Persisters and Toxin/Antitoxin Systems Including MqsR/MqsA, GhoT/GhoS, Hha/TomB, and RalR/RalA
348. “Conformational Change as a Mechanism for Toxin Activation in Bacterial Toxin-Antitoxin Systems,” V. Sanchez-Torres, H.-J. Hwang, and T. K. Wood, J. Virology in press (2024).
346. “Phages Produce Persisters,” L. Fernández-García, J. Kirigo, D. Huelgas-Méndez, M. J. Benedik, M. Tomás, R. García-Contreras, and T. K. Wood, Microbial Biotechnology 17: e14543 (2024).
345. “A high-throughput assay identifies molecules with antimicrobial activity against persister cells,” M. E. Petersen, L. K. Hansen, A. A. Mitkin, N. M. Kelly, T. K. Wood, N. P. Jørgensen, L. J. Østergaard, and R. L. Meyer, J. Medical Microbiol. 73: 7 (2024).
343. “Diverse Physiological Roles of the MqsR/MqsA Toxin/Antitoxin System,” V. Sanchez-Torres, J. Kirigo, and T. K. Wood, Sustain Microbiol 1: qvae006 (2024).
342. “High-throughput screening method using Escherichia coli Keio mutants for assessing primary damage mechanism of antimicrobials,” J. A. Martínez-Álvarez, M V. Gómez, R. García-Contreras, T. K. Wood, F. B. Ramírez Montiel, N. I. Vargas-Maya, B. L. España-Sánchez, A. Rangel-Serrano, F. Padilla-Vaca, B. Franco, Microorganisms 12: 793 (2024).
341. “Implications of Lytic Phage Infections In Inducing Persistence,” V. Sanchez-Torres1, J. Kirigo, and T. K. Wood, Current Opin Microbiol 79:102482 (2024).
340. “A concept for international societally-relevant microbiology education and microbiology knowledge promulgation in society,” …K. N. Timmis, Microbial Biotechnology 17: e14456 (2024).
337. “Single-Cell Analysis Reveals Cryptic Prophage Protease LfgB Protects Escherichia coli During Oxidative Stress by Cleaving Antitoxin MqsA,” L. Fernández-García, X. Gao, J. Kirigo, S. Song, J. Kirigo, M. E. Battisti, R. Garcia-Contreras, M. Tomás, Y. Guo, X. Wang, and T. K. Wood, Microbiology Spectrum 12: e03471-23 (2024).
336. “Toxin/Antitoxin Systems Induce Persistence and Work in Concert with Restriction/Modification Systems to Inhibit Phage,” L. Fernández-García, S. Song, J. Kirigo, M. E. Battisti, M. E. Petersen, M. Tomás, and T. K. Wood, Microbiology Spectrum 12: e0338823 (2024).
331. “Purine metabolism regulates Vibrio splendidus persistence associated with protein aggresome formation and intracellular tetracycline efflux,” C. Li*, Y. Li, T. K. Wood, and W. Zhang, Front Microbiol 14:1127018 (2023).
330. “Heat shock potentiates aminoglycosides against Gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS,” B. Lv, X. Huang, C. Lijia, Y. Ma, M. Bian, Z. Li, J. Duan, F. Zhou, B. Yang, X. Qie, Y. Song, T. K. Wood, and X. Fu, Proc. Natl. Acad. Sci. U.S.A. 120: e2217254120 (2023).
328. “What are the options for treating infections by persister-forming pathogens?,” L. Fernandez-García, J. M. Muthami, M. Tomas, and T K. Wood, Environ. Microbiol. (online 2022).
324. “The Role of PemIK (PemK/PemI) Type II TA System from Klebsiella pneumoniae Clinical Strains in Lytic Phage Infection,” I. Bleriot, L. Blasco, O. Pacios, L. Fernández‑García, A. Ambroa, M. López, C. Ortiz‑Cartagena, F. Fernández Cuenca, J. Oteo‑Iglesias, Á. Pascual, L. Martínez‑Martínez, P. Domingo‑Calap, T. K. Wood, and M. Tomás, Sci Reports 12: 4488 (2022).
323. “Escherichia coli Cryptic Prophages Sense Nutrients to Influence Persister Cell Resuscitation,” S. Song, J.-S. Kim, R. Yamasaki, S. Oh, M. J. Benedik, and T. K. Wood,” Environ. Microbiol. 23: 7245-7254 (2021).
322.“Vibrio splendidus persister cells induced by host coelomic fluids show a similar phenotype to antibiotic-induced counterparts,” Y. Li, T. K. Wood, W. Zhang, C. Lia, Environ. Microbiol. 23: 5605-5620 (2021).
319. “The Secret Lives of Single Cells,” T. K. Wood*, Microbial. Biotechnology 15: 13-17 (2022).
318. “Viable But Non-Culturable Cells’ are Dead,” S. Song and T. K. Wood*, Environmental Microbiology 23: 2335-2338 (2021).
316. “Persister Cells Form in the Plant Pathogen Xanthomonas citri subsp. citri Under Different Stress Conditions,” P. M. M. Martins, T. K. Wood* and A. A. de Souza*, Microorganisms 9: 384 (2021).
314. “Conjugative Plasmid-Encoded Toxin-Antitoxin System PrpT/PrpA Directly Controls Plasmid Copy Number,” S. Ni, B. Li, K. Tang, J. Yao, T. K. Wood, P. Wang, and X. Wang, PNAS U.S.A. 118: e2011577118 (2021).
313. “Type VII Toxin/Antitoxin Classification System for Antitoxins that Enzymatically Neutralize Toxins,” X. Wang, J. Yao, Y.-C. Sun, T. K. Wood, Trends in Microbiology 29: 388-393 (2021).
312. “Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system,” J. Yao, X. Zhen, K. Tang, T. Liu, X. Xu, Z. Chen, Y. Guo, X. Liu, T. K. Wood, S. Ouyang, and X. Wang, Nucleic Acids Research 48: 11054-11067 (2020).
311. “Mechanisms of Tolerance and Resistance to Chlorhexidine in Clinical Strains of Klebsiella pneumoniae Producers of Carbapenemase: Role of New Type II Toxin-Antitoxin System, PemIK,” I. Bleriot, L. Blasco, M. Delgado-Valverde, A. Gual de Torella, A. Ambroa, L. Fernandez-Garcia, M. Lopez, J. Oteo-Iglesias, T. K. Wood, A. Pascual, G. Bou, F. Fernandez-Cuenca, and M. Tomas, Toxins 12: 566 (2020).
310. “A Primary Physiological Role of Toxin/Antitoxin Systems Is Phage Inhibition,” S. Song and T. K. Wood, Front. Microbiol. 11: 1895 (2020).
309. “Copper Kills Escherichia coli Persister Cells,” P. M. M. Martins, T. Gong, A. A. de Souza, and T. K. Wood, Antibiotics 9: 506 (2020).
308. “(p)ppGpp and its role in bacterial persistence: New challenges,” O. Pacios, L. Blasco, I. Bleriot, L. Fernandez-Garcia, A. Ambroa, M. López, G. Bou, R. Cantón, R. Garcia-Contreras, T. K. Wood, and M. Tomás, Antimicrob. Agents Chemother. online (2020).
307. “Combatting Persister Cells with Substituted Indoles,” S. Song and T. K. Wood, Frontiers in Microbiology 11: 1565 (2020).
306. “Are We Really Studying Persister Cells?,” S. Song and T. K. Wood, Environmental Microbiology Reports 13: 3-7 (2021).
305. “Toxin/Antitoxin System Paradigms: Toxins Bound to Antitoxins are not Likely Activated by Preferential Antitoxin Degradation,” S. Song and T. K. Wood, Advanced Biosystems on-line (2020).
304. “ppGpp ribosome dimerization model for bacterial persister formation and resuscitation,” S. Song and T. K. Wood, Biochem. Biophys. Res. Commun. 523: 281-286 (2020).
303. “Forming and Waking Dormant Cells: The ppGpp Ribosome Dimerization Persister Model,” S. Song, and T. K. Wood, Biofilm. 2: 100018 (2020).
302. “Persister Cells Resuscitate Using Membrane Sensors that Activate Chemotaxis, Lower cAMP Levels, and Revive Ribosomes,” R. Yamasaki, S. Song, M. J. Benedik, T. K. Wood, iScience. 23: 100792 (2020).
301. “Deciphering the Antitoxin-Regulated Bacterial Stress Response via Single-Cell Analysis,” L. Wu, M. Zhang, Y. Song, M. Deng, S. He, L. Su, Y. Chen, T. K. Wood, and X. Yan, ACS Chem. Biol. on-line (2019).
300. “Persister Cells Resuscitate via Ribosome Modification by 23S rRNA Pseudouridine Synthase RluD,” S. Song and T. K. Wood, Environ. Microbiol. online (2019). (highlighted by This Week in Microbiology episode #209)
298. “Interkingdom Signal Indole Inhibits Pseudomonas aeruginosa Persister Cell Waking,” W. Zhang, R. Yamasaki, S. Song, and T. K. Wood, J. Appl. Microbiol. on-line (2019).
297. “Toxins of Toxin/Antitoxin Systems are Inactivated Primarily Through Promoter Mutations,” L. Fernandez-Garcia, J.-S. Kim, M. Tomas, and T. K. Wood, J. Appl. Microbiol. 127: 1859-1868 (2019). (editor’s choice)
295. “Identification of a potent indigoid persister antimicrobial by screening dormant cells,” S. Song, T. Gong, R. Yamasaki, J-S Kim, and T. K. Wood, Biotechnology Bioengineering on-line (2019). (editor’s choice)
290. “Ribosome Dependence of Persister Cell Formation and Resuscitation,” T. K. Wood, S. Song, and R. Yamasaki, J. Microbiol. 57: 213-219 (2019).
289. “Resistance to oxidative stress by inner membrane protein ElaB is regulated by OxyR and RpoS,” Y. Guo, Y. Li, W. Zhan, T. K. Wood, and X. Wang, Microbiol. Biotechnol. on-line (2019).
285. “Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments,” R. Trastoy, T. Manso, L. Fernández-García, L. Blasco, A. Ambroa, M. L. Pérez del Molino, G. Bou, R. García-Contreras, T. K. Wood, and M. Tomás, Clinical Microbiology Reviews 31: e00023-18 (2018).
282. “Post-segregational Killing and Phage Inhibition Are Not Mediated by Cell Death Through Toxin/Antitoxin Systems,” S. Song and T. K. Wood, Frontiers Microbiol. 9: 814 (2018).
281. “Single Cell Observations Show Persister Cells Wake Based on Ribosome Content,” J.-S. Kim, R. Yamasaki, S. Song, W. Zhang, and T. K. Wood, Environment. Microbiol. on-line (2018).
279. “Viable But Non-Culturable and Persistence Describe the Same Bacterial Stress State,” J.-S. Kim, N. Chowdhury, R. Yamasaki, and T. K. Wood, Environment. Microbiol. on-line (2018).
278. “GhoT of the GhoT/GhoS toxin/antitoxin system damages lipid membranes by forming transient pores,” J.-S. Kim, A. B. Schantz, S. Song, M. Kumar, and T. K. Wood, Biochem. Biophysical Research Commun. 497: 467-472 (2018).
271. “Strategies for combating persister cell and biofilm infections,” T. K. Wood, Microbial. Biotechnology on-line (2017).
269. “Viable Bacteria Persist on Antibiotic Spacers Following Two‐Stage Revision for Periprosthetic Joint Infection,” D. Ma, R. M. Q. Shanks, C. M. Davis, D. W. Craft, T. K. Wood, B. R. Hamlin, and K. L. Urish, Journal of Orthopaedic Research on-line (2017).
267. “Tolerant, Growing Cells from Nutrient Shifts Are Not Persister Cells,” J.-S. Kim and T. K. Wood, mBio 8: e00354-17 (2017).
264. “Tail-Anchored Inner Membrane Protein ElaB Increases Resistance to Stress While Reducing Persistence in Escherichia coli,” Y. Guo, X. Liu, B. Li, J. Yao, T. K. Wood, and X. Wang, J. Bacteriol. on-line (2017).
