2024

Zhang, X.; Booker, S. J. Seeing Is Believing: Advances in Biological Imaging. ACS Bio & Med Chem Au 2024, 4 (1), 1-3. DOI: 10.1021/acsbiomedchemau.3c00075.

2023

Neti, S. S.; Wang, B.; Iwig, D. F.; Onderko, E. L.; Booker, S. J. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl-L-(fluoromethyl)homotellurocysteine. ACS Central Science 2023, 9 (5), 905-914. DOI: 10.1021/acscentsci.2c01385.

Jiang, Y.; Neti, S. S.; Sitarik, I.; Pradhan, P.; To, P.; Xia, Y.; Fried, S. D.; Booker, S. J.; O’Brien, E. P. How synonymous mutations alter enzyme structure and function over long timescales. Nature Chemistry 2023, 15 (3), 308-318. DOI: 10.1038/s41557-022-01091-z.

Schulz, V.; Basu, S.; Freibert, S.-A.; Webert, H.; Boss, L.; Mühlenhoff, U.; Pierrel, F.; Essen, L.-O.; Warui, D. M.; Booker, S. J.; Stehling, O.; Lill, R. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nature Chemical Biology 2023, 19 (2), 206-217. DOI: 10.1038/s41589-022-01159-4.

Dreishpoon, M. B.; Bick, N. R.; Petrova, B.; Warui, D. M.; Cameron, A.; Booker, S. J.; Kanarek, N.; Golub, T. R.; Tsvetkov, P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. bioRxiv 2023. DOI: 10.1101/2023.02.03.526472

2022

Wang, B.; Silakov, A.; Booker, S. J. Chapter Fourteen – Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis. In Methods in Enzymology, Britt, R. D. Ed.; Vol. 666; Academic Press, 2022, 469-487.

Wang B, Silakov A, Booker, S. J. Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis. Methods Enzymol. 2022, 666, 469-487. DOI: 10.1016/bs.mie.2022.02.008. 

Warui, D. M.; Sil, D.; Lee, K.-H.; Neti, S. S.; Esakova, O. A.; Knox, H. L.; Krebs, C.; Booker, S. J. In Vitro Demonstration of Human Lipoyl Synthase Catalytic Activity in the Presence of NFU1. ACS Bio & Med Chem Au 2022, 2 (5), 456-468. DOI: 10.1021/acsbiomedchemau.2c00020.

Booker, S. J.; Lloyd, C. T. Twenty Years of Radical SAM! The Genesis of the Superfamily. ACS Bio & Med Chem Au 2022, 2 (6), 538-547. DOI: 10.1021/acsbiomedchemau.2c00078.

Lloyd, C. T.; Iwig, D. F.; Wang, B.; Cossu, M.; Metcalf, W. W.; Boal, A. K.; Booker, S. J. Discovery, structure and mechanism of a tetraether lipid synthase. Nature 2022, 609 (7925), 197-203. DOI: 10.1038/s41586-022-05120-2.

Neti, S. S.; Sil, D.; Warui, D. M.; Esakova, O. A.; Solinski, A. E.; Serrano, D. A.; Krebs, C.; Booker, S. J. Characterization of LipS1 and LipS2 from Thermococcus kodakarensis: Proteins Annotated as Biotin Synthases, which Together Catalyze Formation of the Lipoyl Cofactor. ACS Bio & Med Chem Au 2022, 2 (5), 509-520. DOI: 10.1021/acsbiomedchemau.2c00018.

Pagnier, A.; Balci, B.; Shepard, E. M.; Yang, H.; Warui, D. M.; Impano, S.; Booker, S. J.; Hoffman, B. M.; Broderick, W. E.; Broderick, J. B. [FeFe]-Hydrogenase: Defined Lysate-Free Maturation Reveals a Key Role for Lipoyl-H-Protein in DTMA Ligand Biosynthesis. Angewandte Chemie International Edition 2022, 61 (22), e202203413.

