Tag Archives: science

What do SETI terms mean? A committee weighs in.

Inspired by a paper by Iván Almár’s paper on SETI terms:

https://www.sciencedirect.com/science/article/pii/S0094576509003816

I wrote down my opinions on the topic and recommended a taxonomy of SETI in this paper, which I describe in my blog post hereSofia Sheikh presented my suggestions at the Decoding Alien Intelligence workshop:

One of my recommendations was to organize SETI in a taxonomy like this:

After the talk, Frank Drake(!) stood up and recommended that there be an ad hoc committee to discuss SETI terms and recommend what they mean (thanks to Michael Oman-Reagan for providing me the audio!). So, in anticipation of the upcoming NASA Workshop of Technosignatures, in Houston next week, I convened such a committee, including Sofia and me, Jill Tarter, Iván Almár, Kathryn Denning, and Steven Dick.

We didn’t agree on everything, but we came up with a lot of good recommendations and clarifications that I hope NASA will find useful. We did not go with “Communication SETI” because the committee thought it was too reminiscent of METI, and we did not recommend against “civilization” or “colonize” (mostly because both are in wide use and we did not want to endorse major changes without very good reason) but we did note the problems with those terms.

Our final report is here:

https://arxiv.org/abs/1809.06857

and Sofia will present it at the workshop on Wednesday!

Measuring Rocky Exoplanet Compositions with Webb

Back in June 2016 I advertised a postdoctoral position between me and Steve Desch at ASU for someone to work on the problem of exoplanet interior compositions.

Normally, the way we determine the interior composition of exoplanets is a combination of inference, measurement, and guesswork.  In the Solar System we can study the surface compositions of planets directly, get the bulk density by dividing masses by radii cubed, and a sense of internal structure by looking at how the surfaces have changed or what a body’s gravitational field says about the interior mass distribution. It’s amazing how much we can determine about, say, the interior of Europa!

Evidence from NASA’s Galileo mission suggested that there might be a liquid water ocean underneath Europa’s icy crust. Image credit: NASA/JPL

On Earth we can also use seismology to directly probe the density and composition of the Earth’s interior.  Some things we still don’t know to great precision (the water content of Earth’s mantle is still pretty uncertain, though it’s small) but in general we have a good sense of what’s down there, despite having a very limited set of actual samples from far below the surface (from volcanos, mostly).

Based on this we have a good sense of how the planets formed, and so we can make good inferences and guesses about the parts we don’t know about yet. For instance, we suspect that Jupiter formed around a rocky core of about ten times the mass of the Earth; one of the purposes of Juno is to see if we can better determine Jupiter’s inner composition and perhaps check this model prediction.

This artist’s concept shows the pole-to-pole orbits of the NASA’s Juno spacecraft at Jupiter. Image credit: NASA/JPL-Caltech/SwRI

Exoplanets are much harder.  We generally can measure their masses from radial velocities and radii if they transit, and for planets for which we have both we have bulk densities. By analogy with Solar System planets we can then guess that they have similar compositions to those, and from the compositions of their host stars we can make inferences about how they might differ. But getting anything like a mantle or surface sample seems impossible.

Except…

There is a whole class of planet recently discovered by Kepler (Saul Rappaport and Roberto Sanchis Ojeda did a lot of the pioneering work here) that appears to be evaporating. The transit signatures of these things is amazing; they vary in depth (sometimes disappearing entirely!) and don’t have the usual shape of transiting planets. Apparently, these are small rocky bodies  (which have orbital periods of less than a day and which are too small to see transit at all) have gigantic, variable tails of rock that is condensing from a plume of surface material evaporated by the intense heat of their parent star.

Screen shot 2013-03-09 at 5.24.42 PM.png
Transits of KIC 12557548, from Fig. 2 of Rappaport et al. 2012
Here’s an artist’s impression:

Exoplanet KIC 1255b orbits its parent star followed by a comet-like dust tail. Image credit: Maciej Szyszko.

So by now maybe you’ve spotted the opportunity: that background star is a great lamp to pass light through that material so we can figure out what it’s made of!  Is it mantle material? Is it core material?  It it hydrated?

Studies of white dwarf “pollution” can measure the bulk, relative elemental abundances of material from presumably rocky planets that have crashed into the white dwarf, but here we have the opportunity to study chemical composition of one particular layer of a distant rocky exoplanet—we can’t even do this for the Earth!

But will it work? Are the transits deep enough? Can we distinguish different minerals with spectroscopy? Are there any stars bright enough for this?

Yes to all.  ASU/NExSS postdoc Eva Bodman has all the details in her latest paper. It’s an exciting time!

Eppur si muove

We sometimes read in the history of astronomy that it was Bessel that finally proved the Earth moves around the sun with the measurement of the parallax of 61 Cygni, one of the brightest and closest stars to Earth in the Northern Hemisphere.

This is because people early on realized that if the stars are different brightnesses because they are at different distances, and if the Earth really does move around the Sun, then we should see the nearby ones appear to move with respect to the background ones annually as our light of sight towards them changes.  The effect is quite small, and it was challenging for 18th and 19th century astronomers to measure the tiny effect using only their eyes to make measurements (the biggest parallaxes are like a part in a million).

And so astronomers put a lot of effort into this, and indeed eventually Bessel pulled it off. But the clinching observational proof actually came about 100 years earlier, based on those same observations!

Astronomers were expecting to see a “reflex” motion: when the Earth moved in one direction the nearby stars would appear to slightly move in the opposite direction, so when the Earth was at one extreme of its orbit they would appear to be a bit closer to the center of Earth’s orbit (i.e. the Sun) than they should be.  Instead, astronomers kept measuring a much larger than expected motion (around 20 arcseconds instead of less than 1 arcsecond) in the wrong direction: the stars seemed to move towards a point about 90 degrees away from the Sun, towards the ecliptic.

This is what was actually happening, but it was actually pretty confusing at the time.  One way they were measuring positions was by using the zenith as an absolute direction (you can use a plumb or a liquid to determine which direction is straight up) and a telescope to see how close stars got to the zenith as they passed overhead.  So they could only measure one component of the star’s motion, so all they knew is that it was large and had the wrong phase (90 degrees from what was expected).

What was actually going on is that the stars were suffering from aberration. Imagine you have a trash can an you want to collect as much rain as possible.  If there is no wind, you should just keep the can vertical.  But, if you are on the bed of a pickup truck moving at 10 mph, then some of the rain that would have fallen into the can will hit the side instead.  To maximize rain collection, you have to tip the bucket towards the front of the truck (i.e. in the direction of the truck’s motion) to get the rain to go straight down into the can.

Wikicommons illustration of the aberration of starlight. Original here. By Brews ohare, CC BY-SA 3.0.

Similarly with telescopes: to get starlight to go straight down the optical axis of the telescope, you actually have to “lead” the motion of the Earth slightly by pointing in the direction of Earth’s motion.  This effect is equal in radians to the speed of the Earth’s orbit divided by the speed of light, or about 20″.  This is what was being observed, and this is what Bradley finally figured out in 1727.

You can learn more about this history here. Interestingly, Bradley’s original paper describing the aberration and proving the Earth moves has only one citation in ADS!

So while hunting for the proof of Earth’s motion, astronomers actually discovered a much easier to find proof of Earth’s motion!  But it took decades to understand it.

Today, it’s tricky to repeat these measurements with modern equipment. Finding the zenith to a precision of 1″ is not something most observatories are set up to do; we almost never use high precision, absolute positions with respect the ground in astronomy any more (our instruments tend to change their pointing with temperature, humidity, and other factors, so we calibrate them on actual star positions every now and again to keep our pointing models accurate and precise).

But interestingly, there is a way most college observatories and many amateur ones can find an absolute position: star trails!  By turning off tracking and letting the stars trail, one can identify the center of the trails as the true Celestial Pole.  As the Earth goes around the Sun, one can measure star positions with respect to that and detect the aberration, thus proving the Earth orbits the Sun.

Of course, there are lots of other ways to do this: you could build an R~10,000 spectrograph and feed it light from stars on the ecliptic and measure the Doppler shift caused by Earth’s motion, or you could measure the parallax directly with differential astrometry, like Bessel did. But this is a novel solution that actually doesn’t require special equipment of good seeing, just an ordinary camera.

I was going to try this someday, and even wrote up a whole blog post about it, but finally decided that if I haven’t started by now I probably never will, so I’ve “given the idea away” in the form of a Research Note to the AAS (my sixth!).  One reason I never started is that although the equipment needed isn’t special, there are lots of complications.  One is that the Poles move on their own (due to Earth’s axial precession) so you have to remove that effect first.

As part of my plan to learn Python and Astropy I tried to make a figure showing how the apparent position of the true Celestial North Pole moves with respect to the background stars, showing the precession and the aberration.  It was surprisingly tricky!  Plotting things near coordinate singularities is not something most plotting software does well, so in the end I cheated and just plotted things as a plane chart in ecliptic coordinates and drew the Celestial coordinates in by hand.  I think it came out really well:

Figuring out how to calculate the motion of the Celestial Pole (also affected by nutation) was tricky; it turns out Astropy does not expose those functions to the user so I had to cheat.  In the end, I did it two ways that gave the same answer: I asked for the ICRS (astronomical) coordinates of the zenith at the North Pole of Earth.  Astropy converts from geocentric coordinates to barycentric coordinates by correcting for the orientation of the Earth (the axial motion) and the aberration, so this yields the green curve above.  Almost equivalently, one can ask for the Celestial Pole in CIRS coordinates (the intermediate coordinate system between the Earth and Celestrial Sphere) at many times and then ask Astropy to convert these positions to the ICRS frame.   The latter is faster.

