarz & Townes paper from last time, which plausibly suggested that some ETIs would rapidly discover some form of optical interstellar communication and use it. However, in the case of Howard’s paper, the focus is on the search for pulsed beacons, which are unambiguous detections of alien laser signals (for which there are no possible astrophysical confounders or dopplegangers).
With similar avalanche photometer instruments at Harvard and Princeton, they began their campaign which would eventually consist of some 16,000 observations totalling 2400 hours of observing time spread over a five year baseline. They searched 6176 stars in their survey, of which only a handful of signals showed any promise as plausible artificial pulses (most were explained away as being stochastic in nature). Three triggers from HD 220077 were considered the most interesting, and were allotted many follow-up observations. Upon further investigation of those candidates, they found that their photon rate was consisten with Poisson noise and thus rule out the alien hypothesis. (Remember, it’s never aliens!) Another interesting pair of triggers from HIP 107395 was considered too ambiguous because of an asynchronicity between the Princeton and Harvard clocks.
This work was performed in fulfillment of Howard’s PhD thesis in astronomy; Andrew Howard is now a prominent exoplanetologist and astronomer, and so this work is a demonstration of SETI being firmly rooted as a part of astronomy and an example of the quality that SETI papers ought to strive for (that is, when it is taken seriously by astronomers and other scientists). It is also a good example of “Forensic” SETI done right, where the candidates were scrutinized on a case-by-case basis and all natural explanations were attempted to be exhausted before jumping to unsubstantiated conclusions (which contrasts with the approach of some other papers we have read this semester *cough* faces on Mars *cough*). Although the results were null, the study still placed valuable upper limits on the occurrence of beacons around nearby stars. Therefore, this paper serves as a template for how null results ought to be reported and makes a case for them to be published.