This is a complete list of journal publications from the Logan Lab. [LOGAN CV] [Logan Google scholar]
[Link to Books] [Link to other publications]
To download a copy of a publication listed below, click on the authors for that publication.
Link goes to the paper on the Journal website. Some papers indicated as open access.
2024
Logan, B.E., F. Zhang, W. Yang, and L. Shi. 2024 Your personal choices in transportation and food are important for lowering carbon emissions. Front. Environ. Sci. Engin. 18(6):70. [Open Access]
Logan, B.E., M. Rahimi, L. Li, L. Winter, W. Peng, and B. Robinson. 2024. Viewpoint: Catalyzing climate solutions through energy and carbon education. Environ. Sci. Technol. 58, 46, 20333–20335. [Open Access]
Bian, B., N. Yu, A. Akbari, L. Shi, X. Zhou, C. Xie, P.E. Saikaly, and B.E. Logan. 2024. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell. Wat. Res. 259:121815. [Link] [SI]
Bian, B, W. Zhang, N. Yu, W. Yang, J. Xua, B.E. Logan, and P.E. Saikaly. 2024. Lactate mediated medium-chain fatty acid production from expired dairy and beverage waste in Saudi Arabia. Env. Sci. Ecotechnol. 21:100424. [Open Access] [SI]
Cross, N.R, M.J. Rau, C.A. Gorski, B.E. Logan, D.M. Hall. 2024. Simulating discharge curves of an all-aqueous TRAB to identify pathways for improving system performance. J. Electrochem. Soc. 171:040547. [Open Access]
Emdadi, A., J.A. Hestekin, L.F. Greenlee, and B.E. Logan. 2024. The high energetic potential of hydraulic fracturing wastewaters with both salinity and temperature gradients for electricity generation using a reverse electrodialysis stack. Chem. Eng. J. 496: 153967. [Link] [SI]
Noori, Md. T., R. Rossi, B.E. Logan, and B. Min. 2024. Hydrogen production technologies in microbial electrolysis cells: recent advances using biocathodes. Trends Biotechnol. [Link].
Shi, L., X. Zhou, R.F. Taylor, C. Xie, B. Bian, D.M. Hall, R. Ruggero, M.A. Hickner, C.A. Gorski, and B.E. Logan. 2024. Thin-film composite membranes in alkaline water electrolyzers. Environ. Sci. Technol. 58(2): 1131−1141. [Link] [SI]
Taylor, R.F., X. Zhou, C. Xie, F. Martinez, X. Zhang, B. Blankert, C. Picioreanu, and B.E. Logan. 2024. Modeling ion transport across thin-film composite membranes during saltwater electrolysis. Environ. Sci. Technol. 58(25): 10969-10978. [Link][SI]
Yi, K., C. Li, S. Hu, X. Yuan, B.E. Logan, and W. Yang. 2024. Ultra-high H2O2 production in membrane-free electrolyzer via anodic bubble shielding with reverse engineered three-phase interface. Nature Commun. In press. [Open Access- coming soon]
Zhou, X., R.F. Taylor, L. Shi, C. Xie, B. Bian, and B.E. Logan. 2024. Reducing chloride ion permeation during seawater electrolysis using double-polyamide thin-film composite membranes. Environ. Sci. Technol. 58(1): 391−399. [Link] [SI]
2023
Baek, G., and B.E. Logan. 2023. A comprehensive analysis of key factors influencing methane production from CO2 using microbial methanogenesis cells. Water Res. 245:120657. [SI]
Cross, N.R., M.J. Rau, S.N. Lvov, C.A. Gorski, B.E. Logan, and D.M. Hall. 2023. System efficiency and power assessment of the all-aqueous copper thermally regenerative ammonia battery. Appl. Energy. 339:120959. [SI]
Cross, N.R., H. Vazquez-Sanchez, M.J. Rau, S.N. Lvov, M.A. Hickner, C.A. Gorski, S.S. Nagaraja, S.M. Sarathy, B.E. Logan, and D.M. Hall. 2023. Alternative membranes cost-effectively manage ion transport and increase performance in thermally regenerative batteries. Electrochim. Acta. 467: 143090. [SI]
Rossi, R., J. Nicolas, and B.E. Logan. 2023. Using nickel-molybdenum cathode catalysts for efficient hydrogen gas production in microbial electrolysis cells. J. Power Sources. 560: 232594. [SI]
Rossi, R. R. Taylor, and B.E. Logan. 2023. Increasing the electrolyte salinity to improve the performance of anion exchange membrane water electrolyzers. ACS Sus. Chem. Eng. 11:8573−8579. [SI]
Taylor, R., L. Shi, X. Zhou, R. Rossi, C. Picioreanu, and B.E. Logan. 2023. Electrochemical and hydraulic analysis of thin-film composite and cellulose triacetate membranes for seawater electrolysis applications. J. Membrane Sci. 679:121692. [SI]
Yi, K., W. Yang, and B.E. Logan. 2023. Defect free rolling phase inversion activated carbon air cathodes for scale-up electrochemical applications. Chem. Eng. J. 454:140411.