To learn more, you can read my research note describing the experiment here.  And if you try this, please let me know!

 

A Needle In A Haystack

Where does the old idiom “finding a needle in a haystack” come from?

According to my physical copy of Bartlett’s Familiar Quotations, the phrase originates with Cervantes in Book III Chapter X of Don Quixote, and indeed most searches online state so with authority.

But I just checked my physical copy and the Project Gutenberg version and not only is there no  Book III, the phrase does not appear!

Some sleuthing of other phrases that do appear reveals that “Book III” refers to what is normally called “Part II”, and indeed there in Chapter X of my copy it reads:

…tracking Dulcinea up and down El Toboso will be as bad as looking for a needle in a haystack or for a scholar in Salmanca.

just as promised.  So why isn’t it in the Project Gutenberg version? There it reads:

looking for Dulcinea will be looking for Marica in Ravena, or the bachelor in Salamanca.

which is not the same thing at all. Indeed, the Spanish original seems to read:

buscar a Dulcinea por el Toboso como a Marica por Rávena, o al bachiller en Salamanca.

So the phrase is actually not in the original!  It seems to be due to Cervantes’ English translators who used the phrase as a more familiar [to English ears] version of “to find Maria in Ravena”.  Bez Thomas helped me to figure this out on the Twitters:

So where does the phrase “needle in a haystack” originate?  The OED has two attestations that predate Cervantes:

c1530   T. More Let. Impugnynge J. Fryth in Wks. (1557) 837/2   “To seke out one lyne in all hys bookes wer to go looke a nedle in a medow.”
1592   R. Greene Quip for Vpstart Courtier sig. Ev   “He…gropeth in the dark to find a needle in a bottle of hay.”

Where a “bottle” here means “bundle”.  Apparently the translators were using a 100+ year old phrase!   The “haystack” version is from later:

1779   W. Rogers in J. Sullivan Jrnls. Mil. Exped. (1887) 262   “But agreeably to the old adage it was similar to looking for needles in a hay stack.”

And there you have it.  Even an authority as solid as Bartlett’s occasionally gets things wrong, so it’s good to check!

 

[Update: Apparently Bartlett’s is full of these errors with respect to Don Quixote: see this article here which details the “haystack” mistake and many more.]

Smooth continuum stars and RNAAS

We can tell what stars are made of by the colors missing from their spectra, but that’s not really true for hot, rapidly rotating stars. These stars lack convective envelopes, so they lack magnetic dynamos, so they do not spin down as they age. As a result of their rapid rotation, the Doppler shift blurs out their lines and its hard to get a precise measurement of their abundances (except hydrogen, whose lines are so deep you can’t miss them, even blurred out).

But one astronomer’s trash is another’s treasure. These rapidly rotating stars make great sources of light for calibrating spectrographs because you can be sure that any spectral features you *do* see are due to your instrument, not the star. And these stars can be very bright, so it’s a quick test.

The problem is that not all hot stars rotate quickly enough to be “good” calibrators. For instance, here’s what a small portion of a rapid rotator looks like:
This star’s spectrum is flat (or slightly sloped) in this small region of the blue.  The overall mountain shape is the response of the spectrograph, which this star lets you model.  The “fuzz” is photon noise—by chance some channels get more photons than others.  The spike in the middle is a “cosmic ray” event—a high energy particle from somewhere in the dome struck the detector and caused a spike.  The only thing here that’s due to the star are some barely perceptible wiggles.

Here’s a “bad” calibrator star, that is not spinning fast enough to be a “good” calibrator:

Not smooth at all!  Those “bites” taken out are due to elements in the star’s atmosphere absorbing certain shades of blue light, and the bowl shape is due to the way different parts of the stellar surface are moving towards and away from us as the star rotates.

So which stars are “good” and which are “bad” for calibrating high resolution spectrographs Published values of their rotation speeds turn out to be an unreliable guide for this, so observers over the years make lists of “good” hot star calibrators.  For instance, when I need a “good” hot star, I ask Howard Isaacson at Berkeley, who has a list carefully compiled by Kelsey Clubb.  At Berkeley, Kelsey Club went through the California Planet Survey’s library of hot star spectra and separated the wheat from the chaff, which is really useful!

This sort of list isn’t usually publishable—it’s not the sort of scientific advance or discovery that usually warrants a peer-reviewed paper.  But it is the sort of thing scientists should share and that Kelsey should get credit for.

Now, thanks to the new AAS journal “Research Notes of the American Astronomical Society”, we have a good way to share the list.  This new journal is not peer reviewed, but it is free, curated, and has a science editor who accepts papers. They can only be 1,000 words, have one figure or table, and they do not have to be new or novel or anything—just interesting.

But why not just put it to the arXiv, and skip the 1,000 word limit thing?  Well, Geoff Bower asked the same thing on the Twitter, and I came up with two big reasons: RNAAS will curate machine-readable tables, which is great, and as a AAS journal, if your result is (unlike this one) newsworthy, it might get picked up by AAS Nova.  Editor Chris Lintott points out a third:

Anyway, as a journal that emphasizes utility and curates tables, it is the perfect place for Kelsey’s list, so that’s where we published it.  You can find it here.

I was actually worried this would happen.  When RNAAS came out, and then when Overleaf linked directly to it for submissions, I got worried I’d like it too much:

and (despite my misspelling of RNAAS) I was right.  I’ve now submitted or supervised five of these. Here are the others:

Tabby’s Star Explanations

‘Oumuamua Is Almost Certainly Interstellar

EPRVIII Instruments

Barycentric Corrections in Python

I may have a problem…

Planets in Clusters

As we study more and more exoplanets, one variable that we have not really gotten a great handle on is age.  There are not many planets orbiting stars with very well constrained ages. We’d like to be able to see how, for instance, young planetary systems differ from old ones to study planet-planet scattering, planetary migration, and other effects.

So there have been many studies of planets orbiting stars in star clusters.  Clusters are great laboratories for stars because the stars formed (mostly) at the same time out of the same stuff. The repurposed Kepler mission K2 was great for this because it looked for planets along the Ecliptic Plane, and by a bizarre coincidence almost every important benchmark cluster is in the ecliptic!

Jason Curtis, NSF postdoctoral fellow a Columbia University

Jason Curtis is a Penn State grad now an NSF postdoctoral fellow at Columbia working on the problem of stellar ages and activity, using the topic of his PhD thesis, the nearby open star cluster Ruprecht 147. He campaigned to get NASA to repoint K2 to make sure it would capture the stars of Ruprecht 147 so we could study its properties (and, you know, maybe find some planets).

And it worked! He has now written up the paper, and you can find it on the arXiv, in particular the new hot Neptune K2-231b.

But even more useful, to my mind, than the 231st K2 planet is that this planet has a well constrained age.  If we get a lot more, we can look for those trends we’d like to study about how systems change with age.  Jason helpfully compiled a list of all known planets in clusters, and there put them together in one big table. I imagine that with TESS we’ll end up with so many you won’t be able to fit them on one page, but for now here they are, with references.  For the full thing with working links, be sure to read the paper!

Table-1d4tdc0

Milton’s Cosmology Leaned Heliocentric

It’s a home day for me with the flu, so to recover from a long day of videoconferencing meetings, and because a headache won’t let me concentrate on important stuff, I played around with an idea I wrote up as a high school English project.

Milton wrote the epic Paradise Lost, in which he presents his own cosmology of Heaven, Hell, and Earth. This was an ambitious task, since Dante’s Divine Comedy had set a pretty high standard here.

The geometry of Creation in the Divine Comedy (not to scale) with Hell inside the Earth and heaven outside the final sphere in a Ptolemaic universe.

Milton actually met Galileo in person—he visited Galileo’s estate as a boy when the astronomer was there in his later years under house arrest.

The visit may have left an impression. Milton avoids any reference to where the center of the Solar System is in his cosmology—it’s pretty nebulous exactly how everything is arranged—but in Book 4 the angel Uriel needs to get back to his station in the Sun from Earth. He slid down to Earth on a sunbeam, but fortunately for him the Sun has now set, so the tip of his sunbeam is now up in the air. He just jumps on and slides down:

 …and Uriel to his charge
Returnd on that bright beam, whose point now rais’d 
Bore him slope downward to the Sun now fall’n
Beneath th’ Azores

but how did the Sun get so low? It is “beneath th’ Azores” far to the West:

whither the prime Orb,
Incredible how swift, had thither rowl’d
Diurnal, or this less volubil Earth
By shorter flight to th’ East, had left him there

The “prime Orb” is Ptolemy’s name for the Sun, which had (“incredible how swift”) there “rowl’d Dirunal”—rolled down there over the course of the day.  But Milton did not choose his words lightly.  “Incredible” literally means “beyond credibility”.  He doesn’t buy that it really goes so fast.