263. “Commentary: What is the link between stringent response, endoribonuclease encoding type II toxin/antitoxin systems and persistence?,” L. Van Melderen and T. K. Wood, Frontiers Microbiology on-line (2017).
259. “Persistent Persister Misperceptions,” J.-S. Kim and T. K. Wood, Frontiers Microbiology, on-line (2016).
258. “An oxygen-sensitive toxin–antitoxin system,” O. Marimon, J. M. C. Teixeira, T. N. Cordeiro, V. W.C. Soo, T. L. Wood, M. Mayzel, I. Amata, J. García, A. Morera, M. Gay, M. Vilaseca, V. Y. Orekhov, T. K. Wood, and. M. Pons, Nature Communications 7: 13634 (2016).
257. “Halogenated indoles eradicate bacterial persister cells and biofilms,” J.-H. Lee, Y.-G. Kim, G. Gwon, T. K. Wood, and J. Lee, Appl. Microbiol. Biotechnol. Express 6: 123 (2016).
254. “Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections,” M. Y. Cruz-Muñiz, L. E. López-Jacome, M. Hernández-Durán, R. Franco-Cendejas, P. Licona-Limón, J. L. Ramos-Balderas, M. Martinéz-Vázquez, J. A. Belmon-Díazt, T. K. Wood, R. García-Contreras, Int. J. Antimicrobial Agents on-line (2016).
253. “Exploiting quorum sensing inhibition for the control of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms,” I. Castillo-Juarez, L. E. López-Jácome, G. Soberón-Chávez, M. Tomás, J. Lee, P. Castañeda-Tamez, I. A. Hernández-Bárragan, M. Y. Cruz-Muñiz, T. Maeda, T. K. Wood, and R García-Contreras, Curr. Top. Med/ Chem. on-line (2016).
252. “Repurposing of Anticancer Drugs for the Treatment of Bacterial Infections,” VW Soo, BW Kwan, H Quezada, I Castillo-JuárezI, B Pérez-Eretza, SJ García-Contreras, M Martínez-Vázquez, TK Wood, R García-Contreras, Curr. Top. Med. Chem. on-line (2016).
251. “Toxin YafQ Reduces Escherichia coli Growth at Low Temperatures, Y. Zhao, M. J. McAnulty, and T. K. Wood, PLoS ONE on-line (2016).
250. “Toxin-Antitoxin Systems in Clinical Pathogens,” L. Fernández-García, L. Blasco, M. Lopez, G. Bou,R. García-Contreras, T. Wood, and M. Tomas, Toxins 8: 227 (2016).
247. “The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation,” T. L. Wood and T. K. Wood, Microbiology Open on-line (2016).
246. “DNA-Crosslinker Cisplatin Eradicates Bacterial Persister Cells,” N. Chowdhury, T. L. Wood, M. Martínez-Vázquez, R. García-Contreras, and T. K. Wood, Biotechnol. Bioengr., on-line (2016).
245. “Toxin MqsR cleaves single-stranded mRNA with various 5’ ends,” N. Chowdhury, B. W. Kwan, L. C. McGibbon, P. Babitzke, and T. K. Wood, Microbiology Open on-line (2016).
244. “Antibiotic-tolerant Staphylococcus aureus Biofilm Persists on Arthroplasty Materials,” K. L. Urish, P. W. DeMuth, B. W. Kwan, D. W. Craft, D. Ma, H. Haider, R. S. Tuan, T. K. Wood, and C. M. Davis III, Clin. Orthop. Relat. Res. on-line (2016).
243. “Persistence Increases in the Absence of the Alarmone Guanosine Tetraphosphate by Reducing Cell Growth,” N. Chowdhury, B. W. Kwan, and T. K. Wood, Scientific Reports 6: 20519 (2016).
235. “Combatting Bacterial Persister Cells,” T. K. Wood, Biotechnol. Bioengr. 113: 476-483 (2015).
230. “Combatting Bacterial Infections by Killing Persister Cells with Mitomycin C1,” B. W. Kwan, N. Chowdhury, and T. K. Wood, Environ. Microbiol. 17: 4406–4414 (2015). (highlighted by Nature Medicine)
227. “Orphan Toxin OrtT (YdcX) of Escherichia coli Reduces Growth during the Stringent Response,” S. Islam, M. J. Benedik, and T. K. Wood, Toxins 7: 299-321 (2015).
225. “The MqsR/MqsA Toxin/Antitoxin System Protects Escherichia coli During Bile Acid Stress,” B. W. Kwan, D. M. Lord, W. Peti, R. Page, M. J. Benedik, and T. K. Wood, Environ. Microbiol. on-line (2014).
217. “Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity,” D. O. Osbourne, V. W. C. Soo, I. Konieczny, and T. K. Wood, Bioengineered 5: 1-5 (2014).
216. “Toxin YafQ Increases Persister Cell Formation by Reducing Indole Signaling,” Y. Hu1, B. W. Kwan, D. O. Osbourne1, M. J. Benedik, and T. K. Wood, Environ. Micro. 17: 1275-1285 (2015).
214. “de novo Synthesis of a Bacterial Toxin/Antitoxin System,” V. W. C. Soo, Hsin-Yao Cheng, Brian W. Kwan, and T. K. Wood, Scientific Reports 4: 4807 (2014).
213. “RalR (a DNase) and RalA (a small RNA) form a type I toxin–antitoxin system in Escherichia coli,” Y. Guo, C. Quiroga, Q. Chen, M. J. McAnulty, M. J. Benedik, T. K. Wood,* and X. Wang,* Nucleic Acids Research 42: 6448-6462. (2014).
210. “Toxin GhoT of the GhoT/GhoS TA System Damages the Cell Membrane to Reduce ATP and to Reduce Growth Under Stress,” H.-Y. Cheng, V. W. C. Soo, S. Islam, M. J. McAnulty, M. J. Benedik, and T. K. Wood, Environmental Microbiology 16: 1741–1754 (2014).
209. “Antitoxin MqsA Represses Curli Formation Through the Master Biofilm Regulator CsgD,” V. W. C. Soo and T. K. Wood, Scientific Reports 3: 3186 (2013).
205. “Bacterial Persister Cell Formation and Dormancy,” T. K. Wood, S. J. Knabel, and B. W. Kwan, Appl. Environ. Microbiol 79: 7116-7121 (2013).
199. “Arrested Protein Synthesis Increases Persister-Like Cell Formation,” B. W. Kwan, J. A. Valenta, M. J. Benedik, and T. K. Wood, Antimicrob. Agents Chemother. 57: 1468-1473 (2013).
198. “Type II Toxin/Antitoxin MqsR/MqsA Controls Type V Toxin/Antitoxin GhoT/GhoS,” X. Wang, D. M. Lord, S. H. Hong, W. Peti, M. J. Benedik, R. Page, and T. K. Wood, Environmental Microbiology 15: 1734–1744 (2013).
194. “A New Type V Toxin-Antitoxin System Where mRNA for Toxin GhoT is Cleaved by Antitoxin GhoS,” X. Wang, D. M. Lord, H.-Y. Cheng, D. O. Osbourne, S. H. Hong, V. Sanchez-Torres, C. Quiroga, K. Zhang, T. Herrmann, W. Peti, M. J. Benedik, R. Page, and T. K. Wood, Nature Chemical Biology 8: 855-861 (2012). (highlighted by Nature Chemical Biology and faculty of 1000 Prime)
188. “Bacterial persistence increases as environmental fitness decreases,” S. H. Hong, X. Wang, H. F. O’Connor, M. J. Benedik and Thomas K. Wood, Microb. Biotechnol 5: 509–522 (2012).
185. “Antitoxin DinJ influences the general stress response through transcript stabilizer CspE,” Y. Hu, M. J. Benedik and Thomas K. Wood, Environ. Microbiol. 14: 669–679 (2012).
181. “Toxin/Antitoxin Systems Influence Biofilm and Persister Cell Formation and the General Stress Response,” X. Wang and T. K. Wood, Appl. Environ Microbiol. 77: 5577-5583 (2011).
179. “Antitoxin MqsA helps mediate the bacterial general stress response,” X. Wang, Y. Kim, S. H. Hong, Q. Ma, B. L. Brown, M. Pu, A. M. Tarone, M. J. Benedik, W. Peti, R. Page, and T. K. Wood, Nat. Chem. Biol. 7: 359-366 (2011). (featured by NIH NIGMS and highlighted by Nature Chemical Biology)
168. “Structure of the E. coli antitoxin MqsA (YgiT/B3021) bound to its gene promoter reveals extensive domain rearrangements and the specificity of transcriptional regulation,” B. L. Brown, T. K. Wood, W. Peti, and R. Page, J. Biol. Chem. 286: 2285-2296 (2011).
159. “Three Dimensional Structure of the MqsR:MqsA Complex: A Novel TA Pair Comprised of a Toxin Homologous to RelE and an Antitoxin with Unique properties,” B. L. Brown, S. Grigoriu, Y. Kim, J. M. Arruda, A. Davenport, T. K. Wood, W. Peti, and R. Page, PLoS Pathogens 5: e1000706 (2009).
157. “Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD,” Y. Kim, X. Wang, X.-S. Zhang, S. Grigoriu, R. Page, W. Peti, and T. K. Wood, Environ. Microbiol. 12: 1105-1121 (2010).
154. “Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli,” Y. Kim and T. K. Wood, Biochem. Biophys. Res. Commun. 391: 209-213 (2010).
144. “Toxin-Antitoxin Systems in Escherichia coli Influence Biofilm Formation Through YjgK (TabA) and Fimbriae,” Y. Kim, X. Wang, Q. Ma, X.-S. Zhang, and T. K. Wood,
J. Bacteriol. 191: 1258-1267 (2009).
139. “Protein Translation and Cell Death: The Role of Rare tRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes,” R. Garcia-Contreras, X.-S. Zhang, Y. Kim, and T. K. Wood, PLoS ONE 3(6): e2394 (2008).
94. “Autoinducer 2 Controls Biofilm Formation in Escherichia coli K12 Through a Novel Motility Quorum Sensing Regulator (MqsR, B3022),” A. F. Gonzalez Barrios, R. Zuo, Y. Hashimoto, L. Yang, W. E. Bentley, and T. K. Wood, J. Bacteriol. 188: 305-316 (2006). (faculty of 1000 Biology).
89. “Hha, YbaJ, and OmpA Regulate Escherichia coli K12 Biofilm Formation and Conjugation Plasmids Abolish Motility,” A. Gonzalez, R. Zuo, D. Ren, and T. K. Wood, Biotechnol. Bioengr. 93: 188-200 (2006).
69. “Gene Expression in Escherichia coli Biofilms,” D. Ren, L. Bedzyk, R. W. Ye, S. Thomas, and T. K. Wood, Appl. Microbiol. Biotechnol. 64: 515-524 (2004).
45. “Antimicrobial Properties of the Escherichia coli R1 Plasmid Host Killing Peptide,” D. C. Pecota, G. Osapay, M. E. Selsted, and T. K. Wood, J. Biotechnol. 100: 1-12 (2003).
18. “Combining the hok/sok, parDE, and pnd Post Segregational Killer Loci To Enhance Plasmid Stability,” D. C. Pecota, C. S. Kim, K. Wu, K. Gerdes, and T. K. Wood, Appl. Environ Microbiol. 63: 1917-1924 (1997).
6. “Temperature and Growth Rate Effects on the hok/sok Killer Locus for Enhanced Plasmid Stability,” K. Wu, D. Jahng, and T. K. Wood, Biotechnol. Prog. 10: 621-629 (1994).
5. “Evaluation of the hok/sok Killer Locus for Enhanced Plasmid Stability,” K. Wu and T. K. Wood, Biotechnol. Bioeng. 44: 912-921 (1994).
2. “Enhanced Plasmid Stability Through Post-Segregational Killing of Plasmid-Free Cells,” T. K. Wood, R. H. Kuhn, and S. W. Peretti, Biotechnology Techniques 4: 39-44 (1990).