Zhou. X., L. Shi, R.F. Taylor, C. Xie, B. Bian, C. Picioreanu, and B.E. Logan. 2023. Relative insignificance of polyamide layer selectivity for seawater electrolysis applications. Environ. Sci. Technol. 57:14569−14578. [SI]
2022
Abbaszadeh Amirdehi, M., L. Gong, N. Khodaparastasgarabad, B.E. Logan, and J. Greener. 2022. Hydrodynamic interventions and measurement protocols to quantify and mitigate power overshoot in microbial fuel cells using microfluidics. Electrochim Acta. 405:139771.
Baek, G., R. Rossi, P.E. Saikaly, and B.E. Logan. 2022. High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design. Water Res. 219:118597. [SI]
Baek, G., L. Shi, R. Rossi, and B.E. Logan. 2022. Using copper-based biocathodes to improve carbon dioxide conversion efficiency into methane in microbial methanogenesis cells. Chem. Eng J. 435:135076. [SI]
Cross, N.R, M.J. Rau, S.N. Lvov, C.A. Gorski, B.E. Logan, and D.M. Hall. 2022. Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery. J. Power Sources. 531:231339.
Rossi, R., G. Baek, and B.E. Logan. 2022. Vapor-fed cathode microbial electrolysis cells enables greatly improved performance. Environ. Sci. Technol. 56:1211−1220. [SI]
Rossi, R., A. Hur, M.A. Page, J. Butkiewicz, A O’Brien, D.W. Jones, G. Baek, P.A. Saikaly, D.M Cropeck, and B.E. Logan. 2022. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Res. 215:118208 [SI]
Rossi, R., and B.E. Logan. 2022. Impact of reactor configuration on pilot scale microbial fuel cell performance. Wat. Res. 225:119179.
Shi, L., X. Bi, E. Newcomer, D.M. Hall, C.A. Gorski, A. Galal, and B.E. Logan. 2022. Co-precipitation synthesis control for sodium ion adsorption capacity and cycle life of copper hexacyanoferrate electrodes in battery electrode deionization. Chem. Eng. J. 435:135001. [SI]
Shi, L., X. Bi, E. Newcomer, D.M. Hall, C.A. Gorski, and B.E. Logan. 2022. Thermodynamic and kinetic analyses of ion intercalation/deintercalation using different temperatures on NiHCF electrodes for battery electrode deionization. Environ. Sci. Technol. 56 (12): 8932–8941. [SI]
2021
Logan, B.E., L. Shi, and R. Rossi. 2021. Enabling the use of seawater for hydrogen gas production in water electrolyzers. Joule. 5:752–767.
Logan, B.E. and P.E. Saikaly. 2021. Current and power densities have been higher in previous studies, eLetter on “Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells” (by Cao et al., Science 373, 1336-1340). Published online in Science: [link] (non-refereed)
Baek, G., K.-Y. Kim, and B.E. Logan.Baek, G., K.-Y. Kim, and B.E. Logan. 2021. Impact of surface area and current generation by microbial electrolysis cell electrodes inserted into anaerobic digesters. Chem. Eng. J. 426:131281. [SI]
Baek, G., R. Rossi and B.E. Logan. 2021. Changes in electrode resistances and limiting currents as a function of microbial electrolysis cell reactor configurations. Electrochim. Act. 388:138590. [SI]
Baek, G., R. Rossi, P.E. Saikaly, and B.E. Logan. 2021. The impact of different types of high surface area brush fibers with different electrical conductivity and biocompatibility on the rates of methane generation in anaerobic digestion. Sci. Total Environ. 787:147683. [SI]
Baek, G., P.E. Saikaly, and B.E. Logan. 2021. Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application. Wat. Res. 188:116575. [SI]
Baek, G., L. Shi, R. Rossi, and B.E. Logan. 2021. The effect of high external voltages on bioanodes of microbial electrolysis cells in the presence of chlorides. Chem. Eng. J. 405:1267422.
Chen, S. K. Wei, Y. Wang, H. Huang, J Wang, P. Liang, X. Huang, B.E. Logan, and X. Zhang. 2021. Enhanced recalcitrant pollutant degradation using hydroxyl radicals generated using ozone and bioelectricity-driven cathodic hydrogen peroxide production: Bio-E-Peroxone process. Sci. Total Environ. 776:144819.