Is there an alternative?  Milton dithers.  “Or” he writes “this less volubil Earth” (meaning “less apt to roll” according to the OED) went a much shorter distance the other way and the Sun just stayed where “he” was.  That’s Copernicus’s model for the days!

So he clearly prefers Copernicus’s model, and offers it as an alternative, but opens with the more familiar and established terminology and cosmology of Ptolemy (and Dante).

It’s interesting he didn’t commit.  Perhaps he didn’t want to tie his work to a model that might be wrong, or perhaps he didn’t want to alienate his Ptolemist readership.

I wonder, though, if heliocentrism had been widely accepted a century before, if Paradise Lost would have had a well defined geometry of the universe, like the Divine Comedy famously does, but with Heaven and Hell having distinct places in a heliocentric Solar System?

 

Maunder Minimum Analogs

For a long time after sunspots were discovered telescopically by Galileo, there weren’t any to see. John Eddy has a nice paper on the history of sunspot measurements, showing conclusively that there was an 80-year period, now called the “Maunder Minumum”, in which the Sun just didn’t have any sunspots.

Why not? We’d love to know.  The Solar dynamo is a bit of a mystery, and it just apparently turning off for 80 years is kind of important—it may have even had an effect on climate on Earth, although that case is often overstated (it’s not glaringly obvious from the global temperature anomaly record).

Shivani Shah, Penn State undergrad now applying to a graduate program near you!

Finding another star undergoing such a period would be great. We could study its corona and chromosphere it answer questions like: Is it still undergoing its magnetic cycle, just without sunspots? Is it just an extended minimum that lasts many cycle periods? Or did the dynamo turn off entirely? If we had a sample of them we could ask: is this typical behavior of Sun-like stars? All cycling stars? Just stars of the Sun’s age?

For a while, people looked for extremely inactive “sun-like” stars to find “Maunder minimum stars”, but I showed in my thesis that these stars are in fact not Sun-like (they’re subgiants).

People looked in M67, a cluster filled with Sun-like stars, to find extremely inactive stars there, but Jason Curtis showed that these stars were not actually all that inactive (the ISM got in the way).

For a long time Steve Saar has advocated using time series to see a star do what the Sun apparently did: go from a cycling state to a quiet state (or the reverse).  This means using the 50+ year baseline of activity measurements we have of stars to find a cycling star that transitions into or out of a cycling state to a “flat activity state”.  That would make for a pretty convincing candidate, I think.

Well, now we have one! Shivani Shah has written up the strange case of HD 4915, a Sun-like star that seems to have had its cycle peter out to almost nothing.  Here’s the killer plot:

Activity history of HD 4915. Larger “S-Value”s mean (presumably) more starspots. Note that the star came down from a (presumed) maximum, came up to a second, weaker maximum, then had a very slow rise to what seems to be a very weak maximum. Is the magnetic cycle of this star dying out?

It’s cool to see something that looks a lot like what we’ve been expecting to see for a while.  For comparison, here are the “grand magnetic minima” the Sun has experienced, measured with sunspots:

Sunspot number vs. time for three magnetic state transitions on the Sun, from the Hoyt & Schatten 1998 historical reconstructions. Note that we have reversed the x-axis on the bottom panel.

 

Black dots above are the parts of the Solar record we are suggesting to be analogous to the HD 4915 time series.  The red points are our projections of its future behavior if the analogy is perfect.  So, if this is analogous to the “Dalton Minimum” (no, not that Dalton Minimum) then the next cycle should be rather strong; if it’s truly going into a Maunder Minimum-like state we may not see any activity for another 80 years! So only time will tell if this is right, but I think it’s the best candidate I’ve seen so far.  I hope that by studying this star we can finally crack the nut of what the Sun was doing without sunspots for all those decades!

The paper is on the arXiv here.  Comments welcome!

SETI is Not About Getting Attention

No, this isn’t a post about METI.  This is about an interesting sociological phenomenon about one of the ways in which SETI is marginalized in astronomy.

SETI tends to get media attention, at an amount disproportionate to the amount of SETI work actually done. There are many reasons for this. One is that it is a topic of genuine interest to much of the lay public.  Another is that it is easily sensationalized and conflated with UFOlogy and science fiction by the yellow press.

I’ve had my share of both sides. Take Ross Andersen’s excellent article on Tabby’s Star (which was a scoop; we did not put out a press release or publish anything that triggered it). This story got huge amounts of global media attention, to the point that it appeared on Saturday Night Live and the Tonight Show. This second wave of stories led to the perception that Tabby herself “jumped to aliens” as an explanation, when in fact her paper and press release made no mention of aliens, and the press release announced “comets” as the cause.

The Daily Mail is a sensationalist rag in the UK that seems to have decided I’m their go-to name for all things alien. Sort of like the way that they find a way to shoehorn Stephen Hawking into the headlines of any article they write about space, but to a much smaller degree, they seem to love to claim I’ve found aliens (or that I think I have) when I write the opposite in a public space.  For instance:

  1. I had a press release titled “Search for Advanced Civilizations Beyond Earth Finds Nothing Obvious“.  The Mail Online’s lede was that I had “found 50 galaxies that may contain intelligent alien races.”
  2. I wrote a paper whose premise was that the question of extraterrestrial life (of any kind) in the Solar System is an “open question”, and in particular that the Solar System apparently lacks any alien artifacts.  The Mail Online article’s subheads claimed that I believe that intelligent “aliens either lived on Earth, Venus or Mars billions of years ago.”
  3. And when I wrote a couple of blog posts about how I didn’t think ‘Oumuamua was a great SETI target (but that it should get us thinking about Solar System SETI), they again reversed my meaning and wrote that I claimed ‘Oumuamua “could be an alien spacecraft with broken engines.”

It’s pretty embarrassing to see your work so brazenly sensationalized in the media, but given the Daily Mail’s reputation I’m not sure there’s anything I could have done to prevent it except not talk about SETI at all where it might be overheard. I’ve developed a thick skin about it, but it still smarts to see my name next to pictures of bug-eyed aliens.  I know that colleagues of mine that don’t know the whole story will think less of me because of these false portrayals of me working on “fringe” science or shouting “aliens” at every astronomical anomaly.

Actual image the Daily Mail used in an article quoting me about an asteroid.

So it’s especially galling when my colleagues accuse me of sensationalizing my work or, worse, only working in SETI at all because I’m after media attention. This attitude is probably widespread, because a few fed-up people have lost their cool and announced it several times in rants online; I can only imagine how many more have kept their cool or only said it where I haven’t noticed.  Some examples (names and links omitted to protect the guilty):

  1. About a short ETI discussion in a longer paper (that did not seek or garner any headlines)
    What does the mention of alien civilizations really add to these topics other than an attempt to grab headlines?
    and
    What’s to be gained by a casual mention in the abstract and end of the paper? … this (along with a growing list of other examples in the literature) is an attempt to grab headlines.
  2. Rebutting an argument that there is nothing wrong with seriously discussing SETI angles of astronomical anomalies on social media:
    All fine, but there is another component of this, which is cynical citation of ETI as a simple way of gaining attention. Your discussion assumes earnest and honest motivations. I’m not sure that that is always true.
  3. Starting a discussion about how SETI astronomers need to stop sensationalizing their work:
    most SETI-related news seems to be interfering with conventional scientific discoveries, stealing the limelight – without following basic rules of science
  4. Piling on to that discussion:
    It’s not just SETI you should be dumping on here, if your overall argument is to stop selling bullshit to the media because it’s fun.

At the risk of making an analogy to an infinitely more serious problem, they’re blaming the victims. Here we are getting misquoted and caricatured in the yellow press, and they’re the ones that are offended and embarrassed at what we have put them through. To them, somehow it’s our fault that the Mail misquotes us, and their attitude is that if we didn’t want to be misquoted, then why were we doing that kind of science in the first place? 

The real bad actors here are the yellow journalists, and that is a problem all of us in science and science communication have to deal with all the time; SETI is just a particularly soft target for them.

So, for the record: this kind of media attention is not “fun,” it’s mortifying, and we are not asking for it when we discuss our work in public. Many of the above accusations were surrounded by claims that the writers respect SETI as science, but you don’t really respect scientists’ work if you think it’s irresponsible of them to talk about it out loud, or if you think the only reason they do it is so that they can get their names in the papers.

SETI astronomers have had to deal with conflation with UFOlogy and fringe psuedoscience for decades; I hope that more of our colleagues will recognize that we share their disdain for sensationalism and are pulling in the same direction on the issue of sober science communication about good science.

And I hope that they won’t cast scorn at every SETI paper or reference to ETIs in the literature (“astro-crap” one astronomer called it on Facebook), and not cast aspersions on the authors for working on an important problem (especially junior researchers, who are both the future lifeblood of the field and the most sensitive to these accusations).

SETI gets enough unjustified grief from Congress, the last thing we need is to have to worry about our colleagues in our flanks piling on.

SETI is Part of Astrobiology

What follows is my submission to the National Academies of Sciences, Engineering, and Medicine ad hoc Committee on Astrobiology Science Strategy for Life in the Universe, 2018. It is available as a PDF here.

