The material presented here is only to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

See Google Scholar or ResearcherID for citation analysis

At Penn State

  1. X. Yang, Z.Chen, J. Miao, L. Cui and W. Guan. High-throughput and label-free parasitemia quantification and stage differentiation for malaria-infected red blood cells. Biosensors and Bioelectronics, 98, 408 (2017).
  2. G. Choi, D. Song, S. Shrestha, J. Miao, L. Cui and W. Guan. A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab on a Chip, 16, 4341 (2016). [BackCover]
  3. Z.Chen, W. Li, G. Choi, X. Yang, J. Miao, L. Cui and W. Guan. Arbitrarily Accessible 3D Microfluidic Device for Combinatorial High-Throughput Drug Screening. Sensors, 16, 1616 (2016).
  4. W. Guan, L. Chen, T. D. Rane, T.-H. Wang. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification. Scientific Reports, 5, 13795 (2015)
  5. X. Li, W. Guan, B. Weiner, and M. A. Reed. Direct Observation of Charge Inversion in Divalent Nanofluidic Devices. Nano Letters, 15, 5046 (2015).

Before Penn State

  1. W. Guan, X. Li and M. A. Reed. Voltage Gated Ion and Molecule Transport in Engineered Nanochannels: Theory, Fabrication and Applications, Nanotechnology, 25, 122001 (2014). [Invited Review]
  2. W. Guan, X. Duan and M. A. Reed. Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosensors and Bioelectronics, 51, 225 (2014)
  3. W. Guan, N. Rajan, X. Duan and M. A. Reed. Quantitative probing of surface charges at dielectric-electrolyte interfaces. Lab on a Chip, 13, 1431 (2013).
  4. W. Guan, and M. A. Reed. Electric Field Modulation of the Membrane Potential in Solid-State Ion Channels. Nano Letters, 12, 6441 (2012).
  5. J. H. Park, W. Guan, M. A. Reed, and P. S. Krstic. Tunable Aqueous Virtual Micropore. Small, 8, 907 (2012).
  6. W. Guan, R. Fan, and M. A. Reed. Field-effect reconfigurable ionic diode. Nature Communications, 2, 506 (2011).
  7. W. Guan, S. Joseph, J. H. Park, P. S. Krstic and M. A. Reed. Paul Trapping of Charged Particles in Aqueous Solution. Proceedings of the National Academy of Sciences, 108, 9326 (2011).
  8. W. Guan, J. H. Park, P. S. Krstic and M. A. Reed. Non-vanishing ponderomotive AC electrophoretic (ACEP) effect for particle trapping. Nanotechnology, 22, 245103 (2011).
  9. S. Joseph, W. Guan, M. A. Reed, and P. S. Krstic. A long DNA segment in a linear nanoscale Paul trap. Nanotechnology, 21, 015103 (2010).
  10. M. Liu, Z. Abid, W. Wang, X. L. He, Q. Liu, and W. Guan. Multilevel resistive switching with ionic and metallic filaments. Applied Physics Letters, 94, 233106 (2009).
  11. W. Guan, S. Long, Y. Hu, Q. Liu, Q. Wang, and M. Liu. Resistance switching characteristics of zirconium oxide containing gold nanocrystals for nonvolatile memory applications. Journal of Nanoscience and Nanotechnology, 9, 723 (2009).
  12. S. Zhang, S. B. Long, W. Guan, Q. Liu, Q. Wang, and M. Liu. Resistive switching characteristics of MnOx-based ReRAM. Journal of Physics D-Applied Physics, 42, 055112 (2009).
  13. W. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Applied Physics Letters, 93, 223506 (2008).
  14. W. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang. Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Letters, 29, 434 (2008).
  15. Q. Liu, W. Guan, S. B. Long, R. Jia, M. Liu, and J. N. Chen. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Applied Physics Letters, 92, 012117 (2008).
  16. Q. Liu, W. Guan, S. B. Long, M. Liu, S. Zhang, Q. Wang, and J. N. Chen. Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory application. Journal of Applied Physics, 104, 114514 (2008).
  17. Q. Wang, R. Jia, W. Guan, W. Li, Q. Liu, Y. Hu, S. Long, B. Chen, M. Liu, T. Ye, W. Lu, and L. Jiang. Comparison of discrete-storage nonvolatile memories: advantage of hybrid method for fabrication of Au nanocrystal nonvolatile memory. Journal of Physics D-Applied Physics, 41, 035109 (2008).
  18. L. J. Zhen, W. Guan, L. W. Shang, M. Liu, and G. Liu. Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric. Journal of Physics D-Applied Physics, 41, 135111 (2008).
  19. Z. G. Li, W. Guan, M. Liu, S. B. Long, R. Jia, J. Lv, Y. Shi, and X. W. Zhao. Charge storage characteristics of metal-induced nanocrystalline in erbium-doped amorphous silicon films. Thin Solid Films, 516, 7657 (2008).
  20. W. Guan, S. B. Long, R. Jia, and M. Liu. Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Applied Physics Letters, 91, 062111 (2007).
  21. W. Guan, S. B. Long, M. Liu, Z. G. Li, Y. Hu, and Q. Liu. Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. Journal of Physics D-Applied Physics, 40, 2754 (2007).
  22. W. Guan, S. B. Long, M. Liu, Q. Liu, Y. Hu, Z. G. Li, and R. Jia. Modeling of retention characteristics for metal and semiconductor nanocrystal memories. Solid-State Electronics, 51, 806 (2007).