Metabolic Engineering of Archaea
347. “Capturing Methane with Recombinant Soluble Methane Monooxygenase and Recombinant Methyl-Coenzyme M Reductase,” V. Sanchez-Torres and T. K. Wood, Microbial Biotechnology 17: e70000 (2024).
335. “Converting Methane into Electricity and Higher-Value Chemicals at Scale via Anaerobic Microbial Fuel Cells,” T. K. Wood, I. Gurgan, Ethan Howley, and I. H. Riedel-Kruse, Renewable and Sustainable Energy Reviews 188: 113749 (2023).
284. “Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis,” R. Yamasaki, T. Maeda, and T. K. Wood, Biotechnology for Biofuels 11: 211 (2018).
268. “Electricity from methane by reversing methanogenesis,” M. J. McAnulty, V. G. Poosarla, K.-Y. Kim, R. Jasso-Chávez, B. E. Logan, and T. K. Wood, Nature Communications 8: 15419 (2017).
256. “Metabolic Engineering of Methanosarcina acetivorans for Lactate Production from Methane,” M. J. McAnulty, V. G. Poosarla, J. Li, V. W. C. Soo, F. Zhu, and T. K. Wood, Biotechnol. Bioengr. on-line (2016).
255. “Metabolic manipulation of methanogens for methane machinations,” T. K. Wood, Microbial Biotechnol. on-line (2016).
242. “Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans,” H. Nazem-Bokaee, S. Gopalakrishnan, J. G. Ferry, T. K. Wood, and C. D. Maranas, Microbial Cell Factories 15: 10 (2016).
241. “Reversing methanogenesis to capture methane for liquid biofuel precursors,” V. Soo, M. McAnulty, A. Tripathi, F. Zhu, L. Zhang, E. Hatzakis, P. Smith, S. Agrawal, H. Nazem-Bokaee, S. Gopalakrishnan, H. Salis, J. Ferry, C. Maranas, A. Patterson, T. K. Wood, Microbial Cell Factories 15: 11 (2016).
224. “Methane oxidation by anaerobic archaea for conversion to liquid fuels,” T. J. Mueller, M. J. Grisewood, H. Nazem-Bokaee, S. Gopalakrishnan, J. G. Ferry, T. K. Wood, and C D. Maranas, J. Indust. Microbiol. Biotechnol. 42: 391-401 (2015).
Sulfate-Reducing Bacterial Biofilms
292. “σ54-Dependent Regulator DVU2956 Switches Desulfovibrio vulgaris from Biofilm Formation to Planktonic Growth and Regulates Hydrogen Sulfide Production,” L. Zhu, T. Gong, T. L. Wood, R. Yamasaki, and T. K. Wood,, Environ. Microbiol., online (2019).
286. “Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria,” T. L. Wood, T. Gong, L. Zhu, J. Miller, D. S. Miller, B. Yin, and T. K. Wood, npj Biofilms and Microbiomes, 4: 22 (2018).
277. “Glycoside Hydrolase DisH from Desulfovibrio vulgaris Degrades the N-Acetylgalactosamine Component of Diverse Biofilms,” L. Zhu, V. G. Poosarla, S. Song, T. L. Wood, D. S. Miller, B. Yin, and T. K. Wood, Environ. Microbiol., online (2018).
274. “Dispersal and Inhibitory Roles of Mannose, 2-Deoxy-D-Glucose, and N-Acetylgalactosaminidase on the Biofilm of Desulfovibrio vulgaris,” V. G. Poosarla, T. L. Wood, L. Zhu, D. S. Miller, B. Yin, and T. K. Wood, Environ. Microbiol. Reports, online (2017).
Phage, Acetylation, and Cell Physiology
339. “Improving phage therapy by evasion of phage resistance mechanisms,” I. Bleriot, O. Pacios, L. Blasco, L. Fernandez-Garcia, M. Lopez, C. Ortiz-Cartagena, A. Barrio-Pujante, R. García-Contreras, J.-P. Pirnay, T. K. Wood, and M. Tomas, JAC Antimicrobial Resistance in press (2024).
338. “Resistance against two lytic phage variants attenuates virulence and antibiotic resistance in Pseudomonas aeruginosa,” J. C. García-Cruz, X. Rebollar-Juarez, A. Limones-Martinez, C. Sadalis, S. Toya, T. Maeda, C. D. Ceapă, L. Blasco, M. Tomás, C. E. Díaz-Velázquez, F. Vaca-Paniagua, M. Díaz-Guerrero, D. Cazares, A. Cazares, M. Hernández-Durán, L. E. López-Jácome, R. Franco-Cendejas, F. Mabood Husain, A. Khan, M. Arshad, R. Morales, A. M. Fernández-Presas, F. Cadet, T. K. Wood, and R. Garcia-Contreras Frontiers in Cellular and Infection Microbiology in press (2024).
334. “Phage-Defense Systems Are Unlikely to Cause Cell Suicide,” L. Fernández-García and T. K. Wood, Viruses 15: 1795 (2023).
333. “Ribosome Inactivation by Escherichia coli GTPase RsgA Inhibits T4 Phage,” L. Fernández-García, M. Tomás, and T. K. Wood, Front Microbiol 14: 1242163 (2023).
329. “CRISPR-Cas Controls Cryptic Prophages,” S. Song, E. Semenova, K. Severinov, L. Fernández-García, M. J. Benedik , T. Maeda, and T. K. Wood, Int. J. Molec. Sci 23, 16195 (2022).
326. “Mobile genetic elements used by competing coral microbial populations increase genomic plasticity,” P. Wang, Y. Zhao, W. Wang, S. Lin, K. Tang, T. Liu, T. K. Wood, and X. Wang, ISME J on-line (2022).
296. “Symbiosis of a P2-Family Phage and Deep-Sea Shewanella putrefaciens,” X. Liu, K. Tang, D. Zhang, Y. Li, Z. Liu, J. Yao, T. K. Wood, and X. Wang, Environmental Microbiology on-line (2019).
291. “Phages Mediate Bacterial Self-Recognition,” S. Song, Y. Guo, J.-S. Kim, X. Wang, and T. K. Wood, Cell Reports 27: 737–749 (2019).
249. “Cryptic Prophages as Targets For Drug Development,” X. Wang and T. K. Wood, Drug Resistance Updates on-line (2016).
238. “Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12,” X. Liu, Y. Li, Y. Guo, Z. Zeng, B. Li, T. K. Wood, X. Cai, and X.Wang, Sci. Reports. 5: 16074 (2015).
180. “Protein Acetylation in Procaryotes Increases Stress Resistance,” Q. Ma and T. K. Wood, Biochem. Biophys. Res. Commun. 410: 846-851 (2011).
178. “IS5 inserts upstream of the master motility operon flhDC in a quasi-Lamarckian way,” X. Wang and T. K. Wood, Nature ISME Journal 5: 1517-1525 (2011).
173. “Cryptic prophages help bacteria cope with adverse environments,” X. Wang, Y. Kim, Q. Ma, S. H. Hong, K. Pokusaeva, J. M. Sturino, and T. K. Wood, Nat. Commun. 1: 147 (2010). (featured by NIH NIGMS).
147. “Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms,” X. Wang, Y. Kim, and T. K. Wood, Nature ISME Journal 3: 1164-1179 (2009). (featured article)
14. “Exclusion of T4 Phage by the hok/sok Locus of Plasmid R1,” D. C. Pecota and T. K. Wood, J. Bacteriol. 178: 2044-2050 (1996).
Re-wiring the Cell to Control Biofilm Formation
344. “Photoactive Polymer Coatings for Antibacterial Applications,” B. Hunter, J. L. Sacco, K. Katterle, J. Kirigo, T. K. Wood, E. W. Gomez, and C. W. Pester, European Polymer Journal 213: 113090 (2024).
220. “BdcA, a Protein Important for Escherichia coli Biofilm Dispersal, Is a Short-Chain Dehydrogenase/Reductase that Binds Specifically to NADPH,” D. M. Lord, A. Uzgoren Baran, T. K. Wood, W. Peti, and R. Page, PLoS ONE 9: e105751 (2014).
189. “A microfluidic device for high throughput bacterial biofilm studies” J. Kim, M. Hegde, S. H. Kim, Thomas K. Wood, and A. Jayaraman, Lab on a Chip Advance Article (2012).
187. “Synthetic quorum sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, Nat. Commun. 3: 613(2012). (highlighted by Nature Biotechnology)
184. “Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti,” Q. Ma, G. Zhang and T. K. Wood, BMC Research Notes 4: 447-456 (2011).
171. “Engineering biofilm formation and dispersal,” T. K. Wood, S. H. Hong, and Q. Ma, Trends Biotechnol. 29: 87-94 (2011).
167. “Engineering a novel c-di-GMP-binding protein for biofilm dispersal,” Q. Ma, Z. Yang, M. Pu, W. Peti, and T. K. Wood, Environ. Microbiol. 13: 631-642 (2011).
165. “Engineering global regulator Hha of Escherichia coli to control biofilm dispersal,” S. H. Hong, J. Lee, and T. K. Wood, Microb. Biotechnol. 3: 717-728 (2010).
160. “Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli,” S. H. Hong, X. Wang, and T. K. Wood, Microb. Biotechnol. 3: 344-356 (2010).
145. “Reconfiguring the Quorum-Sensing Regulator SdiA of Escherichia coli to Control Biofilm Formation via Indole and N-Acylhomoserine Lactones,” J. Lee, T. Maeda, S. H. Hong, and T. K. Wood, Appl. Environ. Microbiol. 75: 1703-1716 (2009).
115. “Indole is an inter-species biofilm signal mediated by SdiA,” J. Lee, A. Jayaraman, and T. K. Wood, BMC Microbiology 7: 42 (2007). (highly accessed)
Cell Signaling: Indole and Derivatives
325. “Manipulating indole symbiont signalling,” S. Song and T. K. Wood, Environ Microbiol Rep on-line (2022).
321. “Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor,” G. Z. Wei, K. A. Martin, P. Y. Xing, R. Agrawal, L. Whiley, T. K. Wood, S. Hejndorf, N. Y. Zhi, L. Z. Y. Jeremy, J. Rossant, R. Nechanistzky, E. Holmes, J. K. Nicholson, E. K. Tann, P. M. Matthews, and S. Pettersson, Proc. Natl. Acad. Sci. U.S.A. 118: e2021091118 (2021).
294. “Relationship Between Quorum Sensing and Secretion Systems,” Rocio T. Pena, L. Blasco, A. Ambroa, B. González-Pedrajo, L. Fernández-García, M. López, I. Bleriot, G. Bou, R. García-Contreras, T. K. Wood, and M. Tomás, Front. Microbiol. 10: 1100 (2019).
266. “Interkingdom Cues by Bacteria Associated with Conspecific and Heterospecific Eggs of Cochliomyia macellaria and Chrysomya rufifacies (Diptera: Calliphoridae) Potentially Govern Succession on Carrion,” A. L. Brundage, T. L. Crippen, B. Singh, M. Eric Benbow, W. Liu, A. M. Tarone, T. K. Wood, and J. K. Tomberlin, Annals of the Entomological Society of America 110: 73–82 (2017).
261. “Indole: An evolutionarily conserved influencer of behavior across kingdoms,” J.K. Tomberlin, T.L. Crippen, G. Wu, A. S. Griffin, T. K. Wood, and R. M. Kilner, BioEssays (2016).
239. “Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source,” X. Zhang, T. L. Crippen, C. J. Coates, T. K. Wood, and J. K. Tomberlin, PLoS ONE 10: e0143950 (2015).
237. “Roles of Indole as an Interspecies and Interkingdom Signaling Molecule,” J.-H. Lee, T. K. Wood, and J. Lee, Trends in Microbiology on-line (2015).
236. “The decomposition process is driven by bacteria,” T. K. Wood, Mircrobiologist 16: 18-20 (2015).
221. “A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae),” B. Singh, T. L. Crippen, L. Zheng, A. T. Fields, Z. Yu, Q. Ma, T. K. Wood, S. E. Dowd, M. Flores, J. K. Tomberlin, and A. M. Tarone, Appl. Microibol. Biotechnol. 99: 869-883 (2015).