Please also see Jill Tarter’s companion white paper here.

I. SETI is Part of Astrobiology

“Traditional SETI is not part of astrobiology” declares the NASA Astrobiology Strategy 2015 document (p. 150). This is incorrect.1

Astrobiology is the study of life in the universe, in particular its “origin, evolution, distribution, and future in the universe.” [emphasis mine] Searches for biosignatures are searches for the results of interactions between life and its environment, and could be sensitive to even primitive life on other worlds.  As such, these searches focus on the origin and evolution of life, using past life on Earth as a guide.

But some of the most obvious ways in which Earth is inhabited today are its technosignatures such as radio transmissions, alterations of its atmosphere by industrial pollutants, and probes throughout the Solar System. It seems clear that the future of life on Earth includes the development of ever more obvious technosignatures. Indeed, the NASA Astrobiology Strategy 2015 document acknowledges “the possibility” that such technosignatures exist, but erroneously declares them to be “not part of contemporary SETI,” and mentions them only to declare that we should “be aware of the possibility” and to “be sure to include [technosignatures] as a possible kind of interpretation we should consider as we begin to get data on the exoplanets.”

In other words, while speculation on the nature of biosignatures and the design of multi-billion dollar missions to find those signatures is consistent with NASA’s vision for astrobiology, speculation on the nature of technosignatures and the design of observations to find them is not. The language of the strategy document implies NASA will, at best, tolerate its astrobiologists considering the possibility that anomalies discovered in the hunt for biosignatures might be of technological origin.

But there is no a priori reason to believe that biosignatures should be easier to detect than technosignatures—indeed, we have had the technology to detect strong extraterrestrial radio signals since the first radio SETI searchers were conducted in 1959, and today the scope of possibly detectable technosignatures is much larger than this. Furthermore, intelligent spacefaring life might spread throughout the Galaxy, and so be far more ubiquitous than new sites of abiogenesis. Life might be much easier to find than the NASA strategy assumes.   

Indeed it has been cynically, but not untruthfully, noted that NASA eagerly spends billions of dollars to search for “stupid” life passively waiting to be found, but will spend almost nothing to look for the intelligent life that might, after all, be trying to get our attention. This is especially strange since the discovery of intelligent life would be a much more profound and important scientific discovery than even, say, signs of photosynthesis on Ross 128b.

Further, since technosignatures might be both obvious and obviously artificial SETI also provides a shortcut to establishing that a purported sign of life is not a false positive, a major and pernicious problem in the hunt for biosignatures. SETI thus provides an alternative and possibly more viable path to the discovery of alien life than is reflected in NASA’s astrobiology roadmap. Indeed, this was recognized explicitly in the panel reports of the Astro2010 decadal survey:

Of course, the most certain sign of extraterrestrial life would be a signal indicative of intelligence. [A radio] facility that devoted some time to the search for extraterrestrial intelligence would provide a valuable complement to the efforts suggested by the PSF report on this question. Detecting such a signal is certainly a long shot, but it may prove to be the only definitive evidence for extraterrestrial life. (p.454, Panel Reports—New Worlds, New Horizons in Astronomy & Astrophysics)

II. Why is SETI Neglected in NASA’s Astrobiology Portfolio?

While it is not completely clear why NASA does not include SETI in its astrobiology portfolio, there are several factors that seem likely to be at play.

The first is the risk of public censure: SETI sometimes suffers from a “giggle factor” that leads some to conflate it with “ufology” or campy science fiction. Indeed, such an attitude likely led to the cancelation of the last NASA SETI efforts in the early 1990’s, after grandstanding by US senators denouncing “Martian hunting season at the taxpayer’s expense” (Garber 1999). Such attitudes harm all of science, and the National Academies should be clear that such a “giggle factor” must not be allowed to influence US science priorities.

The second is the erroneous perception that SETI is an all-or-nothing proposition that yields no scientific progress unless and until it succeeds in detecting unambiguous signs of interstellar communication. On the contrary, even with scant funding, SETI has historically been involved in some of the most important discoveries in astrophysics. Not only have the demands of radio SETI led to breakthroughs in radio instrumentation (see, for instance, the new Breakthrough Listen backend at the Green Bank 100-meter telescope, with bandwidth of up to 10 GHz, an ideal Fast Radio Burst detection device; Gajjar et al. 2017), but some of the most famous SETI false positives have proven to be new classes of astrophysical phenomena, including active galactic nuclei (CTA-21 and CTA-102, Kardashev 1964), pulsars (originally, if somewhat facetiously, dubbed “LGM” for “Little Green Men”), and perhaps the still-not-fully-understood “Tabby’s Star” (KIC 8462852, Boyajian et al. 2016, Wright et al. 2016, Wright & Sigurdsson 2017).

Indeed, exactly because SETI seeks signals of obviously artificial origin, it must deal with and examine the rare and poorly understood astrophysical phenomena that dominate its false positives. Anomalies discovered during searches for pulsed and continuous laser emission (Howard et al. 2007, Wright et al. 2014, Tellis & Marcy 2015, 2017) broadband radio signals, large artificial structures (Dyson 1960, Griffith et al. 2015, Wright et al. 2016), and other astrophysical exotica push astrophysics in new and unexpected directions. If there is a perception that SETI little more than the narrow search for strong radio carrier waves producing a long string of null results it is because historically there has been essentially no funding available for anything else.

Third, there is the erroneous perception that, since radio SETI has been active for decades, its failure to date means there is nothing to find. On the contrary, the lack of SETI funding means that only a tiny fraction of the search space open to radio SETI has been explored (Tarter et al. 2010). Indeed, Robert Gray has estimated that the total integration time on the location of the Wow! Signal (the most famous and credible SETI candidate signal to date) is less than 24 hours (see, for instance, Gray et al. 2002). That is, if there is a powerful, unambiguous beacon in that direction with a duty cycle of around one pulse per day, we would not have detected a second pulse yet. Other parts of the sky have even less coverage. The truth is, we only begun to seriously survey the sky even for radio beacons, and other search methods have even less completeness.

Fourth, there is the erroneous perception that SETI will proceed on its own without NASA support. Indeed, the 2015 NASA Astrobiology Roadmap claims that “traditional SETI is…currently well-funded by private sources.”  Even setting aside the non sequitur of considering the amount of private philanthropic funding when assessing the merits of the components of astrobiology, this is not a fair description of the state of the field. While it is true that the Breakthrough Listen Initiative has pledged to spend up to $100 million over 10 years, in truth its spending has been far below that level, and it is focused on a small number of mature search technologies. Beyond this initiative, private benefactors have supported the SETI Institute’s Allen Telescope Array, but not at the level necessary to complete the array or fund its operations.

Fifth, there is the erroneous perception that the search for technosignatures is somehow a more speculative or risky endeavor than the search for biosignatures. We note that the entire field of astrobiology once faced a similar stigma. Chyba & Hand rebutted that perception in 2005:

Astro-physicists…spent decades studying and searching for black holes before accumulating today’s compelling evidence that they exist. The same can be said for the search for room-temperature superconductors, proton decay, violations of special relativity, or for that matter the Higgs boson. Indeed, much of the most important and exciting research in astronomy and physics is concerned exactly with the study of objects or phenomena whose existence has not been demonstrated—and that may, in fact, turn out not to exist. In this sense astrobiology merely confronts what is a familiar, even commonplace situation in many of its sister sciences.

Their rebuttal holds just as well as SETI today. Indeed, Wright & Oman-Reagan (2017) have articulated a detailed analogy between SETI and the relatively uncontroversial search for dark matter particles via direct detection. They argue that unlike with dark matter searches, with SETI, at least, we have the advantage that we know that the targets of our search (spacefaring technological species) arise naturally (because we are one).

Finally, there is an erroneous perception that SETI is exclusively a ground-based radio telescope project with little for NASA to offer. On the contrary, SETI is an interdisciplinary field (Cabrol 2016) and even beyond the potential for NASA’s Deep Space Network to play an important role in the radio component of SETI, archival data from NASA assets have played an important role in SETI for decades: from Solar System SETI using interplanetary cameras, to waste heat searches using IRAS (Carrigan 2009) WISE, Spitzer, and GALEX (Griffith et al. 2015), to searches for artifacts with Kepler (Wright et al. 2016) and Swift (Meng et al. 2017). Future ground-based projects like LSST and space-borne projects like JWST and WFIRST will undoubtably provide additional opportunities SETI research both as ancillary output of legacy and archival programs and through independent SETI projects in their own right.

III. Reinvigorating SETI as a Subfield of Astrobiology

One difficulty SETI faces is a negative feedback between funding and advocacy.

As it stands, SETI is essentially shut out of NASA funding. SETI is not mentioned at all in most NASA proposal solicitations, making any SETI proposal submitted to such a call unlikely to satisfy the merit review criteria. Worse, the only mentions of SETI in the entire 2015, 2016, and 2017 ROSES announcements are under “exclusions,” in the Exobiology section (“Proposals aimed at identification and characterization of signals and/or properties of extrasolar planets that may harbor intelligent life are not solicited at this time”) and the Exoplanets section (as “not within the scope of this program.”) In other words, SETI is ignored entirely in NASA proposal solicitations, except for those most relevant to it, in which cases it is explicitly excluded.