Cross, N.R., D.M. Hall, S.N. Lvov, B.E. Logan, and M.J. Rau. 2021. The impact of fiber arrangement and advective transport in porous Ag-TRAB electrodes. Electrochim. Acta. [SI].
Fonseca, E.U., K.-Y. Kim, R. Rossi, and B.E. Logan. 2021. Improving microbial electrolysis stability using flow-through brush electrodes and monitoring anode potentials relative to theoretical minima. Int. J. Hydrogen Energy. 46:9514–9522. [SI]
Fonseca, E.U., W. Yang, X. Wang, R. Rossi, and B.E. Logan. 2021. Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells. Biores. Technol. 342:125932.
Gao, R., L. Bonin, J.M. Carvajal Arroyo, B.E. Logan, and K. Rabaey. 2021. Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes. Wat. Res. 188:116532.
Kim, K.-Y., R. Rossi, J.M. Regan, and B.E. Logan. 2021. Enumeration of exoelectrogens in microbial fuel cell effluents fed acetate or wastewater substrates. Biochem. Eng. J. 165:107816. [SI]
Lv, M., L. Dongyi, Z. Zhang, B.E. Logan, G. Liu, M. Sun, C. Cai, and Y. Feng. 2021. Unveiling the correlation of Fe3O4 fractions upon the adsorption behavior of sulfamethoxazole on magnetic activated carbon. Sci. Total Env. 757:143717.
Lv, M., D. Li, Z. Zhang, B.E. Logan, J.-P. van der Hoek, Y. Feng. 2021.. Magnetic seeding coagulation: Effect of Al species and magnetic particles on coagulation efficiency, residual Al, and floc properties. Chemosp. 268:129363
Rossi, R., G. Baek, P.E. Saikaly, and B.E. Logan. 2021. Continuous flow microbial fuel cell with anion exchange membrane for treating domestic wastewater. ACS Sus.Chem. Eng. 9:2946−2954. [SI]
Rossi, R., D.M. Hall, L. Shi, N. Cross, C.A. Gorski, M.A. Hickner, and B.E. Logan. 2021. Using a vapor-fed anode and saline catholyte to manage ion transport in a proton exchange membrane electrolyzers. Energy Env. Sci. 14:6041–6049. [SI]
Rossi, R. and B.E. Logan. 2021. Using an anion exchange membrane for effective hydroxide ion transport enables high power densities in microbial fuel cells. Chem. Eng. J. 422:130150. [SI]
Shi, L., E. Newcomer, M. Son, V. Pothanamkandathil, C.A. Gorski, A. Galal, and B.E. Logan. 2021. Metal ion depletion impacts stability and performance of battery electrode deionization over multiple cycles. Environ. Sci. Technol. 2021, 55 (8):5412−5421.
Son, M., N. Yoon, K. Jeong, A. Abbas, B.E. Logan, and K-H Cho. 2021. Deep learning for pH prediction in water desalination using membrane capacitive deionization. Desal. 516:115233.
Springer, R., N. Cross, S.N. Lvov, B.E. Logan, C.A. Gorski, and D.M. Hall. 2021. An all-aqueous thermally regenerative ammonia battery chemistry using Cu(I, II) redox reactions. In press. J. Electrochem. Soc. 168:070523 [SI]
Yan, X., Q. Du, Q. Mu, L. Tian, Y. Wan, C. Liao, L. Zhou, Y. Yan, N. Li, B.E. Logan, and X. Wang. 2021. Long-term succession shows interspecies competition of Geobacter in exoelectrogenic biofilms. Environ. Sci. Technol. 55(21):14928–14937. [SI]
2020
Logan, B.E., R. Rossi, G. Baek, L. Shi, J. O’Conner, and W. Peng. 2020. Energy use for electricity generation requires an assessment more directly relevant to climate change. ACS Energy Lett. 5: 3514−3517.
Fortunato, J. J. Peña, S. Benkaddour, H. Zhang, J. Huang, M. Zhu, B.E. Logan, and C.A. Gorski. 2020. Surveying manganese oxides as electrode materials for harnessing salinity gradient energy. Environ. Sci. Technol. 54(9):5746-5754. [SI]
Lawson, K., R. Rossi, J.M. Regan, and B.E. Logan. 2020. Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Biores. Technol. 316:123919. [SI]
Nava-Ocampo, M.F., S.S. Bucs, A.S. Farinha, M. Son. B.E. Logan, and J.S. Vrouwenvelder. 2020. Sacrificial coating development for biofouling control in membrane systems. Desal. 496:114650.