Wang, B.; Silakov, A.; Booker, S. J. Chapter Fourteen – Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis. In Methods in Enzymology, Britt, R. D. Ed.; Vol. 666; Academic Press, 2022; pp 469-487. LINK

Knox, H. L.; Booker, S. J., Structural characterization of cobalamin-dependent radical S-adenosylmethionine methylases. Methods Enzymol 2022, 669, 3-27. LINK

Knox, H. L.;  Sinner, E. K.;  Townsend, C. A.;  Boal, A. K.; Booker, S. J., Structure of a B12-dependent radical SAM enzyme in carbapenem biosynthesis. Nature 2022, 602 (7896), 343-348. LINK

Booker, S. J., Happy Birthday ACS Bio & Med Chem Au! ACS Bio & Med Chem Au 2022, 2 (1), 1-3. LINK

2021

Booker, S. J.;  Conway, S. J.; Lavasanifar, A., Welcome to ACS Bio & Med Chem Au. ACS Bio & Med Chem Au 2021, 1 (1), 1-1. DOI

Esakova, Olga A.; Grove, Tyler L.; Yennawar, Neela .H.; Arcinas, Arthur J.; Wang, B.; Krebs, Carsten; Almo, Steven C.; Booker, Squire J. Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB. Nature, 2021. DOI

Jeyachandran, Vivian R.; Pendyala, Jay V.; McCarthy, Erin L.; Boal, Amie K.; Booker, Squire J. Biochemical Approaches to Probe the Role of the Auxiliary Iron-Sulfur Cluster of Lipoyl Synthase from Mycobacterium Tuberculosis. Methods Mol Biol, 2021, (2353) 307-332. DOI

Knox, H.L.; Chen, P.YT.; Blaszczyk, A.J.; Mukherjee, A.; Grove, T. L.; Schwalm, E. L.; Wang, B.; Drennan, C. L.; Booker, S. J. Structural basis for non-radical catalysis by TsrM, a radical SAM methylase. Nat Chem Biol, 2021, (17) 485-491. DOI

2020

Knox, H. L.; Chen, P.Y.; Blaszczyk, A. J.; Grove, T. L.; Schwalm, E. L.; Wang, B.; Drennan, C.L.; Booker, S. J. Crystallographic snapshots of TsrM, a radical S-adenosylmethionine enzyme whose reaction is not so radical. The FASEB Journal, 2020, (34) 1. DOI

Zhang, B.;  Arcinas, A. J.;  Radle, M. I.;  Silakov, A.;  Booker, S. J.; Krebs, C., First Step in Catalysis of the Radical S-Adenosylmethionine Methylthiotransferase MiaB Yields an Intermediate with a [3Fe-4S]0-Like Auxiliary Cluster. Journal of the American Chemical Society 2020, 142 (4), 1911-1924. DOI

2019

Wang, B.;  LaMattina, J. W.;  Marshall, S. L.; Booker, S. J. Capturing Intermediates in the Reaction Catalyzed by NosN, a Class C Radical S-Adenosylmethionine Methylase Involved in the Biosynthesis of the Nosiheptide Side-Ring System. Journal of the American Chemical Society 2019, 141 (14), 5788-5797. DOI

Ronnebaum, T. A.;  McFarlane, J. S.;  Prisinzano, T. E.;  Booker, S. J.; Lamb, A. L., Stuffed Methyltransferase Catalyzes the Penultimate Step of Pyochelin Biosynthesis. Biochemistry 2019, 58 (6), 665-678. DOI

Radle, M. I.;  Miller, D. V.;  Laremore, T. N.; Booker, S. J. Methanogenesis marker protein 10 (Mmp10) from Methanosarcina acetivorans is a radical S-adenosylmethionine methylase that unexpectedly requires cobalamin. J Biol Chem 2019, 294 (31), 11712-11725. DOI

Miller, D. V.; Booker, S. J., The Expanding Role of Methyl-Coenzyme M Reductase in the Anaerobic Functionalization of Alkanes. Biochemistry 2019, 58 (42), 4269-4271. DOI