Meanwhile, other parts of astrobiology have flourished under NASA’s aegis, which has incubated strategies for the detection of life elsewhere in the universe, and produced scientists who can advocate for mature roadmaps to the detection of life in the universe as part of NASA’s astrobiology program. But now, twenty years after the last major NASA SETI program was cancelled, there are only a handful of SETI practitioners and virtually no pipeline to train more.

Thus there are only a few well-developed strategies to advocate for, and only a few scientists to advocate for them. This will doubtless be reflected in the number of white papers advocating SETI (like this one) versus those advocating other kinds of astrobiology responsive to the current call. This disparity should not be seen as indicating a lack of intrinsic merit of the endeavor of SETI, but as a sign of neglect of SETI by national funding agencies.

Since SETI is, quite obviously, part of astrobiology, SETI practitioners should at the very least be expressly encouraged to compete on a level playing field with practitioners of other subfields for NASA astrobiology resources.

Doing so will uncork pent-up SETI efforts that will result in significant progress over the next 10 years and beyond. As a fully recognized and funded component of astrobiology, SETI practitioners will be able to develop new search strategies, discover new astrophysical phenomena and, critically, train a new generation of SETI researchers to guide NASA’s astrobiology portfolio to vigorously pursue the discovery of all kinds of life in the universe—both “stupid” and intelligent.

And if, as many suspect, technosignatures prove to be closer to our grasp than biosignatures, then including of SETI in NASA’s astrobiology portfolio will ultimately lead to one of the most profound discoveries in human history, and a reinvigoration of and relevance for NASA not seen since the Apollo era. In retrospect, we will wonder why we were so reluctant to succeed.

IV. Bibliography

  • Boyajian, T. S. et al. 2016, MNRAS 457, 3988
  • Carrigan, R. A, Jr., 2009, The Astrophysical Journal 698, 2075
  • Cabrol, N. A. 2016, Astrobiology, 16, 9
  • Chyba, C. F. & Hand, K. P. 2005 Annu. Rev. Astron. Astrophys. 43, 31–74.
  • Domagal-Goldman S. D. & Wright K. E. Astrobiology. August 2016, 16(8): 561-653. 
  • Dyson, F. 1960 Science 131, 1667
  • Gajjar, V., et al. 2017, The Astronomer’s Telegram, 10675
  • Garber, S.J. 1999. J. Br. Interplanet. Soc. 52, 3–12.
  • Gray, R., et al. 2002, The Astrophysical Journal 578, 967
  • Griffith, R. et al. 2015, The Astrophysical Journal Supplement Series 217, 25
  • Howard, A., et al. 2007, Acta Astronautica 61, 78H
  • Kardashev, N. S. 1964, Soviet Astronomy, 8, 217
  • Meng, H., et al., 2017 The Astrophysical Journal 847, 131
  • Reines, A. E., 2002 Publications of the Astronomical Society of the Pacific 114, 416R
  • Tellis, N. K, & Marcy, G. W., 2015 PASP 127, 540T
  • Tarter, J., et al., 2010 SPIE 781902 http://dx.doi.org/10.1117/12.863128
  • Tellis, N. K, & Marcy, G. W., 2017 The Astronomical Journal 153, 251
  • Wright, S., et al, 2014 SPIE 9147E, 0JW
  • Wright, J. T., et al. 2016, The Astrophysical Journal 816, 17
  • Wright, J. T. & Sigurdsson, S. 2016, The Astrophysical Journal, 829, 3
  • Wright, J. T. & Oman-Reagan, M. P. 2017, Int. Jour. of Astrobiology, arXiv:1708.05318

1 Indeed, broad swaths of the astrobiology community disagree with NASA’s assertion. For instance, SETI was included as a component of astrobiology in The Astrobiology Primer v.2.0 (Domagal-Goldman & Wright 2016), and SETI activities fall under the Carl Sagan Center for astrobiology at the SETI Institute (which, despite the name, conducts a broad range of science, including many sub-fields of astrobiology).

What We’ve Learned About Boyajian’s Star II: Data and Interpretation

Part I here.

It’s been a huge amount of work, but we finally have some conclusions.

First and foremost, the dips have now been observed by an instrument other than Kepler.  So we can firmly rule out instrumental effects! (This was already clear, but it’s now true beyond all doubt for the dips).

Secondly, the dips are clearly chromatic:

Analysis of LCO data by Eva Bodman.

Eva Bodman has done a lot of work to characterize how much deeper the dips are at blue wavelengths than red ones.  If there were opaque objects blocking our view of the light, the star should get equally dim at all wavelengths. Instead, Eva finds that the blue (B) dips are much deeper—about twice as deep—as they are when we look at infrared wavelengths (i’ band, just beyond human vision).

This is consistent with ordinary astrophysical dust, and a major conclusion of our paper: the dips are not caused by opaque macroscopic objects (like megastructures or planets or stars) but by clouds of very small particles of dust (less than 1 micron in typical size). We can also say that these clouds are mostly transparent (“optically thin” in astrophysics parlance).

Secondly, we have spectra from Keck/HIRES both before and during the dips (in-dip spectra kindly contributed by John O’Meara, Jay Farihi, and Seth Redfield; see the black lines in the above figure for when they were taken.  Pre-dip data taken by Andrew Howard and Howard Isaacson.)  The difference between these spectra should bear the spectral fingerprints of whatever is causing the dips!  So, is there atomic gas?  Let’s check the neutral sodium lines (analysis courtesy of Jason Curtis):

The broad sodium line from the star forms a shallow bowl, the sharp features are due to interstellar clouds containing sodium between us and the star.

The black points and red line in the figure above are from before and during the dips, respectively, and the black line at the bottom is the difference.  As you can see, there is no obvious change in the spectrum at all. This strongly suggests that the dust causing the dips is not accompanied by much neutral sodium.

What about hot gas? If it’s really hot there shouldn’t be much in the way of dust, but if it’s warm there should be ionized calcium.  How do the calcium lines look?

The broad calcium line from the star forms a shallow bowl, the sharp features are due to clouds containing calcium between us and the star.

Again, no change, so it looks like there is no additional ionized gas accompanying the dust. So the dust—if that’s what it is—seems to be by itself with no accompanying gas.

In fact Jason Curtis has gone further, and shown that there does not appear to be any change in the stellar lines, either, during a dip, meaning the star is not moving, so does not have a nearby companion orbiting it.

So where are our 10 possibilities?

As I wrote, instrumental effects (#1) are now firmly ruled out.

The hypotheses I found most plausible involving an interstellar gas and dust cloud (#3 and #4), are not looking great. There should have been atomic gas in that case, and we see none.

My favorite (but “less-plausible”) hypothesis #5, a black hole disk, has not been similarly developed, so I think is still in play because we’re not sure what we would have expected to see for that one yet. A cold disk of dust could easily have had all of its gas frozen out onto grain surfaces, I suspect.

The unlikely hypotheses of an orbiting black hole disk (#6), spherical swarm of megastructures (#9) and pulsations (#12) continue to be unlikely.

But now even the more generic “alien megastructures” hypothesis (of any geometry) takes a severe blow from the chromatic nature of the dips: no opaque objects seem to be causing this.  I suspect this will be the big headline here, so let me reemphasize: if the dips had been the same color at all wavelengths, we would have been scratching our heads and this hypothesis would be looking better than before (though still of unclear likelihood).  The fact that the data came in the other way means that we now have no reason to think alien megastructures have anything to do with the dips of Tabby’s Star (Recall that Meng et al. had already come to a similar conclusion with respect to the long-term dimming, but it was the dips that got us thinking along these lines in the first place).

I still like the Solar System cloud idea (#2) but until it is developed to the point where we know what colors of dimming we would expect for a Solar System cloud, it remains of “unclear” plausibility.

The fact that the stellar lines did not change velocity during a dip helps us rule out pulsations (#12, if the star changed size then its atmosphere would be moving and would have a changing radial velocity) as well as close companions. Tabby had already ruled out the nearby companion hypothesis (which is why it wasn’t even on my list) but we now have independent confirmation.

Hypotheses invoking circumstellar material seem to be doing well. Steinn and I were originally pretty down on this class of solutions because of the lack of infrared excess and their inability to explain the long-term dimming, but Metzger et al. and Wyatt et al. (2017) ‘s models have shown how this could be explained, bringing this class of hypothesis up the plausibility scale to near the top (in my mind). To remind you, Wyatt et al. explain both the long- and short-term dimming with circumstellar material, while Metzger et al. have the long-term dimming being intrinsic and the dips due to exocomet-like debris).

We were also down on the family of solutions involving intrinsic variations, and we still don’t think the polar spots model (#11) and stellar cycle model (#10) have high likelihood. But in addition to the Metzger et al. hypothesis, Peter Foukal has developed a model where the entire star gets cooler, and this model is also consistent with the data (I think the dips seem to be too deep in the blue, but formally it’s consistent at the “2-sigma” level). Indeed, Peter himself finds the dips to be less chromatic than we do and very consistent with his model. So I’m ready to promote this class of solution up, in particular because it predicts no absorption features accompanying dimmings, which is indeed exactly what we see.