219. “Phosphodiesterase DosP Increases Persistence by Reducing cAMP which Reduces the Signal Indole,” B. W. Kwan, D. O. Osbourne, Y. Hu, M. J. Benedik, and T. K. Wood, Biotechnol. Bioengr. (2014).
218. “Indole Inhibition of AHL-Mediated Quorum Signaling Is Widespread in Gram-Negative Bacteria,” B. Hidalgo-Romano, J. D. Gollihar, S. A. Brown, M. Whiteley, E. Valenzuela, H. B. Kaplan, T. K. Wood, and R. J.C. McLean, Microbiology 160: 2464-2473 (2014).
90. “Bacteria Mediate Oviposition by the Black Soldier Fly, Hermetia illucens (L.), (Dipteria: Stratiomyidae),” L. Zheng, T. Crippen, L. Holmes, B. Singh, M. L. Pimsler, E. Benbow, A. M. Tarone, S. Dowd, Z. Yu, S. L. Vanlaerhoven, T. K. Wood, and J. K. Tomberlin, Scientific Reports on-line (2013).
87. “A Survey of Bacterial Diversity From Successive Life Stages of Black Soldier Fly (Diptera: Stratiomyidae) by using 16S rDNA Pyrosequencing,” L. Zheng , T. L. Crippen , B. Singh , A. M. Tarone, S. Dowd , Z. Yu , T. K. Wood , and J. K. Tomberlin, Journal of Medical Entomology 50: 647-658 (2013).
197. “Interkingdom responses of flies to bacteria mediated by fly physiology and bacterial quorum sensing,” J. K. Tomberlin, T. L. Crippen, A. M. Tarone, B. Singh, K. Adams, Y. H. Rezenom, M. E. Benbow, M. Flores, M. Longnecker, J. L. Pechal, D. H. Russell, R.C. Beier, and T. K. Wood, Animal Behaviour 84: 1449-1456 (2012).
195. “Human intestinal epithelial cell-derived molecule(s) increase enterohemorrhagic Escherichia coli virulence,” T. Bansal, D. N. Kim, T. Slininger, T. K. Wood, and A. Jayaraman, FEMS Immunol. Med. Microbiol. 66: 399-410 (2012). (faculty of 1000 Pharmacology & Drug Discovery)
190. “Proteus mirabilis interkingdom swarming signals attract blow flies,” Q. Ma, A. Fonseca, W. Liu, A. T. Fields, M. L. Pimsler, A. F. Spindola, A. M. Tarone, T. L. Crippen, J. K. Tomberlin, and Thomas K. Wood, Nature ISME Journal 6: 1356–1366 (2012). (featured article).
186. “Indole production promotes Escherichia coli mixed culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling,” W. Chu, T. R. Zere, M. M. Weber, T. K. Wood, M. Whiteley, B. Hidalgo-Romano, E. Valenzuela Jr, and R. J. C. McLean, Appl. Environ. Microbiol. 78: 411-419 (2012).
175. “Transcriptomic Analysis for Genetic Mechanisms of the Factors Related to Biofilm Formation in Escherichia coli O157:H7,” J. Lee, Y. Kim, M. H. Cho, T. K. Wood and J. Lee, Curr. Microbiol. 62: 1321-1330 (2011).
172. “Environmental factors affecting indole production in Escherichia coli,” T. H. Han, J.-H. Lee, M. H. Cho, T. K. Wood, and J. Lee, Res. Microbiol. 162: 108-116 (2011).
156. “The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation,” T. Bansal, R. C. Alaniz, T. K. Wood, and A. Jayaraman, Proc. Natl. Acad. Sci. U.S.A. 107: 228-233 (2010). (faculty of 1000 Medicine)
141. “Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence,” J. Lee, C. Attila, S. L. G. Cirillo, J. D. Cirillo, and T. K. Wood, Microb. Biotechnol. 2: 75-90 (2009).
137. “Indole cell signaling occurs primarily at low temperatures in Escherichia coli,” J. Lee, X.-S. Zhang, M. Hegde, W. E. Bentley, A. Jayaraman, and T. K. Wood, Nature ISME Journal 2: 1007-1023 (2008). (featured article)
135. “Bacterial Quorum Sensing: Signals, Circuits, and Implications for Biofilms and Disease,” A. Jayaraman and T. K. Wood, Annu. Rev. Biomed. Eng. 10: 145-167 (2008). (top 10 download)
72. “Structure and Function of the E. coli Protein YmgB: a Protein Critical for Biofilm Formation and Acid-resistance”, J. Lee, R. Page, R. García-Contreras, J.-M. Palermino, X.-S. Zhang, O. Doshi, T. K. Wood, and W. Peti, J. Mol. Biol. 373: 11-26 (2007). (faculty of 1000 Biology)
119. “Differential Effects of Epinephrine, Norepinephrine, and Indole on Escherichia coli O157:H7 Chemotaxis, Colonization, and Gene Expression,” T. Bansal, D. Englert, J. Lee, M. Hegde, T. K. Wood, and A. Jayaraman, Infect. Immun. 75: 4597-4607 (2007).
114. “Enterohemorrhagic Escherichia coli Biofilms Are Inhibited by 7-Hydroxyindole and Stimulated by Isatin,” J. Lee, T. Bansal, A. Jayaraman, W. E. Bentley, and T. K. Wood, Appl. Environ. Microbiol. 73: 4100-4109 (2007).
97. “YliH and YceP Regulate Escherichia coli K12 Biofilm Formation By Influencing Cell Signaling,” J. Domka, J. Lee and T. K. Wood, Appl. Environ. Microbiol. 72: 2449-2459 (2006).
62. “Stationary-Phase Quorum-Sensing Signals Affect Autoinducer-2 and Gene Expression in Escherichia coli,” D. Ren, L. Bedzyk, R. W. Ye, S. Thomas, and T. K. Wood, Appl. Environ. Microbiol. 70: 2038-2043 (2004).
Cell Signaling: AI-2
317. “The Primary Physiological Roles of Autoinducer 2 in Escherichia coli Is Chemotaxis and Biofilm Formation,” S. Song and T. K. Wood*, Microorganisms 9: 386 (2021).
222. “McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation,” D. M. Lord, A. U. Baran, V. W. C. Soo, T. K. Wood, W. Peti, and R. Page, Biochemistry on-line (2014).
176. “LuxS Co-expression Enhances Yield of Recombinant Proteins in E. coli in part through Post-transcriptional Control of GroEL,” C.-Y Tsao, L. Wang, Y. Hashimoto, H. Yi, J. C. March, M. P. DeLisa, T. K. Wood, J. J. Valdes, and W. E. Bentley, Appl. Environ. Microbiol. 77: 2141-2152 (2011).
170. “Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein,” M. Hegde, D. L. Englert, S. Schrock, W. B. Cohn, C. Vogt, T. K. Wood, M. D. Manson, and A. Jayaraman, J. Bacteriol. 193: 768-773 (2011).
162. “Role of luxS in Bacillus anthracis growth and virulence factor expression,” M. B. Jones, S. N. Peterson, R. Benn, J. C. Braisted, B. Jarrahi, K. Shatzkes, D. Ren, T. K. Wood, and M. J. Blaser, Virulence 1: 72-83 (2010).
131. “Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA),” X.-S. Zhang, R. Garcia Contreras, and T. K. Wood, Nature ISME Journal 2: 615-631 (2008).
130. “Temporal regulation of enterohemorrhagic Escherichia coli virulence mediated by autoinducer-2,” T. Bansal, P. Jesudhasan, S. Pillai, T. K. Wood, and A. Jayaraman, Appl. Microbiol. Biotechnol. 78: 811-819 (2008).
117. “Quorum Sensing in E. coli is Signaled by AI-2/LsrR: Effects on sRNA and Biofilm Architecture,” J. Li, C. Attila, L. Wang, T. K. Wood, J. J. Valdes, and W. E. Bentley, J. Bacteriol. 189: 6011-6020 (2007).
112. “Magnetic Nanofactories: Localized Synthesis and Delivery of Quorum-Sensing Signaling Molecule Autoinducer-2 to Bacterial Cell Surfaces,” R. Fernandes, C.-H. Tsao, Y. Hashimoto, L. Wang, T. K. Wood, G. F. Payne, and W. E. Bentley, Metabolic Engineering 9: 228-239 (2007). (faculty of 1000 Biology)
111. “A Stochastic Model of E. coli AI-2 Quorum Signal Circuit Reveals Alternative Synthesis Pathways,” J. Li, L. Wang, Y. Hashimoto, C.-H. Tsao, T. K. Wood, J. J. Valdez, E. Zafiriou, W. E. Bentley, Nature/EMBO Molecular Systems Biolog 2: 67 (2006).
96. “YdgG (TqsA) Controls Biofilm Formation in Escherichia coli K12 Through Autoinducer 2 Transport,” M. Herzberg, I. K. Kaye, W. Peti, and T. K. Wood, J. Bacteriol. 188: 587-598 (2006).
Cell Signaling: Pseudomonas Biofilms
332. “Exoprotease exploitation and social cheating in a Pseudomonas aeruginosa environmental lysogenic strain with a non-canonical quorum sensing system,” D. Huelgas-Méndez, D. Cazares, L. D. Alcaraz, C. D. Ceapã, M. Cocotl-Yañez, T. Shotaro, T. Maeda, A. M. Fernández-Presas, O. Tostado-Islas, A. L. González-Vadillo, A. Limones-Martínez, C. E. Hernandez-Cuevas, K. González-García, L. F. Jiménez-García, R.-L. Martínez, C. Santos-López, F. Husain, A. Khan, M. Arshad, K Kokila, T. K. Wood, R. García-Contreras, FEMS Microbiology Ecology on-line (2023).
299. “Seeding Public Goods Is Essential for Maintaining Cooperation in Pseudomonas aeruginosa,” D. Loarca, D. Díaz, H. Quezada, A. L. Guzmán-Ortiz, A. Rebollar-Ruiz, A . M. Fernández Presas, J. Ramírez-Peris, R. Franco-Cendejas, T. Maeda, T. K. Wood, and R. García-Contreras, Front. Microbiol. 10: 2322 (2019).
280. “Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa,” M. Pu, L. Sheng, S. Song, T. Gong, and T. K. Wood, Frontiers in Microbiology 9:315 (2018).
275. “Substrate Binding Protein DppA1 of ABC Transporter DppBCDF Increases Biofilm Formation in Pseudomonas aeruginosa by Inhibiting Pf5 Prophage Lysis,” Yunho Lee, Sooyeon Song, Lili Sheng, Lei Zhu, Jun-Seob Kim, and Thomas K. Wood, Frontiers in Microbiology 9: 30 (2018).
265. “A Genome-Scale Modeling Approach to Investigate the Antibiotics-Triggered Perturbation in the Metabolism of Pseudomonas aeruginosa,” Z. Xu, N. Ribaudo, X. Li, T. K. Wood, and Z. Huang, IEEE Xplore on-line (2017).
248. “Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms,” T. L. Wood, R. Guha, L. Tanga, M. Geitnera, M. Kumara, and T. K. Wood, PNAS on-line (2016).
229. “An Integrated Modeling and Experimental Approach to Study the Influence of Environmental Nutrients on Biofilm Formation of Pseudomonas aeruginosa,” Z. Xu, S. Islam, T. K. Wood, and Z. Huang, BioMed Research International on-line (2015).
203. “Ligand Binding Reduces Conformational Flexibility in the Active Site of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from Pseudomonas aeruginosa,” D. Koveal, M. W. Clarkson, T. K. Wood, R. Page, and W. Peti, J Molec. Biol. 425: 2219-2231 (2013).
201. “A Systems-Level Approach for Investigating Pseudomonas aeruginosa Biofilm Formation,” Z. Xu, X. Fang, T. K. Wood, Z. J. Huang, PLoS ONE 8: e57050 (2013).
193. “Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB,” M. Pu and T. K. Wood, Biochem. Biophys. Res. Commun. 402: 351-355 (2010).