McCarthy, E. L.;  Rankin, A. N.;  Dill, Z. R.; Booker, S. J., The A-type domain in Escherichia coli NfuA is required for regenerating the auxiliary [4Fe-4S] cluster in Escherichia coli lipoyl synthase. J Biol Chem 2019, 294 (5), 1609-1617. DOI

Maiocco, S. J.;  Arcinas, A. J.;  Booker, S. J.; Elliott, S. J., Parsing redox potentials of five ferredoxins found within Thermotoga maritima. Protein Science 2019, 28 (1), 257-266. DOI

Gumkowski, J. D.;  Martinie, R. J.;  Corrigan, P. S.;  Pan, J.;  Bauerle, M. R.;  Almarei, M.;  Booker, S. J.;  Silakov, A.;  Krebs, C.; Boal, A. K., Analysis of RNA Methylation by Phylogenetically Diverse Cfr Radical S-Adenosylmethionine Enzymes Reveals an Iron-Binding Accessory Domain in a Clostridial Enzyme. Biochemistry 2019, 58 (29), 3169-3184. DOI

Esakova, O. A.;  Silakov, A.;  Grove, T. L.;  Warui, D. M.;  Yennawar, N. H.; Booker, S. J., An Unexpected Species Determined by X-ray Crystallography that May Represent an Intermediate in the Reaction Catalyzed by Quinolinate Synthase. Journal of the American Chemical Society 2019, 141 (36), 14142-14151. DOI

Blaszczyk, A. J.;  Knox, H. L.; Booker, S. J., Understanding the role of electron donors in the reaction catalyzed by Tsrm, a cobalamin-dependent radical S-adenosylmethionine methylase. J Biol Inorg Chem 2019, 24 (6), 831-839. DOI

Arcinas, A. J.;  Maiocco, S. J.;  Elliott, S. J.;  Silakov, A.; Booker, S. J., Ferredoxins as interchangeable redox components in support of MiaB, a radical S-adenosylmethionine methylthiotransferase. Protein Science 2019, 28 (1), 267-282. DOI

2018

Bauerle, M. R.;  Grove, T. L.; Booker, S. J., Investigation of Solvent Hydron Exchange in the Reaction Catalyzed by the Antibiotic Resistance Protein Cfr. Biochemistry 2018, 57 (30), 4431-4439. DOI

Blaszczyk, A. J.; Booker, S. J., A (Re)Discovery of the Fom3 Substrate. Biochemistry 2018, 57 (6), 891-892. DOI

Holliday, G. L.;  Akiva, E.;  Meng, E. C.;  Brown, S. D.;  Calhoun, S.;  Pieper, U.;  Sali, A.;  Booker, S. J.; Babbitt, P. C., Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a “Plug and Play” Domain. Methods Enzymol 2018, 606, 1-71. DOI

Lanz, N. D.;  Blaszczyk, A. J.;  McCarthy, E. L.;  Wang, B.;  Wang, R. X.;  Jones, B. S.; Booker, S. J., Enhanced Solubilization of Class B Radical S-Adenosylmethionine Methylases by Improved Cobalamin Uptake in Escherichia coli. Biochemistry 2018, 57 (9), 1475-1490. DOI

McCarthy, E. L.; Booker, S. J., Biochemical Approaches for Understanding Iron-Sulfur Cluster Regeneration in Escherichia coli Lipoyl Synthase During Catalysis. Methods Enzymol 2018, 606, 217-239. DOI

Wang, B.;  Blaszczyk, A. J.;  Knox, H. L.;  Zhou, S.;  Blaesi, E. J.;  Krebs, C.;  Wang, R. X.; Booker, S. J., Stereochemical and Mechanistic Investigation of the Reaction Catalyzed by Fom3 from Streptomyces fradiae, a Cobalamin-Dependent Radical S-Adenosylmethionine Methylase. Biochemistry 2018, 57 (33), 4972-4984. DOI

Wang, B.;  LaMattina, J. W.;  Badding, E. D.;  Gadsby, L. K.;  Grove, T. L.; Booker, S. J., Chapter Nine – Using Peptide Mimics to Study the Biosynthesis of the Side-Ring System of Nosiheptide. In Methods in Enzymology, Bandarian, V., Ed. Academic Press: 2018; Vol. 606, pp 241-268. DOI