As for the circumstellar material solutions (“exocomets”), I’m not personally sure why that model does not predict neutral and ionized gas to accompany the dips, but I don’t think anyone has worked it out in detail yet, so it could be easy to explain.

So to recap:

Wyatt et al. and Metzger at al. have developed models involving circumstellar material like exocomets that seem to be consistent with the data we have. Wyatt et al. and Foukal have developed models where the star itself is getting dimmer that also seem supported.  Both classes of model are now at the top of my list, though I still see major problems with both.

Hypotheses invoking intervening material like an interstellar cloud, seem to have taken a blow, though I still want to understand better if they are really ruled out by the lack of gas in the spectra, and whether circumstellar material like exocomets is similarly ruled out. I’m still fond of this solution, but it has gone down a notch in light of the new data.

I think my black hole disk hypothesis is still a dark horse in this race.

And the instrumental effects and alien megastructures hypotheses have been put to bed.

So that’s where we are.  The next highest priorities (in my mind) are to scrutinize the in-dip spectra for any signature of the occulting material (I’m especially curious if the diffuse interstellar bands change depth), and modelers need to make detailed predictions of the atomic and ionized gas that should accompany dust in the exocomet, interstellar cloud, and black hole disk models to see if they can be made consistent with our in-dip spectra.

Onward!

What We’ve Learned About Boyajian’s Star I: Background

For those just catching up on Tabby’s Star, read Kimberly Cartier’s article in Scientific American and my series of blog posts here. And don’t read or trust anything the Daily Mail writes on this (or any other topic involving me).

The star exhibits two unique and very difficult to understand behaviors: the short-term”dips” in brightness (of up to 22%) and long-term brightness variations on years-to-centuries timescales.

Since the Kepler mission stopped observing it, it seems to have continued it slow decline in brightness over the past few years, and that dimming does not seem to be due to solid objects.  But we still don’t have any information about what’s responsible for the dips because we hadn’t been able to see one happening in real time.

But now, thanks to the generous support of our Kickstarter backers, Tabby’s team has been able to pay for year-long monitoring of the star with the Las Cumbres Observatory global telescope network to “catch it in the act” of dipping again so we can study what’s going on.

And in May, it finally happened (when by amazing coincidence I just happened to be at the Breakthrough Listen Lab at UC Berkeley during my sabbatical):

Since then, Tabby’s team has been able to collect a huge amount of data not only from our own organized follow-up efforts, but thanks to he amazing generosity and interest of astronomers around the world who volunteered to observe the star during the dips.  We sincerely appreciate their contributions, and they are all authors of our latest paper.

You can follow every twist and turn of this summer’s activity on the Kickstarter project blog here and follow along with the fans of the project on the Reddit page.  Here’s what’s been going on all summer and fall:

In this plot, the different colors represent different LCO sites where data were taken.  The brightness of the star is on the y-axis, and the date (measured in days with an arbitrary offset astronomers like to use ) is on the x-axis.

One of the rewards for our Kickstarter backers was to name the various dips (they need names!).  After the first (“Elsie”, a nod to Las Cumbres Observatory (“LC”) who was one of our most generous backers), the star continued to oblige with a series of dips. The next dip, “Celeste,” was named as a near reversal of “Elsie” when it looked like the two events might be exhibiting time symmetry (it’s also a nod to team member Angelle Tanner’s mother, who sadly died around the time of the event). The subsequent events have started a theme of “lost cities” which it seems the backers would like to maintain going forward.

After all of that, the star exhibited a strange brightening for a couple of months.

To recap, we were hoping that once we finally caught a dip happening in real time we could see if the dips were the same depth at all wavelengths.  If they were nearly the same, this would suggest that the cause was something opaque, like a disk or (whispering) alien megastructures.

The long-term dimming doesn’t seem to be the same at all wavelengths, which suggests it’s being caused by something like ordinary astronomical dust, but that doesn’t tell us what’s causing the dips (which are what got everyone excited in the first place).

So, what have we found!?!  Well, our paper with a huge author list has been accepted by Astrophysical Journal Letters (thanks to a quick and conscientious referee) and we’re ready to reveal what happened in part II.

 

1I/’Oumuamua updates!

[note: As I wrote in November, I don’t think ‘Oumuamua is an alien spacecraft. While other astronomers have made that suggestion, and while I’m happy to engage in such speculation in a SETI context, I think ‘Oumuamua is interesting in its own right as an asteroid and because of how it is getting us thinking about how to find alien probes in the Solar System.]

Three updates to the ‘Oumuamua story!

First, it appears to be tumbling:

This explains a lot about the confusion over its shape and color. The data keep giving different answers because the object is spinning in a complicated way. To understand deeply, you need a quick primer on principal axes (skip to the slo-mo parts, especially the “unstable” axis around 2:00):

The key is that in space, things generally rotate in a very simple way, about the “principal axis” with the largest moment of inertia (smallest radius).  This is because this is the axis for which a given angular momentum has the least energy, and over time objects will lose energy but not angular momentum.  The Earth, for instance, is oblate, and rotates along the shortest axis it has.

But if you just start something spinning arbitrarily (or, say, you knock it around) or if you start it spinning with some motion along its intermediate axis, it will execute a much more complex motion (around 2:00 in the video above) called tumbling.  It will do this in space until the changing distortions of the body from the changing centrifugal forces eventually cause the rotational energy to dissipate away as waste heat and it ends up a principal axis rotator again (that’s why the Discovery One in 2010:Odyssey Two is spinning that way, along its shortest axis).

The Discovery One is spinning when he Alexei Leonov comes to find it because it had angular momentum but no attitude control, so eventually found the lowest energy state, which was a spin about its shortest axis.

So why is ‘Oumuamua tumbling? It’s unclear, but it may be related to its elongated shape: unlike typical Solar System “rubble pile” asteroids and icy comets, it seems to have more rigidity (apparently not uncommon in smaller Solar System objects), and so it dissipates its rotational energy more slowly—so slowly that it can tumble for a long time.


Second, I wrote a AAS Research Note correcting a small point made by Jean Schneider, who showed that ‘Oumuamua could not have been sent into it’s current orbit via gravitational slingshot with any known planet, or the hypothetical Planet Nine.  I pointed out that in fact there is no way any Solar System object could have done it, hypothetical or not (I supect that this point is trivial to people that think about this for a living, but it is nontheless surprising to those of us who don’t).  I think Alt Mars Crater put it best:

Update:

 


Third, Breakthrough Listen is taking a look (listen?) to see if it is emitting radio waves as one might expect (?) if it is an alien probe:

This is neat! We should be thinking about what we will do if something that looks (more) like an alien craft comes through the Solar System. Now the Breakthrough Listen team has a protocol for tracking Solar System objects with Green Bank and analyzing the data they collect.

Such a discovery would imply that there are lots of these things in the Solar System at any given moment (even if they are deliberately targeting the Sun, they are hard to spot and we’ll miss most of them), and so lots of opportunities to study them.

Why would there be so many of them? Part of the argument that it is possible to settle the entire Galaxy is that exponential growth is possible, because the only limiting resource is the stars (and the material around them) themselves.  Exponential growth can be achieved via Von Neumann probes: self-replicating spacecraft that go to a system, make lots more of themselves, and then go to more systems.

Now even if these have purposes that don’t involve coming near the Sun, you might expect some fraction to eventually go derelict (space is a harsh environment, and an optimal design will likely have a nonzero failure rate). Such derelict craft would, if they are not traveling so fast that they escape the Galaxy, eventually “thermalize” with the stars and end up drifting around like any other interstellar comet or asteroid.

In fact, since they (presumably) no longer have attitude control, one would expect that they would eventually begin to tumble, and if they are very rigid that tumbling might distinguish them from ordinary interstellar asteroids… and in fact, just because their propulsion is broken doesn’t mean that their radio transmitters would be broken…

Is 1I/’Oumuamua an Alien Spacecraft?

No, I don’t think there’s any reason to think it is, but there’s lots of chatter on Twitter that suggest astronomers think it could be:

So what’s going on?

For the first time, astronomers think they have found an interstellar asteroid.  It is clearly on an escape trajectory, and everything about its path is consistent with a free-floating asteroid that was ejected from another star system and is now happening to buzz by the Sun:

https://youtu.be/O6PpbO7vIjU

There are several things that have astronomers talking “spaceship”:

  • Its discovery closely tracks the opening chapter of the book Rendezvous with Rama, by Arthur C. Clarke, about the discovery of an interstellar spaceship on a similar trajectory to ‘Oumuamua.
  • We were expecting the first discovered interstellar rocks (we know they must be out there) to be comets, since our own Solar System’s Oort cloud (populated by nearly-ejected Solar System detritus) is mostly comets. The fact that it is not a comet has people scratching their heads.
  • One of the recent measurements of its shape finds it to have a 10:1 axis ratio: this is not typical of asteroids, but is not uncommon for ships in science fiction (the 2001 monolith was 1:4:9)
  • One of the recent measurements of its color has it very red, similar to metallic asteroids

In many ways, this discovery tracks the excitement around Tabby’s Star: a prediction of how we might discover alien life was made (Clarke for ‘Oumuamua, Luc Arnold for Tabby’s Star); and later an anomalous object was found roughly tracking that prediction but confounding natural explanation.