192. “Interkingdom adenosine signal reduces Pseudomonas aeruginosa pathogenicity,” L. Sheng, M. Pu, M. Hegde, Y. Zhang, A. Jayaraman, and Thomas K. Wood, Microb Biotechnol. 5: 560–572 (2012).
191. “Backbone and sidechain 1H, 15N and 13C assignments of Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa” D. Koveal, T. B. Jayasundera, Thomas K. Wood, W. Peti, and R. Page, Biomolecular NMR Assignments (2012).
161. “Tyrosine phosphatase TpbA of Pseudomonas aeruginosa controls extracellular DNA via cyclic diguanylic acid concentrations,” A. Ueda and T. K. Wood, Environ. Microbiol. Reports 2: 449-455 (2010).
150. “Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa through Tyrosine Phosphatase TpbA (PA3885),” A. Ueda and T. K. Wood, PLoS Pathogens 5: e1000483 (2009). (featured artwork)
149. “The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway,” M. Hegde, T. K. Wood, and A. Jayaraman, Appl. Microbiol. Biotechnol. 84: 763-776 (2009).
140. “Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist,” A. Ueda, C. Attila, M. Whiteley, and T. K. Wood, Microb. Biotechnol. 2: 62-74 (2009). (editor’s choice)
136. “Potassium and sodium transporters of Pseudomonas aeruginosa regulate virulence to barley,” A. Ueda and T. K. Wood, Appl. Microbiol. Biotechnol. 79: 843-858 (2008).
128. “PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes,” C. Attila, A. Ueda, and T. K. Wood, Appl. Microbiol. Biotechnol. 78: 293-307 (2008).
124. “Pseudomonas aeruginosa PAO1 Virulence Factors and Poplar Tree Response in the Rhizosphere,” C. Attila, A. Ueda, S. L. G. Cirillo, J. D. Cirillo, W. Chen, and T. K. Wood, Microb. Biotechnol. 1: 17-29 (2008). (top cited article)
Gene Expression in Biofilms
327. “What is the fate of the biofilm matrix?,” J. M. Muthami, L. Fernandez-García, M. Tomas, and T K. Wood, Environ. Microbiol. (online 2022).
260. “A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella typhimurium,” N. Ribaudo, X. Li, B. Davis, T. K. Wood, and Z. Huang, J. Food Science on-line (2016).
240. “Streptomyces-derived actinomycin D inhibits biofilm formation by Staphylococcus aureus and its hemolytic activity,” J.-H. Lee, Y.-G. Kim, K. Lee, C.-J. Kim, D.-J. Park, Y. Ju, J.-C. Lee, T. K. Wood, and J. Lee., Biofouling 32: 45-56 (2016).
174. “GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli,” V. Sanchez-Torres, H. Hu and T. K. Wood, Appl. Microbiol. Biotechnol. 90: 651-658 (2011).
164. “Global regulator H-NS and lipoprotein NlpI influence production of extracellular DNA in Escherichia coli,” V. Sanchez-Torres, T. Maeda, and T. K. Wood, Biochem. Biophys. Res. Commun. 401: 197-202 (2010).
155. “Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene,” J. Lee, S. R. Hiibel, K. F. Reardon, and T. K. Wood, J. Appl. Microbiol. 108: 2088-2102 (2010).
151. “OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system,” Q. Ma, and T. K. Wood, Environ. Microbiol. 11: 2735-2746 (2009).
146. “5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound,” C. Attila, A. Ueda, and T. K. Wood, Appl. Microbiol. Biotechnol. 82: 525-533 (2009).
142. “Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling,” T. K. Wood, Environ. Microbiol. 11: 1-15 (2009). (#2 downloaded manuscript in 2009)
133. “The R1 Conjugative Plasmid Increases Escherichia coli Biofilm Formation through an Envelope Stress Response,” X. Yang, Q. Ma, and T. K. Wood, Appl. Environ. Microbiol. 74: 2690-2699 (2008).
113. “YcfR (BhsA) Influences Escherichia coli Biofilm Formation Through Stress Response and Surface Hydrophobicity,” X.-S. Zhang, R. Garcia Contreras, and T. K. Wood, J. Bacteriol. 189: 3051-3062 (2007).
109. “Temporal Gene-Expression in Escherichia coli K-12 Biofilms,” J. Domka, J. Lee, T. Bansal, and T. K. Wood, Environ. Microbiol. 9: 332-346 (2007).
98. “Motility Influences Biofilm Architecture in Escherichia coli,” T. K. Wood, A. F. G. Barrios, M. Herzberg, J. Lee, Appl. Microbiol. Biotechnol. 72: 361-367 (2006).
92. “Inhibition of Bacillus anthracis Growth and Virulence-Gene Expression by Inhibitors of Quorum-Sensing,” M. B. Jones, R. Jani, D. Ren, T. K. Wood, and M. J. Blaser, J. Infect. Dis. 191: 1881-1888 (2005).
63. “Differential Gene Expression for Investigation of Escherichia coli Biofilm inhibition by Plant Extract Ursolic Acid,” D. Ren, R. Zuo, A. F. Gonzalez Barrios, L. A. Bedzyk, G. R. Eldridge, M. E. Pasmore, and T. K. Wood, Appl. Environ. Microbiol. 71: 4022-4034 (2005). (faculty of 1000 Biology)
51. “Gene Expression in Bacillus subtilis Surface Biofilms with and without Sporulation and the Importance of yveR for Biofilm Maintenance,” D. Ren, L. Bedzyk, P. Setlow, R. W. Ye, S. Thomas, and T. K. Wood, Biotechnol. Bioeng. 86: 344-364 (2004).
Quorum Quenching: Furanone
283. “Pyocyanin restricts social cheating in Pseudomonas aeruginosa,” P. Castañeda-Tamez, J. Ramírez-Peris, J. Pérez-Velázquez, C. Kuttler, A. Jalalimanesh, B. Hense, M. Á. Saucedo-Mora, J. G. Jiménez-Cortéz, T. Maeda, B. Pérez-Eretza, Y. G. Tinoco, M. Tomás, T. K. Wood, and R. García-Contreras, Frontiers Microbiol. 9: 1348 (2018).
273. “Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa,” M.-A. Saucedo-Mora, P. Castañeda-Tamez, A. Cazares, J. Pérez-Velázquez, B. Hense, D. Cazares, W. Figueroa, M. Carballo, G. Guarneros, B. Pérez-Eretza, N. Cruz, Y. Nishiyama, T. Maeda, J. Alejandro Belmont Díaz, T. K. Wood, and R. García-Contreras, Frontiers Microbiol. 8: 1669 (2017).
233. “High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients,” R. García-Contreras, Peréz-B. Eretza, R. Jasso-Chávez, E. Lira-Silva, J. A. Roldán-Sánchez, A. González-Valdez, G. Soberón-Chávez, R. Coria-Jiménez, M. Martínez-Vázquez, L. D. Alcaraz, T. Maeda, and T. K. Wood, FEMS Pathogens and Disease 73: ftv040 (2015)
232. “Can resistance against quorum-sensing interference be selected?,” R. García-Contreras, T. Maeda, and T. K Wood, Nature ISMEJ on-line (2015).
231. “Role of quorum sensing in bacterial infections,” I. Castillo-Juárez, T. Maeda, E. A. Mandujano-Tinoco, M. Tomás, B. Pérez-Eretza, S. Julieta García-Contreras, T. K Wood, R. García-Contreras, World Journal of Clinical Cases 3: 575-598 (2015).
215. “Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating,” R. García-Contreras, L. Nuñez-López, R. Jasso-Chávez, B. W. Kwan, J. A. Belmont, A. Rangel-Vega, T. Maeda, and T. K. Wood, Nature ISMEJ on-line (2014).
208. “Evolution of Resistance to Quorum-Sensing Inhibitors,” V. C. Kalia, T. K. Wood, and P. Kumar, Microbial Ecology on-line (2013).
207. “Gallium Induces the Production of Virulence Factors in Pseudomonas aeruginosa,” R. García-Contreras, B. Pérez-Eretza, E. Lira-Silva, Ricardo Jasso-Chávez, R. Coria-Jiménez, A. Rangel-Vega, T. Maeda and T.K. Wood, Pathogens and Disease 70: 95-98 (2014).
204. “Resistance to Quorum Quenching Compounds,” R. García-Contreras, T. Maeda, and T. K. Wood, Appl. Environ. Microbiol. 79: 6840-6846 (2013).
166. “Isolation and characterization of Gallium resistant Pseudomonas aeruginosa mutants,” R. García-Contreras, E. Lira-Silva, R. Jasso-Chávez, I.L Hernández-González, T. Maeda, T. Hashimoto, Fred C. Boogerd, L.Sheng, T. K. Wood, and R. Moreno-Sánchez, International Journal of Medical Microbiology 303: 574-582 (2013).
86. “Resistance to the quorum quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates”, R. García-Contreras, M. Martínez-Vázquez, A. Guadalupe Villegas Pañeda, T. Hashimoto, T. Maeda, H. Quezada, T. K. Wood, N. Velázquez, Pathogens and Disease on-line (2013).
183. “Quorum quenching quandary: resistance to antivirulence compounds,” T. Maeda, R. Garcia-Contreras, M. Pu, L. Sheng, L. R. Garcia, M. Tomas, and T. K. Wood, Nature ISME Journal 6: 493 (2012). (highlighted by Nature Reviews Microbiology and featured article by ISMEJ)
153. “A Naturally Occurring Brominated Furanone Covalently Modifies and Inactivates LuxS,” T. Zang, B. W. K. Lee, L. M. Cannon, K. A. Ritter, S. Dai, D. Ren, T. K. Wood, and Z. S. Zhou, Bioorganic & Medicinal Chemistry Letters 19: 6200-6204 (2009).
118. “The Natural Furanone (5Z)-4-Bromo-5-(Bromomethylene)-3-Butyl-2(5H)-Furanone Disrupts Quorum Sensing-Regulated Gene Expression in Vibrio harveyi by Decreasing the DNA-Binding Activity of the Transcriptional Regulator Protein LuxR,” T. Defoirdt, C. M. Miyamoto, T. K. Wood, E. A. Meighen, P. Sorgeloos, W. Verstraete, and P. Bossier, Environ. Microbiol. 9: 2486-2495 (2007).
110. “Interference with the Quorum Sensing Systems in Vibrio harveyi Strain Alters the Growth Rate of Gnotobiotically Cultured Rotifer Brachionus plicatilis,” N. T. N. Tinh, N. D. Linh, T. K. Wood, K. Dierckens, P. Sorgeloos, and P. Bossier, J. Appl. Microbiol. 103:194-203 (2007).
108. “Quorum Sensing-Disrupting Brominated Furanones Protect the Gnotobiotic Brine Shrimp Artemia franciscana from Pathogenic Vibrio harveyi, Vibrio campbellii and Vibrio parahaemolyticus Isolates,” T. Defoirdt, R. Crab, T. K. Wood, P. Sorgeloos, W. Verstraete and P. Bossier, Appl. Environ. Microbiol. 72:6419-6423 (2006).
61. “Quorum-Sensing Antagonist (5Z)-4-Bromo-5-(Bromomethylene)-3-Butyl-2(5H)-Furanone Influences Siderophore Biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa,” D. Ren, R. Zuo and T. K. Wood, Appl. Microbiol. Biotechnol. 66:689-695 (2005).
56. “Differential Gene Expression Shows Natural Brominated Furanones Interfere with the Autoinducer-2 Bacterial Signaling System of Escherichia coli,” D. Ren, L. Bedzyk, R. W. Ye, S. Thomas, and T. K. Wood, Biotechnol. Bioeng. 88:630-642 (2004). (faculty of 1000 Biology)
55. “(5Z)-4-Bromo-5-(Bromomethylene)-3-Butyl-2(5H)-Furanone Reduces Corrosion from Desulfotomaculum orientis,” D. Ren and T. K. Wood, Environ. Microbiol. 6:535-540 (2004).