2017

LaMattina, J. W.;  Wang, B.;  Badding, E. D.;  Gadsby, L. K.;  Grove, T. L.; Booker, S. J., NosN, a Radical S-Adenosylmethionine Methylase, Catalyzes Both C1 Transfer and Formation of the Ester Linkage of the Side-Ring System during the Biosynthesis of Nosiheptide. Journal of the American Chemical Society 2017, 139 (48), 17438-17445. DOI

McCarthy, E. L.; Booker, S. J., Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 2017, 358 (6361), 373. DOI

Blaszczyk, A. J.;  Wang, R. X.; Booker, S. J., TsrM as a Model for Purifying and Characterizing Cobalamin-Dependent Radical S-Adenosylmethionine Methylases. Methods Enzymol 2017, 595, 303-329. DOI

Lanz, N. D.; Booker, S. J., The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor. In Iron–Sulfur Clusters in Chemistry and Biology, 2nd Edition, De Gruyter: Berlin, Boston, 2017; pp 327-358. DOI

Silakov, A.;  Lanz, N. D.; Booker, S. J., Characterization of Radical S-adenosylmethionine Enzymes and Intermediates in their Reactions by Continuous Wave and Pulse Electron Paramagnetic Resonance Spectroscopies. In Future Directions in Metalloprotein and Metalloenzyme Research, Hanson, G.; Berliner, L., Eds. Springer International Publishing: Cham, 2017; pp 143-186. LINK

Blaszczyk, A. J.;  Wang, B.;  Silakov, A.;  Ho, J. V.; Booker, S. J., Efficient methylation of C2 in l-tryptophan by the cobalamin-dependent radical S-adenosylmethionine methylase TsrM requires an unmodified N1 amine. J Biol Chem 2017, 292 (37), 15456-15467. DOI

Badding, E. D.;  Grove, T. L.;  Gadsby, L. K.;  LaMattina, J. W.;  Boal, A. K.; Booker, S. J., Rerouting the Pathway for the Biosynthesis of the Side Ring System of Nosiheptide: The Roles of NosI, NosJ, and NosK. Journal of the American Chemical Society 2017, 139 (16), 5896-5905. DOI

2016

Blaszczyk, A. J.;  Silakov, A.;  Zhang, B.;  Maiocco, S. J.;  Lanz, N. D.;  Kelly, W. L.;  Elliott, S. J.;  Krebs, C.; Booker, S. J., Spectroscopic and Electrochemical Characterization of the Iron–Sulfur and Cobalamin Cofactors of TsrM, an Unusual Radical S-Adenosylmethionine Methylase. Journal of the American Chemical Society 2016, 138 (10), 3416-3426. DOI

Block, E.;  Booker, S. J.;  Flores-Penalba, S.;  George, G. N.;  Gundala, S.;  Landgraf, B. J.;  Liu, J.;  Lodge, S. N.;  Pushie, M. J.;  Rozovsky, S.;  Vattekkatte, A.;  Yaghi, R.; Zeng, H., Trifluoroselenomethionine: A New Unnatural Amino Acid. Chembiochem 2016, 17 (18), 1738-1751. DOI

Esakova, O. A.;  Silakov, A.;  Grove, T. L.;  Saunders, A. H.;  McLaughlin, M. I.;  Yennawar, N. H.; Booker, S. J., Structure of Quinolinate Synthase from Pyrococcus horikoshii in the Presence of Its Product, Quinolinic Acid. Journal of the American Chemical Society 2016, 138 (23), 7224-7227. DOI

Landgraf, B. J.; Booker, S. J., Stereochemical Course of the Reaction Catalyzed by RimO, a Radical SAM Methylthiotransferase. Journal of the American Chemical Society 2016, 138 (9), 2889-2892. DOI

Landgraf, B. J.;  McCarthy, E. L.; Booker, S. J., Radical S-Adenosylmethionine Enzymes in Human Health and Disease. Annual Review of Biochemistry 2016, 85 (1), 485-514. DOI