I’m glad that astronomers are talking about this in a SETI context (and this is SETI), but my personal prior on this is that there is not much reason to get excited about the SETI angle.

That’s because there are several important differences between ‘Oumuamua and Tabby’s Star:

  • The data on Tabby’s Star from Kepler are exquisite.  What’s more, only after being convinced that there was no chance of instrumental error did it really get interesting.  The data on ‘Oumuamua is thin: different groups are getting different sizes, rotation periods, axial ratios, and colors for the object, meaning that it hasn’t been well measured yet.  For instance:

  • The various values people get for the axial ratio vary from the hard-to-understand 10:1 to the more ordinary 3:1.  In other words, it’s not at all clear that this characteristic of ‘Oumuamua is actually all that anomalous—the 10:1 measurement could be in error.
  • Tabby and her team put 2 years of hard work into understanding that star.  Only after all of that work was the “hypothesis of last resort” something worth publishing. ‘Oumuamua was discovered a month ago.
  • Tabby’s team’s ruling out of most natural explanations built on decades of stellar astrophysics and understanding of stars and their environments.  ‘Oumuamua is the first interstellar asteroid we’ve seen, so we have very little to go on.

So I’ll need to see a lot more data and hard, critical analysis of the anomalies in ‘Oumuamua before I get interested in the SETI angle at the level I am for Tabby’s Star.

That said, I’m glad that astronomers are, on the informal forum of Twitter anyway, having a SETI discussion about the prospect of discovering interstellar probes passing through the Solar System.  It’s a neat topic, and once worth thinking about.  I hope ‘Oumuamua inspires more real work on it in the peer-reviewed literature, including concrete suggestions of what to look for when future interstellar objects are discovered passing through.

[Update: please see this Twitter thread by Michele Bannister:

This article (in German, but Google Translate) by Daniel Fischer:

Interstellarer Gast ʻOumuamua erstaunlich länglich

and the comment by Darin Ragazzine below for more-informed takes on this whole issue. Where they contradict me, you should trust them, because they are actual planetary scientists that work in this field.

Doing SETI Better

One of the reasons SETI is hard is that we don’t know exactly what we are looking for, and part of that difficulty is that we still aren’t sure of who we are.  It seems counter-intuitive, but in order to be good at looking for aliens, we have to become experts at understanding ourselves.

Looking for the unknown

Not knowing what you’re looking for is common to many exciting fields in science.  For instance, another goal of astrobiology is to find biosignatures, but in order to know what those are, we have to make assumptions about how life works, based on life-as-we-know-it.  We must balance the need to define the observations that would constitute a successful detection against the fact that life out there might be as-we-don’t-know-it.

Or dark matter: it could be a common particle or a rare one, it could interact with itself or not, it could reveal itself in gamma rays or something else, it could be one of the hypothesized elementary particles or one we haven’t thought of, or it could even be a modification to the laws of gravity.  The best we can do is guess at its nature and look see if there are detectable observational consequences of that guess.

In the hunt for biosignatures, we can appeal to biology, chemistry, and other fields to follow the chain from the definition of life to observable consequences.  In dark matter detection we can appeal to fundamental physics. What do we have in SETI?

Well, we certainly have physics: there are physical laws we believe are fundamental and that we know pretty well, and we can think about energy use and how it would manifest itself. We also have ourselves: we are a technological species, so we can think about how we would detect a species like us.  This last point is analogous to the hunt for biosignatures: we have to balance the need to define technosignatures of intelligent life as we know it, while keeping in mind that perhaps the only technological life out there is as-we-don’t-know-it.

Cultural myopias

There are several consequences of this:

One is that we need to recognize when we are unnecessarily restricting our thinking to life like ours. It can be hard to “step out of brains” (as Nathalie Cabrol puts it) and imagine a truly alien civilization. In order to do it, we must understand what it is to be human, so we can imagine what we would and might not have in common with alien species. This is especially important if there are “beacons” out there: signposts of technological life designed to catch our attention. Finding these means finding Schelling points, which means understanding what it means to be intelligent and technological, and what we must have in common with other species in the Galaxy.

Even more than thinking like an alien, we need to be sure we are able to identify what it means to think like a human. A lot of the background and assumptions in SETI comes from stories we tell about how we got to be where we are now. For instance, when we discuss the “colonization” of the galaxy and the number of potential beacon transmission sites, we imagine an alien species—or humanity—traveling beyond their planet on ships, leaving the Shores of the Cosmic Ocean to settle distant shores, just as we have already done in our own modest ways on Earth’s oceans.

But what pictures come to mind when you think our history of this? Who are humanity’s quintessential colonists, the paragons of exploration?

The Mayflower colonists?

Christopher Columbus?

Landing of Columbus (12 October 1492), painting by John Vanderlyn

 

But, shouldn’t they be Ayla and Moana?

After all, humanity explored and settled nearly every habitable corner of our planet thousands of years before continental Europeans figured out how to navigate the open ocean.

The story of European history as human history—the story of the development of philosophy and science and technology and discovery as the progression from Ancient Greece to the Renaissance to the Space Shuttle—is a common one, but not representative of how technology on Earth as a whole actually developed.

In fact, this perspective is part of the theory of progressivist social evolutionism, now discarded by the social sciences that invented it, and one that justified a vision of European culture as the pinnacle of human civilization.

When we employ popularized and inaccurate accounts of human history like these to think about SETI, we are using partial and politicized stories to do science, and that’s sloppy, to SETI’s detriment.

And it’s not just history. A lot of our visions of human spaceflight and SETI come from science fiction, where many authors—including many influential scientists and engineers—have tried to broaden our minds to the possibility of what could be out there. But fiction is successful when it speaks to us—when the stories that are ostensibly about aliens have their real relevance to life on Earth.  The aliens in these stories are rarely really alien—they are usually allegories for “Others” on Earth, designed to explore humanity from an outsider’s perspective. That makes them fun to read, but it makes them guides of mixed utility, at best, for what might really be out there.

Doing SETI better

For all of these reasons, SETI needs to include the social sciences, especially anthropology, to help practitioners identify where they are stuck “inside their brains” and get out.  Anthropologists are trained to spot these sorts of cultural myopias and avoid them, from the books we read, to the language we use to describe our future and alien species.

That’s why anthropologist Michael Oman-Regan and I have written a paper about visions of SETI and human spaceflight.  We identify some of the tropes and language currently common in the fields, and trace some of them to their origins in science fiction and colonialist narratives (including an oft-cited (self-described) “white separatist”).

As we write in the paper:

Regardless of their personal politics, it behooves practitioners to know the origins of the terms they use and visions for the future they hold, and examine the biases they bring, both to avoid unacknowledged bias in a field that requires an open mind, and to ensure that the field itself is not excluding voices and perspectives that will also help it thrive.

Along the way, we recommend some science fiction to read, trace the “giggle factor” in SETI to camp in science fiction, provide over 60 footnotes of links, evidence, and asides (fun footnotes are a guilty pleasure of mine), and we cite a huge range of sources from Burtons (Tim, LeVar) to social science PhD theses to Avi Loeb.  We mention a lot of ideas that could be whole papers in themselves; we hope that it will inspire curiosity and more research into many of these topics.

I would do a big slow-blog introducing all the big points, but there are too many, and since the paper is very readable (I think so, anyway), instead I’ll leave you with the above teaser, and this link to the paper:

https://arxiv.org/abs/1708.05318

Enjoy!

Parts of this post quote or paraphrase our paper, including parts written by Michael Oman-Reagan. Any inaccuracies are my own.

Primer on Precise Radial Velocities

Objects in space are specified by their Right Ascension, Declination, and distance.  The first two are easily measured, usually to better than a part in a million; the last is notoriously tricky to measure, sometimes uncertain to an order of magnitude.

The time derivatives of these quantities are the reverse: proper motions are unmeasured for most objects in the universe, but velocities can usually be measured to a part in a million rather easily.

I noticed this (I’m sure I’m not the first) when writing a review chapter on precise radial velocities as an exoplanet discovery method. I think it’s a good primer on the subject for students just getting started.  In it I briefly trace the origins of the method to the fundamental importance of radial velocities to astronomy in general and spectroscopic binary star work, then work through the high-mass-ratio limit of SB1s, the first exoplanet discoveries, and the future of the method.

There is also a quick section giving what I think is a fair overview of the problem of stellar RV jitter, including the roles of surface gravity, granulation, oscillations, and magnetic cycles.

You can find it here.  Enjoy!

Schelling Points in SETI

How do you find someone who is also looking for you if you can’t communicate with them?

I was reading the Wikipedia article on the water hole concept in SETI, and saw under “see also” the entry “Schelling point“. Investigating led me to a fascinating bit of history.