54. “Differential Gene Expression to Investigate the Effect of (5Z)-4-Bromo-5-(Bromomethylene)-3-Butyl-2(5H)-Furanone on Bacillus subtilis,” D. Ren, L. A. Bedzyk, P. Setlow, D. F. England, S. Kjelleberg, S. M. Thomas, R. W. Ye, and T. K. Wood, Appl. Environ. Microbiol. 70:4941-4949 (2004).
43. “Inhibition of Biofilm Formation and Swarming of Bacillus subtilis by (5Z)-4-Bromo-5-(Bromomethylene)-3-Butyl-2(5H)-Furanone,” D. Ren, J. J. Sims, and T. K. Wood, Lett. in Appl. Microbiol. 34:293-299 (2002).
39. “Inhibition of Biofilm Formation and Swarming of Escherichia coli by (5Z)-4-Bromo-5-(Bromomethylene)-3-Butyl-2(5H)-Furanone,” D. Ren, J. J. Sims, and T. K. Wood, Environ. Microbiol. 3:731-736 (2001).
Protein Engineering for Hydrogen Production and Methane Generation Through CO2 Sequestration
293. “Pseudogene YdfW in Escherichia coli decreases hydrogen production through nitrate respiration pathways,” M. Mokhtar, M. Z. M. Yusoff, M. S. M. Ali, N. A. Mustapha, T. K. Wood, and T. Maeda, Int. J. Hydr. Energy on-line (2019).
288. “Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium,” P. D. T. Nguyen, N. A. Mustapha, K. Kadokami, R. Garcia-Contreras, T. K. Wood, and T. Maeda, Appl. Microbiol. Biotechnol. on-line (2018).
287. “Pseudogene product YqiG is important for pflB expression and biohydrogen production in Escherichia coli BW25113,” M. A. Zakaria, M. Z. M. Yusoff, M. R. Zakaria, M. A. Hassan, T. K. Wood, and T. Maeda, 3 Biotech on-line (2018).
276. “Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism,” T. Maeda, K.T. Tran, R. Yamasaki, and T.K. Wood, Appl. Microbiol. Biotechnol. on-line (2018).
270. “Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge,” N. H. Mohd Yasina, A. Ikegami, T. K. Wood, Ch-H. Yu, T. Haruyama, M. S. Takriff, T. Maeda, Applied Energy 202: 399–407 (2017).
228. “CO2 sequestration by methanogens in activated sludge for methane production,” N. H. M. Yasin, T. Maeda, A. Hu, C. P. Yu, and T. K. Wood, Applied Energy 142:426-434 (2015).
226. “Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol,” K. T. Tran, T. Maeda, V. Sanchez-Torres, and T. K. Wood, Appl. Microbiol. Biotechnol. on-line (2015).
212. “Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol,” K. T. Tran, T. Maeda, and T. K. Wood, Appl. Microbiol. Biotechnol. 98: 4757-4770 (2014).
93. “Four Products from Escherichia coli Pseudogenes Increase Hydrogen Production,” T. Maeda, M. Z. Mohd Yusoff; Y. Hashiguchi, and T. K. Wood, Biochem. Biophys. Res. Commun. 439: 576-579 (2013).
123. “Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain,” N. H. Mohd Yasin, M. Fukuzaki, T. Maeda, T. Miyazaki, Ch. M. Mohd Hakiman Che Maail, H. Ariffin, and T. K. Wood, Int. J. Hydrogen Energy 38: 10277–10283 (2013).
202. “Biofuels: Microbially Generated Methane and Hydrogen,” M. J. McAnulty, V. R. Vepachedu, T. K. Wood, and J. G. Ferry, Encycl. Life Sci. in press (2013).
200. “Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol,” V. Sanchez-Torres, M. Z. M. Yusoff, C. Nakano, T. Maeda, H. I. Ogawa, and T. K. Wood, Int. J. Hydrogen Energ. on-line (2013).
196. “Uncharacterized Escherichia coli proteins YdjA and YhjY are related to biohydrogen production,” M. Z. M. Yusoff, T. Maeda, V. Sanchez-Torres, H. I. Ogawa, Y. Shirai, M. A. Hassan, and T. K. Wood, Microb. Biotechnol. on-line (2011).
182. “Hydrogen production by recombinant Escherichia coli strains,” T. Maeda, V. Sanchez-Torres, and T. K. Wood, Microb. Biotechnol. on-line (2011).
177. “Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH,” K. Trchounian, V. Sanchez-Torres, T. K. Wood, and A. Trchounian, Int. J. Hydrogen Energ. 36: 4323-4331 (2011).
163. “Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films,” N. Alenzi, W.-S. Liao, P. S. Cremer, V. Sanchez-Torres, T. K. Wood, C. Ehlig-Economides, and Z. Cheng, Int. J. Hydrogen Energ. 35: 11768-11775 (2010).
158. “An Evolved Escherichia coli Strain for Producing Hydrogen and Ethanol from Glycerol,” H. Hu and T. K. Wood, Biochem. Biophys. Res. Commun. 391: 1033-1038 (2010).
152. “Protein Engineering of the Transcriptional Activator FhlA to Enhance Escherichia coli Hydrogen Production,” V. Sanchez-Torres, T. Maeda, and T. K. Wood, Appl. Environ. Microbiol. 75: 5639-5646 (2009).
134. “Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli,” T. Maeda and T. K. Wood, Int. J. Hyd. Ener. 33: 2409-2412 (2008).
132. “Protein engineering of hydrogenase 3 to enhance hydrogen production,”
T. Maeda, V. Sanchez-Torres, and T. K. Wood, Appl. Microbiol. Biotechnol. 79: 77-86 (2008).
127. “Metabolically engineered bacteria for producing hydrogen via fermentation,”
G. Vardar-Schara, T. Maeda, and T. K. Wood, Microb. Biotechnol. 1: 107-125 (2008).
126. “Enhanced Hydrogen Production from Glucose by Metabolically Engineered Escherichia coli,” T. Maeda, V. Sanchez-Torres, and T. K. Wood, Appl. Microbiol. Biotechnol. 77: 879-890 (2007).
122. “Metabolic Engineering to Enhance Bacterial Hydrogen Production,” T. Maeda, V. Sanchez-Torres, and T. K. Wood, Microb. Biotechnol. 1: 30-39 (2008). (top cited article)
121. “Escherichia coli Hydrogenase 3 is a Reversible Enzyme Possessing Hydrogen Uptake and Synthesis Activities,” T. Maeda, V. Sanchez-Torres, and T. K. Wood, Appl. Microbiol. Biotechnol. 76: 1035-1042 (2007).
116. “Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803,” T. Maeda, G. Vardar, W. T. Self, and T. K. Wood, BMC Biotechnology 7: 25 (2007).
Evolved Enzymes for Remediation
315. “Concerns with computational protein engineering programmes IPRO and OptMAVEn and metabolic pathway engineering programme optStoic,” T. K. Wood, Open Biology 10: 200173 (2021).
105. “Protein Engineering of the 4-Methyl-5-Nitrocatechol Monooxygenase from Burkholderia sp. Strain DNT for Enhanced Degradation of Nitroaromatics,” T. Leungsakul, G. R. Johnson, and T. K. Wood, Appl. Environ. Microbiol. 72: 3933-3939 (2006).
99. “Oxidation of Aminonitrotoluenes by 2,4-DNT Dioxygenase of Burkholderia sp. strain DNT,” T. Leungsakul, B. G. Keenan, M.-a. Mori, M. D. Morton, J. D. Stuart, B. F. Smets, and T. K. Wood, Biotechnol. Bioeng. 93: 231-237 (2006).
88. “Protein Engineering of the Archetypal Nitroarene Dioxygenase of Ralstonia sp. Strain U2 for Activity on Aminonitrotoluenes and Dinitrotoluenes through Alpha-Subunit Residues Leucine 225, Phenylalanine 350, and Glycine 407,” B. G. Keenan, T. Leungsakul, B. F. Smets, M. -a. Mori, D. E. Henderson, and T. K. Wood, J. Bacteriol. 187: 3302-3310 (2005).
80. “Physiological Relevance of Successive Hydroxylations of Toluene by Toluene para-Monooxygenase of Ralstonia pickettii PKO1,” A. Fishman, Y. Tao, and T. K. Wood, Biocatal. Biotransformation 22: 283-289 (2004).
77. “Protein Engineering of Toluene-o-Xylene Monooxygenase from Pseudomonas stutzeri OX1 for Enhanced Chlorinated Ethene Degradation and o-Xylene Oxidation,” G. Vardar and T. K. Wood, Appl. Microbiol. Biotechnol. 68: 510-517 (2005).
76. “Saturation Mutagenesis of 2,4-DNT Dioxygenase of Burkholderia sp. strain DNT for Enhanced Dinitrotoluene Degradation,” T. Leungsakul, B. G. Keenan, H. Yin, B. F. Smets, and T. K. Wood, Biotechnol. Bioeng. 92: 416-426 (2005).
71. “Toluene 3-Monooxygenase of Ralstonia pickettii PKO1 is a para-Hydroxylating Enzyme,” A. Fishman, Y. Tao, and T. K. Wood, J. Bacteriol. 186: 3117-3123 (2004).
58. “Saturation Mutagenesis of Toluene ortho-Monooxygenase of Burkholderia cepacia G4 for Enhanced 1-Naphthol Synthesis and Chloroform Degradation,” L. Rui, Y.-M. Kwon, A. Fishman, K. F. Reardon, and T. K. Wood, Appl. Environ. Microbiol. 70: 3246-3252 (2004).
44. “Directed Evolution of Toluene ortho-Monooxygenase for Enhanced 1-Naphthol Synthesis and Chlorinated Ethene Degradation,” K. A. Canada, S. Iwashita, H. Shim, and T. K. Wood, J. Bacteriol. 184: 344-349 (2002).
Evolved Enzymes for Green Chemistry
211. “The Role of Substrate Binding Pocket Residues Phenylalanine 176 and Phenylalanine 196 on Pseudomonas sp. OX1 Toluene o-Xylene Monooxygenase Activity and Regiospecificity”, B. Sönmez, K. C. Yanık-Yıldırım, T. K. Wood, G. Vardar-Schara, Biotechnology and Bioengineering on-line (2014).
148. “Rapid Methods for High-Throughput Detection of Sulfoxides,” J. Shainsky, N. L. Derry, Y. Leichtmann-Bardoogo, T. K. Wood, and A. Fishman, Appl. Environ. Microbiol. 75: 4711-4719 (2009).
129. “Protein Engineering of Toluene Monooxygenases for Synthesizing Chiral Sulfoxides,” R. Feingersch, J. Shainsky, T. K. Wood, and A. Fishman, Appl. Environ. Microbiol. 74: 1555-1566 (2008).
102. “Enantioconvergent Product of (R)-1-phenyl-1,2-Ethanediol From Styrene Oxide by Combining the Solanum tuberosum and an Evolved Agrobacterium radiobactor AD1 Epoxide Hydrolases,” L. Cao, J. Lee, W. Chen, T. K. Wood, Biotechnology & Bioengineering 94: 522-529 (2006).
95. “Alanine 101 and Alanine 110 of the Alpha Subunit of Pseudomonas stutzeri OX1 Toluene-o-Xylene Monooxygenase Influence the Regiospecific Oxidation of Aromatics,” G. Vardar, Y. Tao, J. Lee, and T. K. Wood, Biotechnol. Bioengr. 92: 652-658 (2005).
83. “Phenol and 2-Naphthol Production by Toluene 4-Monooxygenases Using an Aqueous/Dioctyl Phthalate system,” Y. Tao, W. E. Bentley, and T. K. Wood, Appl. Microbiol. Biotechnol. 68: 614-621 (2005).
82. “α-Subunit Positions Methionine 180 and Glutamate 214 of Pseudomonas stutzeri OX1 Toluene-o-Xylene Monooxygenase Influence Catalysis,” G. Vardar and T. K. Wood, J. Bacteriol. 187: 1511-1514 (2005).
81. “Controlling the Regiospecific Oxidation of Aromatics via Active Site Engineering of Toluene para-Monooxygenase of Ralstonia pickettii PKO1,” A. Fishman, Y. Tao, L. Rui and T. K. Wood, J. Biol. Chem. 280: 506-514 (2005).