Lanz, N. D.;  Lee, K. H.;  Horstmann, A. K.;  Pandelia, M. E.;  Cicchillo, R. M.;  Krebs, C.; Booker, S. J., Characterization of Lipoyl Synthase from Mycobacterium tuberculosis. Biochemistry 2016, 55 (9), 1372-83. DOI

Maiocco, S. J.;  Arcinas, A. J.;  Landgraf, B. J.;  Lee, K.-H.;  Booker, S. J.; Elliott, S. J., Transformations of the FeS Clusters of the Methylthiotransferases MiaB and RimO, Detected by Direct Electrochemistry. Biochemistry 2016, 55 (39), 5531-5536. DOI

McLaughlin, M. I.;  Lanz, N. D.;  Goldman, P. J.;  Lee, K.-H.;  Booker, S. J.; Drennan, C. L., Crystallographic snapshots of sulfur insertion by lipoyl synthase. Proceedings of the National Academy of Sciences 2016, 113 (34), 9446. DOI

Schwalm, E. L.;  Grove, T. L.;  Booker, S. J.; Boal, A. K., Crystallographic capture of a radical S-adenosylmethionine enzyme in the act of modifying tRNA. Science 2016, 352 (6283), 309. LINK

2015

Warui, D. M.;  Pandelia, M. E.;  Rajakovich, L. J.;  Krebs, C.;  Bollinger, J. M., Jr.; Booker, S. J., Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase. Biochemistry 2015, 54 (4), 1006-15. DOI

Rajakovich, L. J.;  Nørgaard, H.;  Warui, D. M.;  Chang, W.-c.;  Li, N.;  Booker, S. J.;  Krebs, C.;  Bollinger, J. M.; Pandelia, M.-E., Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism. Journal of the American Chemical Society 2015, 137 (36), 11695-11709. DOI

Pandelia, M.-E.;  Lanz, N. D.;  Booker, S. J.; Krebs, C., Mössbauer spectroscopy of Fe/S proteins. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 2015, 1853 (6), 1395-1405. DOI

McCarthy, E. L.; Booker, S. J., Bridging a gap in iron-sulfur cluster assembly. eLife 2015, 4, e10479. DOI

Marous, D. R.;  Lloyd, E. P.;  Buller, A. R.;  Moshos, K. A.;  Grove, T. L.;  Blaszczyk, A. J.;  Booker, S. J.; Townsend, C. A., Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. Proceedings of the National Academy of Sciences 2015, 112 (33), 10354. DOI

Maiocco, S. J.;  Grove, T. L.;  Booker, S. J.; Elliott, S. J., Electrochemical Resolution of the [4Fe-4S] Centers of the AdoMet Radical Enzyme BtrN: Evidence of Proton Coupling and an Unusual, Low-Potential Auxiliary Cluster. Journal of the American Chemical Society 2015, 137 (27), 8664-8667. DOI

Lanz, N. D.;  Rectenwald, J. M.;  Wang, B.;  Kakar, E. S.;  Laremore, T. N.;  Booker, S. J.; Silakov, A., Characterization of a Radical Intermediate in Lipoyl Cofactor Biosynthesis. Journal of the American Chemical Society 2015, 137 (41), 13216-13219. DOI

Lanz, N. D.; Booker, S. J., Auxiliary iron-sulfur cofactors in radical SAM enzymes. Biochim Biophys Acta 2015, 1853 (6), 1316-1334. DOI

Bauerle, M. R.;  Schwalm, E. L.; Booker, S. J., Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J Biol Chem 2015, 290 (7), 3995-4002. DOI

2014

Silakov, A.;  Grove, T. L.;  Radle, M. I.;  Bauerle, M. R.;  Green, M. T.;  Rosenzweig, A. C.;  Boal, A. K.; Booker, S. J., Characterization of a cross-linked protein-nucleic acid substrate radical in the reaction catalyzed by RlmN. Journal of the American Chemical Society 2014, 136 (23), 8221-8228. DOI

Nicholas, D. L.; Squire, J. B., The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor. De Gruyter: Berlin, Boston, 2014; pp 211-238.

