Tag Archives: Diman Tootaghaj

CAGE: Contention-Aware Game-theoretic modEl

Abstract

Traditional resource management systems rely on a centralized approach to manage users running on each resource. The centralized resource management system is not scalable for large-scale servers as the number of users running on shared resources is increasing dramatically and the centralized manager may not have enough information about applications’ need. In this paper we propose a distributed game-theoretic resource management approach using market auction mechanism to find optimal strategy in a resource competition game. The applications learn through repeated interactions to choose their action on choosing the shared resources. Specifically, we look into two case studies of cache competition game and main processor and coprocessor congestion game. We enforce costs for each resource and derive bidding strategy. Accurate evaluation of the proposed approach show that our distributed allocation is scalable and outperforms the static and traditional approaches.

Draft > CAGE

 

Stochastic Modeling and Optimization of Stragglers

Abstract: MapReduce framework is widely used to parallelize batch jobs since it exploits a high degree of multi-tasking to process them. However, it has been observed that when the number of servers increases, the map phase can take much longer than expected. This paper analytically shows that the stochastic behavior of the servers has a negative effect on the completion time of a MapReduce job, and continuously increasing the number of servers without accurate scheduling can degrade the overall performance. We analytically model the map phase in terms of hardware, system, and application parameters to capture the effects of stragglers on the performance. Mean sojourn time (MST), the time needed to sync the completed tasks at a reducer, is introduced as a performance metric and mathematically formulated. Following that, we stochastically investigate the optimal task scheduling which leads to an equilibrium property in a datacenter with different types of servers. Our experimental results show the performance of the different types of schedulers targeting MapReduce applications. We also show that, in the case of mixed deterministic and stochastic schedulers, there is an optimal scheduler that can always achieve the lowest MST.

Authors: Farshid Farhat and Diman Zad Tootaghaj from Penn State, Yuxiong He from MSR (Microsoft Research)

. The work was done during my visit from MSR in Summer 2015.

Stochastic modeling and optimization of stragglers in mapreduce framework

@phdthesis{farhat2015stochastic,
  title={Stochastic modeling and optimization of stragglers in mapreduce framework},
  author={Farhat, Farshid},
  year={2015},
  school={The Pennsylvania State University}
}

 

Stochastic modeling and optimization of stragglers

@article{farhat2016stochastic,
  title={Stochastic modeling and optimization of stragglers},
  author={Farhat, Farshid and Tootaghaj, Diman and He, Yuxiong and Sivasubramaniam, Anand and Kandemir, Mahmut and Das, Chita},
  journal={IEEE Transactions on Cloud Computing},
  year={2016},
  publisher={IEEE}
}

Towards Stochastically Optimizing Data Computing Flows

Abstract:
With rapid growth in the amount of unstructured data produced by memory-intensive applications, large scale data analytics has recently attracted increasing interest. Processing, managing and analyzing this huge amount of data poses several challenges in cloud and data center computing domain. Especially, conventional frameworks for distributed data analytics are based on the assumption of homogeneity and non-stochastic distribution of different data-processing nodes. The paper argues the fundamental limiting factors for scaling big data computation. It is shown that as the number of series and parallel computing servers increase, the tail (mean and variance) of the job execution time increase. We will first propose a model to predict the response time of highly distributed processing tasks and then propose a new practical computational algorithm to optimize the response time.