79. “Regiospecific Oxidation of Naphthalene and Fluorene by Toluene Monooxygenase and Engineered Toluene 4-Monooxygenase of Pseudomonas mendocina KR1,” Y. Tao, W. E. Bentley, and T. K. Wood, Biotechnol. Bioeng. 90: 85-94 (2005).
78. “Protein Engineering of Epoxide Hydrolase from Agrobacterium radiobacter AD1 for Enhanced Activity and Enantioselective Production of (R)-1-Phenylethane-1,2-Diol,” L. Rui, L. Cao, W. Chen, K. F. Reardon, and T. K. Wood, Appl. Environ. Microbiol. 71: 3995-4003 (2005).
73. “Protein Engineering of Toluene-o-Xylene Monooxygenase from Pseudomonas stutzeri OX1 for Oxidizing Nitrobenzene to 3-Nitrocatechol, 4-Nitrocatechol, and Nitrohydroquinone,” G. Vardar, K. Ryu, and T. K. Wood, J. Biotechnol. 115: 145-156 (2005).
70. “Protein engineering of Toluene ortho-Monooxygenase of Burkholderia cepacia G4 for Regiospecific Hydroxylation of Indole to Form Various Indigoid Compounds,” L. Rui, K. Reardon, and T. K. Wood, Appl. Microbiol Biotechnol. 66: 422-429 (2005).
67. “Saturation Mutagenesis of Burkholderia cepacia R34 2,4-DNT Dioxygenase at DntAc Valine 350 for Synthesizing Nitrohydroquinone, Methylhydroquinone, and Methoxyhydroquinone,” B. Keenan, T. Leungsakul, B. Smets, and T. K. Wood, Appl. Environ. Microbiol. 70: 3222-3231 (2004).
66. “Altering Toluene 4-monooxygenase by Active-Site Engineering for the synthesis of 3-Methoxycatechol, Methoxyhydroquinone, and Methylhydroquinone,” Y. Tao, A. Fishman, W. E. Bentley, and T. K. Wood, J. Bacteriol. 186: 4705-4713 (2004).
65. “Protein Engineering of Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 for Synthesizing 4-Nitrocatechol from Nitrobenzene,” A. Fishman, Y. Tao, W. E. Bentley, and T. K. Wood, Biotechnol. Bioeng. 87: 779-790 (2004).
64. “Protein Engineering of Toluene-o-Xylene Monooxygenase from Pseudomonas stutzeri OX1 for Synthesizing 4-Methylresorcinol, Methylhydroquinone, and Pyrogallol,” G. Vardar and T. K. Wood, Appl. Environ. Microbiol. 70: 3253-3262 (2004).
52. “Oxidation of Benzene to Phenol, Catechol and 1,2,3-Trihydroxybenzene by Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 and Toluene 3-Monooxygenase of Ralstonia pickettii PKO1,” Y. Tao, A. Fishman, W. E. Bentley, and T. K. Wood, Appl. Environ. Microbiol. 70: 3814-3820 (2004).
Metabolic Engineering
234. “Metabolic engineering of Escherichia coli to enhance acetol production from glycerol,” R. Yao,Q. Liu, H. Hu, T. K. Wood, and X. Zhang, Appl. Microbiol. Biotechnol. on-line (2015).
223. “YeeO from Escherichia coli exports flavins,” M. J. McAnulty and T. K. Wood, Bioengineered on-line (2014).
206. “Production of Acetol from Glycerol Using Engineered Escherichia coli,” H. Zhu, X. Yi, Y. Liu, H. Hu, T. K. Wood, X. Zhang, Bioresource Technology 149: 238-243 (2013).
107. “Orthric Rieske dioxygenases for degrading mixtures of 2, 4-dinitrotoluene/naphthalene and 2-amino-4, 6-dinitrotoluene/4-amino-2, 6-dinitrotoluene,” B. G. Keenan and T. K. Wood. Appl. Microbiol. Biotechnol. 73: 827-838 (2006).
103. “Proteome Changes after Metabolic Engineering to Enhance Aerobic Mineralization of cis-1,2-Dichloroethylene,” J. Lee, L. Cao, S. Y. Ow, M. E. Barrios-Llerena, W. Chen, T. K. Wood, and P. C. Wright, J. Proteome Res. 5: 1388-1397 (2006).
75. “Active Site Engineering of the Epoxide Hydrolase from Agrobacterium radiobacter AD1 to Enhance Aerobic Mineralization of cis-1,2-Dichloroethylene in Cells Expressing an Evolved Toluene ortho-Monooxygenase,” Lingyun Rui, Li Cao, Wifred Chen, Kenneth F. Reardon, and Thomas K. Wood, J. Biol. Chem. 279: 46810-46817 (2004).
68. “Metabolic Pathway Engineering to Enhance Aerobic Degradation of Chlorinated Ethenes and to Reduce Their Toxicity by Cloning a Novel Glutathione S-Transferase, an Evolved Toluene o-Monooxygenase, and γ-Glutamylcysteine Synthetase,” L. Rui, Y.-M. Kwon, K. F. Reardon, and T. K. Wood, Environ. Microbiol. 6: 491-500 (2004).
49. “Proteomic Changes in Escherichia coli TG1 after Metabolic Engineering for Enhanced Tricholorethylene Biodegradation,” V. A. Pferdeort, T. K. Wood, and K. F. Reardon, Proteomics, 3: 1066-1069 (2003).
Rhizoremediation (word coined by Wood group in 1998 in ref. 25)
143. “Molecular approaches in bioremediation,” T. K. Wood, Curr. Opin. Biotechnol., 19: 572-578 (2008).
138. “Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA,” C. H. Wu, Y.-C. Hwang, W. Lee, A. Mulchandani, T. K. Wood, M. V. Yates, and W. Chen, Appl. Microbiol. Biotechnol., 79: 511-518 (2008).
120. “Transport and survival of GFP-tagged root-colonizing microbes: Implications for rhizodegradation.” A. W. Gilbertson, M. W. Fitch, J. G. Burken, and T. K. Wood, European Journal of Soil Biology, 43: 224-232 (2007).
106. “Engineering TCE-Degrading Rhizobacteria for Heavy Metal Accumulation and Enhanced TCE Degradation,” W. Lee, T. K. Wood, and W. Chen, Biotechnol. Bioengr., 95: 399-403 (2006).
100. “Engineering Plant-Microbe Symbiosis for Rhizoremediation of Heavy Metals,” C. H. Wu, T. K. Wood, A. Mulchandani, and W. Chen, Appl. Environ. Microbiol., 72: 1129-1134 (2006).
35. “Rhizosphere Competitiveness of Trichloroethylene-Degrading, Poplar-Colonizing Recombinant Bacteria,” H. Shim, S. Chauhan, D. Ryoo, K. Bowers, S. M. Thomas, K. A. Canada, J. G. Burken, and T. K. Wood, Appl. Environ. Microbiol., 66: 4673-4678 (2000).
25. “Rhizoremediation of Trichloroethylene by a Recombinant, Root-Colonizing Pseudomonas fluorescens Strain Expressing Toluene ortho-Monooxygenase Constitutively,” D. C. Yee, J. A. Maynard, and T. K. Wood, Appl. Environ. Microbiol., 64: 112-118 (1998).
Inhibition of Biocorrosion via Beneficial Biofilms
91. “Aluminum- and Mild Steel-Binding Peptides from Phage Display,” R. Zuo, D. Örnek, and T. K. Wood, Appl. Microbiol. Biotechnol. 68: 505-509 (2005).
60. “Inhibiting Mild Steel Corrosion From Sulfate-Reducing and Iron-Oxidizing Bacteria Using Gramicidin-S-Producing Biofilms,” R. Zuo and T. K. Wood, Appl. Microbiol. Biotechnol. 65: 747-753 (2004).
57. “The Importance of Live Biofilms in Corrosion Protection,” R. Zuo, E. Kus, F. Mansfield, and T. K. Wood, Corros. Sci. 47: 279-287 (2005).
53. “Inhibiting Mild Steel Corrosion from Sulfate-Reducing Bacteria Using Antimicrobial-Producing Biofilms in Three-Mile-Island Process Water,” R. Zuo, D. Örnek, B. C. Syrett, R. M. Green, C.-H. Hsu, F. B. Mansfeld, and T. K. Wood, Appl. Microbiol. Biotechnol. 64: 275-283 (2004).
48. “Corrosion Control of Mild Steel by Aerobic Bacteria Under Continuous Flow Conditions,” K. M. Ismail, T. Gehrig, A. Jayaraman, T. K. Wood, K. Trandem, P. J. Arps, and J. C. Earthman, Corrosion 58: 417-423 (2002).
47. “Corrosion Control Using Regenerative Biofilms on Aluminum 2024 and Brass in Different Media,” F. Mansfeld, H. Hsu, D. Örnek, T. K. Wood, and B. C. Syrett, Journal of the Electrochemical Society 149: B130-138 (2002).
46. “Pitting Corrosion Inhibition of Aluminum 2024 by Bacillus Biofilms Secreting Polyaspartate or γ-Polyglutamate,” D. Örnek, A. Jayaraman, C.-H. Hsu, F. B. Mansfeld, and T. K. Wood, Appl. Microbiol. Biotechnol. 58: 651-657 (2002).
42. “Corrosion Control Using Regenerative Biofilms (CCURB) on Brass in Different Media,” D. Örnek, T. K. Wood, C. H. Hsu, and F. Mansfeld, Corros. Sci. 44: 2291-2302 (2002).
41. “Ennoblement—A Common Phenomenon?” F. Mansfeld, C. H. Hsu, Z. Sun, D. Örnek, and T. K. Wood, Corrosion 58: 187-191 (2002).
40. “Pitting Corrosion Control Using of Aluminum 2024 Using Protective Biofilms that Secrete Corrosion Inhibitors,” D. Örnek, T. K. Wood, C. H. Hsu, Z. Sun, and F. Mansfeld, Corrosion 58: 761-767 (2002).
38. “Pitting Corrosion Control Using Regenerative Biofilms on Aluminum 2024 in Artificial Seawater,” D. Örnek, A. Jayaraman, Z. Sun, C. H. Hsu, T. K. Wood, and F. Mansfeld, Corros. Sci. 43: 2121-2133 (2001).
32. “The Influence of Bacteria on the Passive Film Stability of 304 Stainless Steel,” K. M. Ismail, A. Jayaraman, T. K. Wood, and J. C. Earthman, Electrochimica Acta 44: 4685-4692 (1999).
30. “Axenic Aerobic Biofilms Inhibit Corrosion of Copper and Aluminum,” A. Jayaraman, D. Örnek, D. A. Duarte, C.-C. Lee, F. B. Mansfeld, and T. K. Wood, Appl. Microbiol. Biotechnol. 52: 787-790 (1999).
29. “Inhibiting Sulfate-Reducing Bacteria in Biofilms by Expressing the Antimicrobial Peptides Indolicidin and Bactenecin,” A. Jayaraman, F. B. Mansfeld, and T. K. Wood, J. Ind. Microbiol. Biotechnol. 22: 167-175 (1999).
28. “Inhibiting Sulfate-Reducing Bacteria in Biofilms on Steel with Antimicrobial Peptides Generated in situ,” A. Jayaraman, P. J. Hallock, R. M. Carson, C.-C. Lee, F. B. Mansfeld, and T. K. Wood, Appl. Microbiol. Biotechnol. 52: 267-275 (1999).
23. “Characterization of Axenic Pseudomonas fragi and Escherichia coli Biofilms that Inhibit Corrosion of SAE 1018 Steel,” A. Jayaraman, A. K. Sun, and T. K. Wood, J. Appl. Microbiol. 84: 485-492 (1998).
21. “Axenic Aerobic Biofilms Inhibit Corrosion of SAE 1018 Steel Through Oxygen Depletion,” A. Jayaraman, E. T. Cheng, J. C. Earthman, and T. K. Wood, Appl. Microbiol. Biotechnol. 48: 11-17 (1997).