Lanz, N. D.;  Pandelia, M.-E.;  Kakar, E. S.;  Lee, K.-H.;  Krebs, C.; Booker, S. J., Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase. Biochemistry 2014, 53 (28), 4557-4572. DOI

2013

Pandelia, M. E.;  Li, N.;  Nørgaard, H.;  Warui, D. M.;  Rajakovich, L. J.;  Chang, W.-c.;  Booker, S. J.;  Krebs, C.; Bollinger, J. M., Substrate-Triggered Addition of Dioxygen to the Diferrous Cofactor of Aldehyde-Deformylating Oxygenase to Form a Diferric-Peroxide Intermediate. Journal of the American Chemical Society 2013, 135 (42), 15801-15812. DOI

Landgraf, B. J.; Booker, S. J., The ylide has landed. Nature 2013, 498 (7452), 45-47. LINK

Landgraf, B. J.;  Arcinas, A. J.;  Lee, K.-H.; Booker, S. J., Identification of an Intermediate Methyl Carrier in the Radical S-Adenosylmethionine Methylthiotransferases RimO and MiaB. Journal of the American Chemical Society 2013, 135 (41), 15404-15416. DOI

Grove, T. L.;  Livada, J.;  Schwalm, E. L.;  Green, M. T.;  Booker, S. J.; Silakov, A., A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr. Nature Chemical Biology 2013, 9 (7), 422-427. LINK

Grove, T. L.;  Ahlum, J. H.;  Qin, R. M.;  Lanz, N. D.;  Radle, M. I.;  Krebs, C.; Booker, S. J., Further Characterization of Cys-Type and Ser-Type Anaerobic Sulfatase Maturating Enzymes Suggests a Commonality in the Mechanism of Catalysis. Biochemistry 2013, 52 (17), 2874-2887. DOI

Goldman, P. J.;  Grove, T. L.;  Sites, L. A.;  McLaughlin, M. I.;  Booker, S. J.; Drennan, C. L., X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc Natl Acad Sci U S A 2013, 110 (21), 8519-24. DOI

Goldman, P. J.;  Grove, T. L.;  Booker, S. J.; Drennan, C. L., X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry. Proceedings of the National Academy of Sciences 2013, 110 (40), 15949. DOI

Christensen, Q. H.;  Grove, T. L.;  Booker, S. J.; Greenberg, E. P., A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. Proceedings of the National Academy of Sciences 2013, 110 (34), 13815. DOI

2012

Li, N.;  Chang, W. C.;  Warui, D. M.;  Booker, S. J.;  Krebs, C.; Bollinger, J. M., Jr., Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 2012, 51 (40), 7908-16. DOI

Lanz, N. D.;  Grove, T. L.;  Gogonea, C. B.;  Lee, K.-H.;  Krebs, C.; Booker, S. J., Chapter Seven – RlmN and AtsB as Models for the Overproduction and Characterization of Radical SAM Proteins. In Methods in Enzymology, Hopwood, D. A., Ed. Academic Press: 2012; Vol. 516, pp 125-152. DOI

Lanz, N. D.; Booker, S. J., Identification and function of auxiliary iron–sulfur clusters in radical SAM enzymes. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics 2012, 1824 (11), 1196-1212. DOI

Booker, S. J., Radical SAM enzymes and radical enzymology. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics 2012, 1824 (11), 1151-1153. DOI

2011

Warui, D. M.;  Li, N.;  Nørgaard, H.;  Krebs, C.;  Bollinger, J. M.; Booker, S. J., Detection of Formate, Rather than Carbon Monoxide, As the Stoichiometric Coproduct in Conversion of Fatty Aldehydes to Alkanes by a Cyanobacterial Aldehyde Decarbonylase. Journal of the American Chemical Society 2011, 133 (10), 3316-3319. DOI