Thomas Schelling

Thomas Schelling is a heterodox economist and foreign policy expert who won the Nobel Prize for applications of game theory to conflict. His analysis of the game theory behind nuclear warfare led to the concept of “mutually assured destruction” (with the appropriate acronym MAD) which had great influence (for better or for worse) on the nuclear arms race. His demonstration of the power of being “credibly irrational” does a lot to explain North Korea’s foreign policy. His concept of “tipping” explained how racial segregation can arise from small preferences even in the absence of government-sponsored redlining, which continues to have strong influence on housing policy.

In his seminal 1960 work The Strategy of Conflict he described a game in which the players must cooperate but cannot communicate. In order to work together, they must guess at each others’ strategies, and make sure that their own strategies are guessable. This means they should not pick the objectively best strategy, necessarily, but they should pick the strategy that is most likely to be guessed by the other—assuming they think the same way, one ends up with an infinite recursion!  But all is not lost: if you have something in common with the other player some strategies are clearly superior to others.

For instance, suppose the game is to find the other player in New York City. They are also looking for you, but you two have no way to communicate with each other. Is it reasonable to wait in a restaurant at the corner of 3rd Ave and E 56th street until they show up? No—not only is that not a particularly meaningful place, if they similarly pick a (different) random spot in the city and wait for you, you will never find each other. But there are better strategies: if your partner in the game knows anything about New York (and since they are somewhere in New York, they could ask even if they don’t) then there are certain places and times they are more likely to guess.  Landmarks like Grand Central Station and the Empire State Building are more likely common guesses than random restaurants, and times like noon are more likely for meeting up than 3:12am.

In other words, by thinking about the sorts of common knowledge you share with your partner, you can narrow down the infinite range of possible strategies and have a fighting chance of finding your partner.  The point isn’t that you could win this particular game, it’s that even in the absence of coordination there is a hierarchy of strategies, and they have more to do with the players (what they know) than the game itself. It was a brilliant insight, and the concept today is called a “focal point”.  This already has an unrelated definition in astronomy, so I prefer the (also common) term “Schelling point”.

Incredibly, even though the book was published in 1960, it contains a footnote about SETI, which had its first paper published in 1959!  He writes:

[A good example] is meeting on the same radio frequency with whoever may be signaling us from outer space. “At what frequency shall we look? A long spectrum search for a weak signal of unknown frequency is difficult.  But, just in the most favored radio region there lies a unique, objective standard of frequency, which must be known to every observer in the universe: the outstanding radio emission line at 1420 megacycles of neutral hydrogen” (Giuseppe Cocconi and Philip Morrison, Nature, Sep. 19, 1959, pp. 844-846). The reasoning is amplified by John Lear: “Any astronomer on earth would say ‘Why, 1420 megacycles of course! That’s the characteristic radio emission line of neutral hydrogen.  Hydrogen being the most plentiful element beyond the earth, our neighbors would expect it to be looked for even by tyros in astronomy'” (“The Search for Intelligent Life on Other Planets,” Saturday Review, Jan. 2, 1960, pp. 39-43). What signal to look for? Cocconi and Morrison suggest a sequence of small prime numbers of pulses, or simple arithmetic sums.

This is amazing!  I’m guessing Schelling was reading his weekly Saturday Review when he came across the article, thought it was a great example of his point, and added the footnote to his manuscript for the book, which was published later that year.

This idea has been re-invented over and over in the SETI community. Filippova called it a “Convergent strategy of mutual searches” in 1991, and before that in 1980 Makovetskii called it a “mutual strategy of search,” and a “synchrosignal” in 1977.  Guessing the “magic frequencies” at which ET might be transmitting (it was “pi times hydrogen” in Contact), where they might be transmitting, and when they might be transmitting is an exercise that founds many SETI papers.

My favorite example is Kipping & Teachey’s suggestion in their “laser cloaking” paper.  The paper is mostly about how lasers could be used to sculpt transit light curves to hide or amplify the signs of biology or technology (or of the planet itself!), but it also points out that the best time to transmit is during the time your target would see your planet transit your star (so stars exactly 12h from the Sun; especially those on the ecliptic).  This is a great Schelling point: it is an obviously special time in a planet’s orbit, it doesn’t require the transmitter or receiver to know the precise distance to each other to account for light-travel time and synchronize their efforts, and has the bonus that one might catch the attention of astronomers observing the transit for purely natural scientific reasons.

But this all goes back to Schelling and brings us to the central insight: if there are alien civilizations out there trying to get our attention, we are more likely to find their signals if we can “think like them” and ask “what can we assume they know about us?” The logic that if we have radio telescopes we will know about the 1420 MHz line is pretty solid. Mathematics seems like something we must have in common if they are technologically advanced enough to send interstellar signals, but I’m skeptical that they would find find primes as fascinating as we do (and if we assume they like pi we miss out on them if they are actually tauists).

It’s a nice illustration of how SETI forces us to look inward, as well as out, and question what it means to be human, so we can imagine what it might mean to be an alien. Since these are questions of the social sciences, it shows that SETI is much more than a physical science or engineering challenge, and needs to include anthropologists, linguists, mathematicians, and others.

You can read more examples of people suggesting Schelling points in SETI in my review chapter on exoplanets and SETI here.

Star-Planet Interactions, and Jupiter Analogs

Waaaaay back in 2015 the International Astronomical Union held its General Assembly in Honolulu. I went and gave a review talk on star-planet interactions at a Focus Meeting.

One nice thing (in the long run) about these Focus Meetings is that they generate proceedings that get published. It’s sort of old-fashioned now, but it’s still nice to see these proceedings because they often contain things not in refereed papers: preliminary, unrefereed results that turn out to be important later, and overarching but concise syntheses of lots of work in a way that is useful for understanding but not really appropriate for a refereed article on novel research.

(I write “in the long run” above because having to actually write the proceedings can be a pain, and because they seem to take fooorrrreeevvvveeeerrrr to finally get published.)

Brendan Miller

Well, I was going through my CV for my end-of-sabbatical report (7 more days!) when I remembered that Brendan Miller and I put in a proceedings for the 2015 summer meeting!  Whatever happened to it?  Turns out it was published a while ago and somehow I missed it (which is weird because I have a copy of that book on my shelf…)

Anyway, our contribution is now belatedly on the arXiv.  Here’s what’s in it:

We really want to study the magnetic fields of exoplanets. It seems sort of hopeless—magnetic fields don’t have that much energy and it’s hard enough to figure out a planet’s mass, much less this little detail—but there is hope.

One hope is that close-in exoplanets will have their magnetic fields interact with their host star’s magnetic fields, causing magnetic activity on the star that we can detect in the calcium H&K lines. There had been suggestions in the literature that this was happening, as magnetic “hot-spots” beneath close-in planets rotated in and out of view, but follow up of those systems found the effect to be difficult to reproduce.  I think it was noise.

Another hope was that there was an overall increase in the level of activity in stars with close-in exoplanets.  If you took a sample of stars with and without close-in planets, were the ones with close-in planets more active?  Turns out that’s hard, because there are lots of biases in the way we detect close-in planets (via transit) that might make it more or less likely to find them around active stars in the first place.  Brendan and I wrote a paper where we looked at the evidence (and gathered some ourselves) and concluded there’s no signal to we can dig out of all of the noise.

But there are clear cases where there is star-planet interaction, just by another route: close-in, very massive planets seem to be able to spin up their stars, which makes them more magnetically active.  That probably drives the small amount of correlation we do see.

Then Brendan took a look at WASP-18, which should have one of the strongest planet-induced activity levels around if that’s a thing, and found it’s not elevated in X rays.  Bust there, too.

One thing we did not have time or space to touch on in the article was the one way that magnetic fields do seem to have been detected, via bow shocks., which is a shame but was fortunately covered later in the session.

There is one more bit in the paper that has been dribbling out slowly over the past few years, too. One of my earliest interesting papers was announcing the discovery of the first really good Jupiter analog HD 154345 b.  It’s around a G star, has about an 8 year circular orbit, and is around one Jupiter mass.

One gotcha is that the planet has the same orbital period (and phase!) as the star’s magnetic activity cycle. That’s not too surprising: stars’ cycles tend to be around 10 years, and so some will inevitably have planets at similar periods. The phase matchup is a further inevitable coincidence. After all, our stablest stars, like σ Draconis, have big strong magnetic activity cycles and those don’t create phantom planets in our radial velocity measurements.

Or so we argued in the paper. Well, since then, the coincidence between activity and RV has been getting better and better, and as early as seven years ago I had been conceding that this might be a rare, strong activity-RV coincidence.  I mentioned it in at the first EPRV Workshop (you can see it in the slides here) and again at the 20th anniversary of 51 Peg conference in Haute Provence.

Well, here it is again, in our review:

This is one of those cases where I really should get this into a refereed paper, but I’m busy, and more data will make the case stronger, and retractions are hard to get motivated to write.  Anyway, this has been out there for a while in unrefereed form (and actually disputed! though I still think the planet is probably wrong) but I hope to get it properly written up this fall.

Anyway, that’s the news from Lake Wobegon, where all the planets are Earth-like, all the objects are Rosetta Stones, and all the signals are significant.

 

Tabby doing a Q&A on the WTF star on Twitter

Tabby just did a 20-questions-and-answers thing on Twitter.  I found it hard to read the whole thread, so I’ve compiled it here.  Enjoy!