20. “Importance of Biofilm Formation for Corrosion Inhibition of SAE 1018 Steel by Axenic Aerobic Biofilms,” A. Jayaraman, E. T. Cheng, J. C. Earthman, and T. K. Wood, J. Ind. Microbiol. 18: 396-401 (1997).
15. “Corrosion Inhibition by Aerobic Biofilms on SAE1018 Steel,” A. Jayaraman, J. C. Earthman, and T. K. Wood, Appl. Microbiol. Biotechnol. 47: 62-68 (1997).
Bioremediation
169. “Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples,” Z. Zhong, M. Fritzsche, S. B. Pieper, T. K. Wood, K. L. Lear, D. S. Dandy, and K. F. Reardon, Biosens. Bioelectron. 26: 2407-2412 (2011).
125. “An Inducible Propane Monooxygenase is Responsible for N-Nitrosodimethylamine Degradation by Rhodococcus sp. RHA1,” J. O. Sharp, C. M. Sales, J. C. LeBlanc, J. Liu, T. K. Wood, L. D. Eltis, W. W. Mohn, and L. Alvarez-Cohen, Appl. Environ. Microbiol. 73: 6930-6938 (2007).
104. “Genotypic Characterization and Phylogenetic Relations of Pseudomonas sp. (Formerly P. stutzeri) OX1,” F. Radice, V. Orlandi, V. Massa, L. Cavalca, A. Demarta, T. K. Wood, and P. Barbieri, Curr. Microbiol. 52: 395-399 (2006).
101. “Reductive Transformation of TNT by Escherichia coli Resting Cells: Kinetic Analysis,” H. Yin, T. K. Wood, and B. F. Smets, Appl. Microbiol. Biotechnol. 69: 326-334 (2005).
85. “Aerobic Biodegradation of N-Nitrosodimethylamine (NDMA) by Axenic Bacterial Strains,” J. O. Sharp, T. K. Wood, and L. Alvarez-Cohen, Biotechnol. Bioengr. 89: 608-618 (2005).
84. “TNT and Nitroaromatic Compounds are Chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. strain DNT,” T. Leungsakul, B.G. Keenan, B. F. Smets, and T. K. Wood, Appl. Microbiol. Biotechnol. 69: 321-325 (2005).
74. “Reductive Transformation of TNT by Escherichia coli: Pathway Description,” H. Yin, T. K. Wood, B. F. Smets, Appl. Microbiol. Biotechnol. 67: 397-404 (2005).
59. “Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 Toward Chlorinated Ethenes,” G. Vardar, P. Barbieri, and T. K. Wood, Appl. Microbiol. Biotechnol. 66: 696-701 (2005).
50. “Mesophilic Aerobic Degradation of a Metal Lubricant by a Biological Consortium,” S. Iwashita, T. P. Callahan, J. Haydu, and T. K. Wood, Appl. Microbiol. Biotechnol. 65: 620-626 (2004).
37. “Aerobic Degradation of Mixtures of Tetrachloroethylene, Trichloroethylene, Dichloroethtylenes, and Vinyl Chloride by Toluene-o-Xylene Monooxygenase of Pseudomonas stutzeri OX1,” H. Shim, D. Ryoo, P. Barbieri, and T. K. Wood, Appl. Microbiol. Biotechnol. 56: 265-269 (2001).
36. “Tetrachloroethylene, Trichloroethylene, and chlorinated phenols induce toluene-o-xylene monooxygenase activity in Pseudomonas stutzeri OX1,” D. Ryoo, H. Shim, F. L. G. Arenghi, P. Barbieri, and T. K. Wood, Appl. Microbiol. Biotechnol. 56: 545-549 (2001).
34. “Aerobic Degradation of Tetrachloroethylene by Toluene-o-Xylene Monooxygenase of Pseudomonas stutzeri OX1,” D. Ryoo, H. Shim, P. Barbieri, and T. K. Wood, Nature Biotechnology 18: 775-778 (2000).
33. “Aerobic Degradation of Mixtures of Chlorinated Aliphatics by Cloned Toluene-o-Xylene-Monooxygenase and Toluene o-Monooxygenase in Resting Cells,” H. Shim and T. K. Wood, Biotechnol. Bioeng. 70: 693-698 (2000).
31. “Degradation of 2,4,5-Trichlorophenol and 2,3,5,6-Tetrachlorophenol by Combining Pulse Electric Discharge with Bioremediation,” S. Chauhan, E. Yankelevich, V. M. Bystritskii, and T. K. Wood, Appl. Microbiol. Biotechnol. 52: 261-266 (1999).
27. “Oxidation of Trichloroethylene, 1,1,-Dichloroethylene, and Chloroform by Toluene/o-Xylene-Monooxygenase from Pseudomonas stutzeri OX1,” S. Chauhan, P. Barbieri, and T. K. Wood, Appl. Environ. Microbiol. 64: 3023-3024 (1998).
26. “Degradation of Perchloroethylene and Dichlorophenol by Pulsed-Electric Discharge and Bioremediation,” D. C. Yee, S. Chauhan, E. Yankelevich, V. Bystritskii, and T. K. Wood, Biotechnol. Bioeng. 59: 438-444 (1998).
24. “Modeling Trichloroethylene Degradation by a Recombinant Pseudomonad Expressing Toluene ortho-Monooxygenase in a Fixed-Film Bioreactor,” A. K. Sun, J. Hong, and T. K. Wood, Biotechnol. Bioeng. 59: 40-51 (1998).
17. “Trichloroethylene Mineralization in a Fixed-Film Bioreactor Using a Pure Culture Expressing Constitutively Toluene ortho-Monooxygenase,” A. K. Sun and T. K. Wood, Biotechnol. Bioeng. 55: 674-685 (1997).
16. “2,4-Dichlorophenol Degradation Using Streptomyces viridosporus T7A Lignin Peroxidase,” D. C. Yee and T. K. Wood, Biotechnol. Prog. 13: 53-59 (1997).
13. “Enhanced Expression and Hydrogen Peroxide Dependence of Lignin Peroxidase from Streptomyces viridosporus T7A”, D. C. Yee, D. Jahng, and T. K. Wood, Biotechnol. Prog. 12: 40-46 (1996).
12. “Elicitation of Lignin Peroxidase in Streptomyces lividans,” D. C. Yee and T. K. Wood, Applied Biochemistry, Biotechnology 60: 137-147 (1996).
11. “Trichloroethylene Degradation and Mineralization by Pseudomonads and Methylosinus trichosporium OB3b,” A. K. Sun and T. K. Wood, Appl. Microbiol. Biotechnol. 45: 248-256 (1996).
10. “Optimization of Trichloroethylene Degradation Using Soluble Methane Monooxygenase of Methylosinus trichosporium OB3b Expressed in Recombinant Bacteria,” D. Jahng, C. S. Kim, R. S. Hanson, and T. K. Wood, Biotechnol. Bioeng. 51: 349-359 (1996).
9. “Metal Ions and Chloramphenicol Inhibition of Soluble Methane Monooxygenase from Methylosinus trichosporium OB3b,” D. Jahng and T. K. Wood, Appl. Microbiol. Biotechnol. 45: 744-749 (1996).
8. “Monitoring Trichloroethylene Mineralization by Pseudomonas cepacia G4 PR1,” P. P. Luu, C. W. Yung, A. K. Sun, and T. K. Wood, Appl. Microbiol. Biotechnol. 44: 259-264 (1995).
7. “Trichloroethylene and Chloroform Degradation by a Recombinant Pseudomonad Expressing Soluble Methane Monooxygenase from Methylosinus trichosporium OB3b,” D. Jahng and T. K. Wood, Appl. Environ. Microbiol. 60: 2473-2482 (1994).
Recombinant Protein Expression
262. “Computational de novo Design of Antibodies binding to a Peptide with High Affinity,” V. G. Poosarla, T. Li, B. C. Goh, K. Schulten, T. K. Wood, and C. D. Maranas, Biotechnol. Bioengr. on-line (2016).
4. “Construction of a Specialized-Ribosome Vector for Cloned-Gene Expression in E. coli,” T. K. Wood and S. W. Peretti, Biotechnol. Bioeng. 38: 891-906 (1991).
3. “Effect of Chemically-Induced, Cloned-Gene Expression on Protein Synthesis in E. coli,” T. K. Wood and S. W. Peretti, Biotechnol. Bioeng. 38: 397-412 (1991).
1. “Depression of Protein Synthetic Capacity Due to Cloned-Gene Expression in E. coli,” T. K. Wood and S. W. Peretti, Biotechnol. Bioeng. 36: 865-878 (1990).
Miscellany
320. “Emerging Applications of Bacteria as Antitumor Agents,” V. C. Kalia, S. K. S. Patel, B. K. Cho, T. K. Wood, J. K. Lee, Seminars in Cancer Biology (2020).
272. “Reactive Micromixing Eliminates Fouling and Concentration Polarization in Reverse Osmosis Membranes,” R. Guha, B. Xiong, M. Geitner, T. Moore, T. K. Wood, D. Velegol, M. Kumar, J., Membrane Science on-line (2017).
22. “Electroporation of Pink-Pigmented Methylotrophic Bacteria,” C. Kim and T. K. Wood, Appl. Biochem. Biotechnol. 73(#2/3): 81-88 (1998).
19. “Creating Auxotrophic Mutants in Methylophilus methylotrophus AS1 by Combining Electroporation and Chemical Mutagenesis,” C. S. Kim and T. K. Wood, Appl. Microbiol. Biotechnol. 48: 105-108 (1997).
Editorials, Book Chapters, Peer-Reviewed Proceedings, and Technical Reports
11. “Controlling Regiospecific Oxidation of Aromatics and the Degradation of Chlorinated Aliphatics via Active Site Engineering of Toluene Monooxygenases,” A. Fishman, Y. Tao, G. Vardar, L. Rui, and T. K. Wood, Pseudomonas 4: Molecular Biology of Emerging Issues (2006).
10. “Field Evaluation of Corrosion Control Using Regenerative Biofilms (CCURB),” P. J. Arps, L.-C. Xu, T, K. Wood, F. Mansfeld, B. C. Syrett, and J. C. Earthman, NACE International Annual Conference, CORROSION/2003, San Diego, CA, March 16, 2003.
9. “Active Expression of Soluble Methane Monooxygenase from Methylosinus trichosporium OB3b in Heterologous Hosts,” T. K. Wood, Microbiology 148: 2-3, (2002) (reviewed editorial).
8. “Biofilms that Prevent Corrosion,” Barry C. Syrett, Peggy J. Arps, James C. Earthman, Florian Mansfeld, Thomas K. Wood, NACE Research Topical Symposium, Denver, CO, March 21, 2002.
7. “Consequences of Metabolic Engineering for Enhanced Trichloroethylene Biodegradation: A Proteomic Analysis,” V. A. Pferdeort, K. F. Reardon, X. Liu, and T. K. Wood. Topical Conference Proceedings of the 2002 Bioinformatics and Genomics Symposium and the 2001 Annual Meeting of the American Electrophoresis Society, 129-130 (2001).
4. “Corrosion Control Using Regenerative Biofilms (CCURB) that Secrete Antimicrobials and Corrosion Inhibitors,” D. Ornek and T. K. Wood, Electric Power Research Institute Report #TR-114824 (2000).
3. “Corrosion Prevention by Regenerative Biofilms,” J. Earthman and T. Wood, Electric Power Research Institute Report #TR-110734 (1998).
2. “Application of Streamer Discharge for Polluted Water Cleanup,” V. M. Bystritskii, Y. Yankelevich, F. Wessel, A. Gonzales, T. Olson, T. K. Wood, D. Yee, V. Puchkarev, and L. Rosocha, Environmental Applications of Ionizing Radiation (1997).
1. “Trichloroethylene Degradation Using Recombinant Bacteria Expressing Soluble Methane Monooxygenase from Methylosinus trichosporium OB3b,” D. Jahng, A. K. Sun, C. S. Kim, and T. K. Wood, Molecular Biology of Pseudomonads, 280-288 (1996).