Rossi, R., D.M. Hall, X. Wang, J.M. Regan, and B.E. Logan. 2020. Quantifying the factors limiting performance and rates in microbial fuel cells using the electrode potential slope analysis combined with electrical impedance spectroscopy. Electrochim. Acta. 348:136330. [SI]
Rossi, R. and B.E. Logan. 2020. Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells. Biores. Technol. 318:123921. [SI]
Rossi, R. and B.E. Logan. 2020. Unraveling the contributions of internal resistance components of two-chamber microbial fuel cells using the electrode potential slope method. Electrochim. Acta. 348:136291. [SI]
Rossi, R., D. Pant and B.E. Logan. 2020. Chronoamperometry and linear sweep voltammetry reveals the adverse impact of high carbonate buffer concentrations on anode performance in microbial fuel cells. J. Power Sources. 476:228715. [2020-Rossi-etal-JPS-Carbonate-buffer-SI]
Rossi, R. and B.E. Logan. 2020. Unraveling the contributions of internal resistance components of two-chamber microbial fuel cells using the electrode potential slope method. Electrochim. Acta. 348:136291 [SI]
Rossi, R., X. Wang, and B.E. Logan. 2020. High performance flow through microbial fuel cells with anion exchange membrane. J. Power Sources. 475:228633. [SI]
Shi, L., R. Rossi, M. Son, D.M. Hall, M.A. Hickner, C.A Gorski, and B.E. Logan. 2020. Using reverse osmosis membranes to control ion transport during water electrolysis. Energy Env. Sci. 13: 3138–3148. [SI]
Son, M., S., B.L. Aronson. W. Yang, C.A. Gorksi and B.E. Logan. 2020. Recovery of ammonium and phosphate using battery deionization in a background electrolyte. Environ. Sci. Water Res. Technol. 6:1688–1696. [SI]
Son, M., E. Kolvek, T. Kim, W. Yang, J.S. Vrouwenvelder, C.A. Gorksi and B.E. Logan. 2020. Stepwise ammonium enrichment using selective battery electrodes. Environ. Sci. Water Res. Technol. 6:1649–1657. [SI]
Son, M., S.V. Pothanamkandath, W. Yang, J.S. Vrouwenvelder, C.A. Gorski, and B.E. Logan. 2020. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environ. Sci. Technol. 54(6):3628−3635. [SI]
Wu, J., D. Li, X. Han, B.E. Logan, J. Liu, and Y. Feng. 2020. Efficient CO2 conversion in a microbial photoelectrochemical cell coupled with a visible-light responsive Co3O4 nanorod-arrayed photocathode. Appl. Catalysis B: Environ. 276:119102. [SI]
Yang, W., M. Son, R. Rossi, J.S. Vrouwenvelder, and B.E. Logan. 2020. Adapting aluminum doped zinc oxide for electrically conductive membranes fabricated by atomic layer deposition. ACS Appl. Material Inter.12(1):963-969. [SI]
Yang, W., X. Wang, and B.E. Logan. 2020. Low-cost Fe-N-C catalyst derived from Fe(Ⅲ)–chitosan hydrogel to enhance power production in microbial fuel cells. Chem. Eng. J. 380:122522. [SI]
Yang, W., X. Wang, M. Son, and B.E. Logan. 2020. Simultaneously enhancing power density and coulombic efficiency with a hydrophobic Fe-N4/activated carbon air cathode for microbial fuel cells. J. Power Sources. 465:228264. [SI]
2019
Logan, B.E., R. Rossi, A. Ragab, and P.E. Saikaly. 2019. Electroactive microorganisms in bioelectrochemical systems. Nature Rev. Microbiol. 17(5): 307-319. [Supporting Information]
Cario, B.P. and B.E. Logan. 2019. Applying the electrode potential slope method as a tool to quantitatively evaluate the performance of individual microbial electrolysis cell components. Biores. Technol. 287: 121418. [Supporting information]
Kim, K.-Y., S.E Habas, J.A. Schaidle, and B.E. Logan. 2019. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells. Biores. Technol. 293:122067. [Supporting Information]
Kim, K.Y. and B.E. Logan. 2019. Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells. Int. J. Hydrogen Energy. 44(26):13169-13174. [Supporting information]
Moon, S., W. Yang, C. Gorski, and B.E. Logan. 2019. Electro forward osmosis. Environ. Sci. Technol. 53(14):8352−8361. [Supporting information]
Rossi, R., B. Cario, C. Santoro, W. Yang, P.E. Saikaly, and B.E. Logan. 2019. Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. Environ. Sci. Technol. 53(7):3977−3986. [Supporting information]
Rossi, R., P.J. Evans, and B.E. Logan. 2019. Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell. J. Power Sources. 412:294-300. [Supporting information]
Rossi, R., D. Jones, J. Myung, E. Zikmund, W. Yang, Y. Alvarez Gallego, D. Pant, P.J. Evans, M.A. Page, D.M. Cropek, and B.E. Logan. 2019. Evaluating a multi-panel air cathode through electrochemical and biotic tests. Wat. Res. 148: 51-59. [Supporting information]
Rossi, R., X. Wang, W. Yang, and B.E. Logan. 2019. Impact of cleaning procedures on restoring cathode performance for microbial fuel cells treating domestic wastewater. Biores. Technol. 290:121759 (6 p). [Supporting Information]
Huang, L., F. Tian, Y. Pan, L. Shan, Y. Shi, and B.E. Logan. 2019. Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40 L microbial electrolysis cells. Wat. Res. 162:358–368. [Supporting Information]
Wang, X., R. Rossi, Z. Yan, W. Yang, M.A. Hickner, T.E. Mallouk, and B.E. Logan. 2019. Balancing water dissociation and current densities to enable sustainable hydrogen production with bipolar membranes in microbial electrolysis cells. Environ. Sci. Technol. 53:14761−14768.