Li, N.;  Nørgaard, H.;  Warui, D. M.;  Booker, S. J.;  Krebs, C.; Bollinger, J. M., Conversion of Fatty Aldehydes to Alka(e)nes and Formate by a Cyanobacterial Aldehyde Decarbonylase: Cryptic Redox by an Unusual Dimetal Oxygenase. Journal of the American Chemical Society 2011, 133 (16), 6158-6161. DOI

Krebs, C.;  Bollinger, J. M., Jr.; Booker, S. J., Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like ‘di-iron-carboxylate’ proteins. Curr Opin Chem Biol 2011, 15 (2), 291-303. DOI

Grove, T. L.;  Radle, M. I.;  Krebs, C.; Booker, S. J., Cfr and RlmN contain a single [4Fe-4S] cluster, which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by SN2 displacement and radical generation. J Am Chem Soc 2011, 133 (49), 19586-9. DOI

Grove, T. L.;  Benner, J. S.;  Radle, M. I.;  Ahlum, J. H.;  Landgraf, B. J.;  Krebs, C.; Booker, S. J., A Radically Different Mechanism for <em>S</em>-Adenosylmethionine–Dependent Methyltransferases. Science 2011, 332 (6029), 604. DOI

Booker, S. J.;  Grove, T. L.;  Lee, K.-H.;  Arcinas, A.; Lanz, N. D., Radical-dependent mechanisms of posttranslational and posttranscriptional modification. The FASEB Journal 2011, 25 (S1), 426.1-426.1. DOI

Boal, A. K.;  Grove, T. L.;  McLaughlin, M. I.;  Yennawar, N. H.;  Booker, S. J.; Rosenzweig, A. C., Structural Basis for Methyl Transfer by a Radical SAM Enzyme. Science 2011, 332 (6033), 1089. DOI

Arcinas, A. J.; Booker, S. J., Enzymology: Radical break-up, blissful make-up. Nat Chem Biol 2011, 7 (3), 133-4. DOI

2010

Grove, T. L.;  Ahlum, J. H.;  Sharma, P.;  Krebs, C.; Booker, S. J., A Consensus Mechanism for Radical SAM-Dependent Dehydrogenation? BtrN Contains Two [4Fe-4S] Clusters. Biochemistry 2010, 49 (18), 3783-3785. DOI

Booker, S. J.; Grove, T. L., Mechanistic and functional versatility of radical SAM enzymes. F1000 Biol Rep 2010, 2, 52-52. DOI

2009

Booker, S. J., Anaerobic functionalization of unactivated C-H bonds. Current opinion in chemical biology 2009, 13 (1), 58-73. DOI

Lee, K.-H.;  Saleh, L.;  Anton, B. P.;  Madinger, C. L.;  Benner, J. S.;  Iwig, D. F.;  Roberts, R. J.;  Krebs, C.; Booker, S. J., Characterization of RimO, a New Member of the Methylthiotransferase Subclass of the Radical SAM Superfamily. Biochemistry 2009, 48 (42), 10162-10174. DOI

Matthews, M. L.;  Neumann, C. S.;  Miles, L. A.;  Grove, T. L.;  Booker, S. J.;  Krebs, C.;  Walsh, C. T.; Bollinger, J. M., Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proceedings of the National Academy of Sciences 2009, 106 (42), 17723. DOI

2008

Saunders, A. H.;  Griffiths, A. E.;  Lee, K. H.;  Cicchillo, R. M.;  Tu, L.;  Stromberg, J. A.;  Krebs, C.; Booker, S. J., Characterization of quinolinate synthases from Escherichia coli, Mycobacterium tuberculosis, and Pyrococcus horikoshii indicates that [4Fe-4S] clusters are common cofactors throughout this class of enzymes. Biochemistry 2008, 47 (41), 10999-1012. DOI

Saunders, A. H.; Booker, S. J., Regulation of the Activity of Escherichia coli Quinolinate Synthase by Reversible Disulfide-Bond Formation. Biochemistry 2008, 47 (33), 8467-8469. DOI

Grove, T. L.;  Lee, K. H.;  St Clair, J.;  Krebs, C.; Booker, S. J., In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 2008, 47 (28), 7523-38. DOI