Wu, J., Y. Feng, B.E. Logan, D. Li, X Han, J. Liu. 2019. Preparation of Al-O linked porous-g-C3N4/TiO2-nanotubes Z-scheme composites for efficient photocatalytic CO2 conversion and 2,4-dichlorophenol decomposition and mechanism. ACS Sus. Chem. Eng. 7:15289−15296. [Supporting information]
Yang, W., M. Son, B. Xiong, M. Kumar, S. Bucs, J.S. Vrouwenvelder, and B.E. Logan. 2019. Effective biofouling control using periodic H2O2 cleaning with CuO modified and plain spacer. ACS Sus. Chem. Eng. 7(10):9582-9587. [Supporting information]
2018
Logan, B.E., E. Zikmund, W. Yang, R. Rossi, K.-Y. Kim, P.E. Saikaly, and F. Zhang. 2018. The impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells. Env. Sci. Technol. 52(15):8977-8985.
Huang, L, P. Zhou, X. Quan, and B.E. Logan. 2018. Removal of binary Cr(VI) and Cd(II) from the catholyte of microbial fuel cells and determining their fate in electrotrophs using fluorescence probes. Bioelectrochem. 122:61–68.
Huang, L., Z. Lin, X. Quan. Q. Zhao, W. Yang, and B.E. Logan. 2018. Efficient in-situ utilization of caustic for sequential recovery and separation of Sn, Fe and Cu in microbial fuel cells. ChemElectroChem. 5:1658–1669.
Kim, T., C.A. Gorski, and B.E. Logan. 2018. Ammonium removal from domestic wastewater using selective battery electrodes. Environ. Sci. Technol. Lett. 5(9):578-583. [Supporting information]
Kim, K.-Y., W. Yang, and B.E. Logan. 2018. Regenerable nickel-functionalized activated carbon cathodes enhanced by metal adsorption to improve hydrogen production in microbial electrolysis cells. Environ. Sci. Technol. 52(12):7131-7137. [Supporting Information]
Myung, J., P.E. Saikaly, and B.E. Logan. 2018. A two-staged system to generate electricity in microbial fuel cells using methane. Chemical Engineering J. 352:262-267 .
Myung, J., W. Yang, P. Saikaly, and B.E. Logan. 2018. 2018. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. 4:513–519. [Suporting information]
Rahimi, M., T. Kim, C.A. Gorski, and B.E. Logan. 2018. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity. J. Power Sources. 373:95–102.
Rahimi, M., A.P. Straub, F. Zhang, X. Zhu, M. Elimelech, C.A. Gorski, and B.E. Logan. 2018. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Env. Sci. 11:276–285.
Rossi, R., W. Yang, E. Zikmund, and B.E. Logan. 2018. In-situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Biores. Technol. 265:200-206. [Supporting information]
Son, M., W. Yang, S. Bucs, M.F. Nava-Ocampo, J. Vrouwenvelder, and B.E. Logan. 2018. Polyelectrolyte-based sacrificial protective layer for fouling control in RO desalination. Environ. Sci. Technol. Lett. 5(9):584-590. [ Supporting information]
Song, X., J. Liu, Q. Jiang, Y. Qu, W. He, B.E. Logan, and Y. Feng. 2018. Enhanced electricity generation and effective water filtration using graphene membrane air-cathodes in microbial fuel cells. J. Power Sources. 395:221-227. [Supporting information]
Tian, Y., W. He, W. Yang, B.E. Logan, and N. Ren. 2018. Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation. Water Res. 138:129-136.
Toczyłowska-Mamińska, R., K. Szymona, M. Kloch, P. Król1, K. Gliniewicz, K. Pielech-Przybylska, and B.E. Logan. 2018. Evolving microbial communities in cellulose-fed microbial fuel cells. Energies. 11(1):124. [Supporting information]
Wu, J., D. Li, J. Liu, C. Li, Z. Li, B.E. Logan, and Y. Feng. 2018. Enhanced charge separation of TiO2 nanotubes arrays photoelectrode for efficient conversion of CO2. ACS. SusChemEng. 6(10): 12953–12960. [Supporting information]
Yang, L, J. Liu, L. Huang, Z. Zhang, Y. Yu, J. Liu, B.E. Logan, and Y. Feng. 2018. Fabrication of porous sphere-stacking cluster nano-structure SnO2-Sb electrode by in situ solvothermal synthesis method and the possible mechanism of performance enhancement. J. Electrochem. Soc. 165(5):E208-E213.
Yang, W, R. Rossi, T. Tian, K.-Y. Kim, and B.E. Logan. 2018. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells. Biores. Technol. 11(1):124.
Ye, Y. and B.E. Logan. 2018. The importance of OH– transport through the anion exchange membrane in microbial electrolysis cells. Int. J. Hydrogen Energy. 43: 2645-2653. [Supporting information]
Zaybak, Z., B.E. Logan, and J.M. Pisciotta. 2018. Electroautotrophic activity and electrosynthetic acetate production by Desulfobacterium autotrophicum HRM2. Bioelectrochem. 123:150–155
Zikmund, E., K.-Y. Kim, and B.E. Logan. 2018. Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells. Int. J. Hydrogen Energy. 43:9599-9606.
2017
Ivanov, I., Y. Ahn, T. Poirson, M.A. Hickner, and B.E. Logan. 2017. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells. Int. J. Hydrogen Energy. 42(24):15739–15744.
Kim, K.-Y., E. Zikmund, and B.E. Logan. 2017. Impact of catholyte recirculation on different 3-dimensional stainless steel cathodes in microbial electrolysis cells. Int. J. Hydrogen Energy. 42(50):29708-29715.
Kim, T, C.A. Gorski, and B.E. Logan. 2017. Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett. 4(10): 391 – 450.
Kim, T, B.E. Logan and C.A. Gorski. 2017. A pH-gradient flow cell for converting waste CO2 into electricity. Environ. Sci. Technol. Lett.4(2):49–53. [Supporting information]
Kim, T., B.E. Logan, and C.A. Gorksi. 2017. High power energy recovery in an electrochemical process from salinity differences by combining electrode and Donnan potentials in a concentration flow cell. Energy Environ. Sci. 10(4):1003–1012.[Supporting information]
LaBarge, N., Y.D. Yilmazel, P. Hong and B.E. Logan. 2017. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance. Bioelectrochem. 113:20-25. [Supporting information]
Martinez, C.M., X. Zhu and B.E. Logan. 2017. AQDS immobilized solid-phase redox mediators and their role during bioelectricity generation and RR2 decolorization in an air-cathode single chambered microbial fuel cell. Bioelectrochem. 118:123–130.
McAnulty, M.J., V. Giridhar Poosarla, K.-Y. Kim, R. Jasso Chávez, B.E. Logan, and T.K. Wood. 2017. Electricity from methane by reversing methanogenesis. Nature Commun. 8:15419. [Revuew by Z.J. Ren]
Rahimi, M., A. D’Angelo, C.A. Gorski, O Scialdone, and B.E. Logan. 2017. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery. J. Power Sources. 351:45–50. [Supporting information]
Rahimi, M., Z. Schoener, X. Zhu, C.A. Gorski, and B.E. Logan. 2017. Copper removal from wastewater using thermally regenerative battery. J. Haz. Mater. 322:551–556. [Supporting information]
Rahimi, M., L. Zhu, K.L. Kowalski, X. Zhu, C.A. Gorski, M.A. Hickner, and B.E. Logan. 2017. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane. J. Power Sources. 342:956-963.[Supporting information]
Rossi, R., W. Yang, L. Settia, B.E. Logan. 2017. Assessment of a metal–organic framework catalyst in air cathode microbial fuel cells over time with different buffers and solutions. Bioresour. Technol. 233:399–405.
Shehab, N.A., J. Ortizmedina, K. Katuri, H. Anandaro, U. Stingl, G.L. Amy, B.E. Logan, and P.E. Saikaly. 2017. Exploring the brine pool in the Red Sea as a source of exoelectrogenic communities. Biores. Technol. 239:82-86. [Supporting information]
Stager, J.L., Z. Zhang, and B.E. Logan. 2017. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochem. 118:154–160. [Supporting information]
Sun, D., S. Cheng, F. Zhang, and B.E. Logan. 2017. Current density reversibly alters the metabolic spatial structure of exoelectrogenic anode biofilms. J. Power Sources. 356:566–571. [Supporting information]
Tian, Y., W. He, X. Zhu, W. Yang, N. Ren, and B.E. Logan. 2017. An improved electrocoagulation reactor for rapid removal of phosphate from wastewater. ACS Sus. Chem. Eng. 5(1):67–71.