Chatterjee, A.;  Li, Y.;  Zhang, Y.;  Grove, T. L.;  Lee, M.;  Krebs, C.;  Booker, S. J.;  Begley, T. P.; Ealick, S. E., Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nature Chemical Biology 2008, 4 (12), 758-765. DOI

2007

Booker, S. J.;  Cicchillo, R. M.; Grove, T. L., Self-sacrifice in radical S-adenosylmethionine proteins. Current opinion in chemical biology 2007, 11 (5), 543-552. DOI

2005

Nesbitt, N. M.;  Baleanu-Gogonea, C.;  Cicchillo, R. M.;  Goodson, K.;  Iwig, D. F.;  Broadwater, J. A.;  Haas, J. A.;  Fox, B. G.; Booker, S. J., Expression, purification, and physical characterization of Escherichia coli lipoyl(octanoyl)transferase. Protein Expr Purif 2005, 39 (2), 269-82. DOI

Iwig, D. F.;  Uchida, A.;  Stromberg, J. A.; Booker, S. J., The Activity of Escherichia coli Cyclopropane Fatty Acid Synthase Depends on the Presence of Bicarbonate. Journal of the American Chemical Society 2005, 127 (33), 11612-11613. DOI

Cicchillo, R. M.;  Tu, L.;  Stromberg, J. A.;  Hoffart, L. M.;  Krebs, C.; Booker, S. J., Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster. J Am Chem Soc 2005, 127 (20), 7310-1. DOI

Cicchillo, R. M.; Booker, S. J., Mechanistic Investigations of Lipoic Acid Biosynthesis in Escherichia coli:  Both Sulfur Atoms in Lipoic Acid are Contributed by the Same Lipoyl Synthase Polypeptide. Journal of the American Chemical Society 2005, 127 (9), 2860-2861. DOI

2004

Iwig, D. F.;  Grippe, A. T.;  McIntyre, T. A.; Booker, S. J., Isotope and Elemental Effects Indicate a Rate-Limiting Methyl Transfer as the Initial Step in the Reaction Catalyzed by Escherichia coli Cyclopropane Fatty Acid Synthase. Biochemistry 2004, 43 (42), 13510-13524. DOI

Iwig, D. F.; Booker, S. J., Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-L-methionine. Biochemistry 2004, 43 (42), 13496-509. DOI

Cicchillo, R. M.;  Lee, K. H.;  Baleanu-Gogonea, C.;  Nesbitt, N. M.;  Krebs, C.; Booker, S. J., Escherichia coli lipoyl synthase binds two distinct [4Fe-4S] clusters per polypeptide. Biochemistry 2004, 43 (37), 11770-81. DOI

Cicchillo, R. M.;  Iwig, D. F.;  Jones, A. D.;  Nesbitt, N. M.;  Baleanu-Gogonea, C.;  Souder, M. G.;  Tu, L.; Booker, S. J., Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 2004, 43 (21), 6378-86. DOI

Cicchillo, R. M.;  Baker, M. A.;  Schnitzer, E. J.;  Newman, E. B.;  Krebs, C.; Booker, S. J., Escherichia coli L-serine deaminase requires a [4Fe-4S] cluster in catalysis. J Biol Chem 2004, 279 (31), 32418-25. DOI

Booker, S. J., Unraveling the pathway of lipoic acid biosynthesis. Chem Biol 2004, 11 (1), 10-2. DOI

2001

Frey, P. A.; Booker, S. J., Radical mechanisms of S-adenosylmethionine-dependent enzymes. In Advances in Protein Chemistry, Academic Press: 2001; Vol. 58, pp 1-45. DOI

2000

Cosper, N. J.;  Booker, S. J.;  Ruzicka, F.;  Frey, P. A.; Scott, R. A., Direct FeS Cluster Involvement in Generation of a Radical in Lysine 2,3-Aminomutase. Biochemistry 2000, 39 (51), 15668-15673. DOI

1993

Booker, S.; Stubbe, J., Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii. Proceedings of the National Academy of Sciences of the United States of America 1993, 90 (18), 8352-8356. DOI