Wu, S., W. He, W. Yang, Y. Ye, X. Huang, and B.E. Logan. 2017. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. J. Power Sources. 356:348-355. [Supporting information]
Yang, W., K.-Y. Kim, P.E. Saikaly, and B.E. Logan. 2017. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy Environ. Sci. 10:1025–1033.[Supporting information]
Ye, Y., P.E. Saikaly, and B.E. Logan. 2017. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor. Biores. Technol. 244:456-462.
Yilmazel, Y.D., X. Zhu, D.E. Holmes, and B.E. Logan. 2017. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochem. 119:142–149. [Supporting information]
Zhang, X., Q. Wang, X. Xia, W. He, X. Huang, and B.E. Logan. 2017. Addition of conductive particles to improve the performance of activated carbon air-cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. Technol. 3:806-810.
Zhu, X., T. Kim, M. Rahimi, C.A. Gorski, B.E. Logan. 2017. Integrating reverse-electrodialysis stacks with flow batteries to achieve improved energy recovery from salinity gradients and energy storage. ChemSusChem. 10(4):797–803.
Zodrow, K.R., Q. Li, R.M. Buono, W. Chen, G. Daigger, L. Dueñas -Osorio, M. Elimelech, X. Huang, G. Jiang, J.-H. Kim, B.E. Logan, D.L. Sedlak, P. Westerhoff, P.J.J. Alvarez. 2017. Advanced materials, technologies and complex systems analysis: Emerging opportunities to enhance urban water security. Environ. Sci. Technol. In press.
2016
Feng, Y. L. Yang, J. Liu and B.E. Logan. 2016. Electrochemical technologies for wastewater treatment and resource reclamation. Env. Sci. Water Res. Technol. 2(5):800-831.
Hari, A.R. K.P. Katuri, E. Gorron, B.E. Logan, and P.E. Saikaly. 2016.Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate. Appl. Microbiol. Biotechnol.100(13):5999-6011.
Hari, A.R., K.P. Katuri, B.E. Logan, and P.E. Saikaly. 2016. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells. Sci. Reports. 6:38690.
He W., M.J. Wallack, K-Y. Kim, X. Zhang, W. Yang, X. Zhu, Y. Feng, and B.E. Logan. 2016). The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at a wastewater treatment plant. Water Res.105:351-360. [Supporting information]
He, W., W. Yang, Y. Tian, X. Zhu, Y. Feng, and B.E. Logan. 2016. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells. J. Power Sources. 332:447–453. [Supporting information]
He, W., X. Zhang, J. Liu, X. Zhu, Y. Feng, and B.E. Logan. 2016. Microbial fuel cells with an integrated spacer and separate anode and cathode modules. Environ. Sci. Water Res. Technol. 2:186-195. [Supporting information]
Kim, K-Y., W. Yang, Y. Ye, N. LaBarge, and B.E. Logan. 2016. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Biores. Technol. 208:58-63. [Supporting information]
Kim, K.-Y., W. Yang, P.J. Evans, and B.E. Logan. 2016. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Biores. Technol. 221:96–101. [Supporting information]
Kim, T., M. Rahimi, C.A. Gorski and B.E. Logan. Salinity-gradient flow battery for harvesting energy from salinity differences. Environ. Sci. Technol. 50(17):9791−9797.
Kim, T., M. Rahimi, B.E. Logan and C.A. Gorski. 2016. Evaluating battery-like reactions to harvest energy from salinity differences using ammonium bicarbonate salt solutions. ChemSusChem. 9(9):981-988.
LaBarge, N., Y. Ye, K.-Y. Kim, Y.D. Yilmazel, P. Hong, P.E. Saikaly, and B.E. Logan. 2016. Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors. Env. Sci Wat. Res. Technol. 2:1041-1048. [Supporting Information]
Tian, Y., W. He, X. Zhu, W. Yang, N. Ren and B.E. Logan. 2016. Energy efficient electrocoagulation using an air-breathing cathode to remove nutrients from wastewater. Chem. Eng. J. 292:308–314.
Wang, Q., L. Huang, Y. Pan, P. Zhou, X. Quan, B.E. Logan, and H. Chen. 2016. Cooperative cathode electrode and in situ deposited copper for subsequent enhancement of Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Biores. Technol. 200:565–571. [Supporting information]
Werner, C.M., K.P. Katuri, A.R. Hari, W. Chen, Z. Lai, B.E. Logan, G.L Amy, and P.E. Saikaly. 2016. Graphene-coated nickel hollow fiber membrane as cathode electrode in anaerobic electrochemical membrane bioreactors – Effect of reactor configuration and applied voltage on membrane fouling and system performance. Environ. Sci. Technol. 50(8): 4439–4447.
Yang, W., and B.E. Logan. 2016. Immobilization of metal-nitrogen-carbon co-catalyst on activated carbon with enhanced cathode performance in microbial fuel cells. ChemSusChem. 9(16): 2226-2232. [Supporting information]
Yang, W., and B.E. Logan. 2016. Engineering a membrane based air cathode for microbial fuel cells via hot pressing and using multi-catalyst layer stacking. Environ. Sci. Water Res. Technol. 2(5): 858-863. [Supporting information]
Yang, W., V. Watson, and B.E. Logan. 2016. Substantial humic acid adsorption to activated carbon air cathode produces a small reduction in catalytic activity. Environ. Sci. Technol. 50(16): 8904–8909.
Ye, Y., N. LaBarge, H. Kashima, K.-Y. Kim, P. Hong, P.E. Saikaly, and B.E. Logan. 2016. An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling. Environ. Sci. Water Res. Technol. 2:994-1003. [Supporing information]
Ye, Y., X. Zhu and B.E. Logan. 2016. Effect of buffer charge on performance of air-cathodes used in microbial fuel cells. Electrochim. Acta. 194:441–447. [Supporting information]
Zhang, X., W. He, W. Yang, J. Liu, Q. Wang, P. Liang, X. Huang, and B.E. Logan. 2015. Diffusion layer characteristics for increasing performance of activated carbon air-cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. 2(2):235–406.
Zhang, X., W. He, R. Zhang, Q. Wang, P. Liang, X. Huang, B.E. Logan, and T.-P. Fellinger. 2016. High-performance carbon aerogel air-cathodes for microbial fuel cells. ChemSusChem. 9:2788 – 2795.
Zhu, X., M. Rahimi, C. Gorski and B.E. Logan. 2016. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat. ChemSusChem. 9(8):873-879.
2015
Logan, B.E., M.J. Wallack, K.-Y. Kim, W. He, Y. Feng, and P. Saikaly. 2015. Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett. 2(8):206-214. [Supporting information]
Huang, L., L. Jiang, P. Zhou, X. Quan, H. Chen, and B.E. Logan. 2015. Adaptively evolving bacterial communities for complete and selective recovery of Cr(VI), Cu(II) and Cd(II) in biocathode bioelectrochemical systems. Environ. Sci. Technol. 49(16):9914−9924. [Supporting information]
Kim, K.-Y, W. Yang and B.E. Logan. 2015. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Wat. Res. 80:41-46.[Supporting information]
Liu, J., H. Hou, X. Chen, G.C. Bazan, H. Kashima, and B.E. Logan. 2015. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells. Bioelectrochem. 106:379-382.
Patil, S.A., S. Gildemyn, D. Pant, K, Zengler, B.E. Logan and K, Rabaey. 2015. A logical data representation framework for electricity-driven bioproduction processes. Biotechnol. Adv. 33(6): 736-744. [Supporting information-pdf], [Supporting information-worksheet]
Siegert, M., X.-F. Li, M.D. Yates, and B.E. Logan. 2014. The presence of hydrogenotrophic methanohens in the inoculum improves methane gas production in microbial electrolysis cells. Frontiers Microbiol. 5, article 798
Siegert, M., M.D. Yates, A. Spormann, and B.E. Logan. 2015.Methanobacterium dominates biocathodic archael communities in methanogenic microbial electrolysis cells. ACS Sus. Chem. Eng. 3(7):1668-1676.[Supporting information]
Sun, D., S. Cheng, A. Wang, F. Li, B.E. Logan, and K. Cena. 2015. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms in bioelectrochemical systems. Environ. Sci. Technol. 49(8):5227−5235.[Supporting information]
Ullery, M.L. and B.E. Logan. 2015. Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent. Int. J. Hydrogen Energy 40(21):6782-6791.
Wallack, M.J., G.M. Geise, M.C. Hatzell, M.A. Hickner, and B.E. Logan. 2015. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using ion exchange resin. Env. Sci. Wat. Res. Technol. 1:865-873. [Supporting information]
Watson, V.J., M.C. Hatzell, and B.E. Logan. 2015. Hydrogen production from continuous flow, microbial reverse–electrodialysis electrolysis cells treating fermentation wastewater. Biores. Technol. 195:81-86.
Werner, C.M., C. Hoppe-Jones, P.E. Saikaly, B.E. Logan, and G.L. Amy. 2015. Attenuation of trace organic compounds in bioelectrochemical systems. Wat. Res. 73:56-67.
Yang, W., K.-Y. Kim, and B.E. Logan. 2015. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells. Biores. Technol. 197:318–322. [Supporting information]
Zhang, F., N. LeBarge, W. Yang, J. Liu, and B.E. Logan. 2015. Enhancing the performance of low-grade thermal energy recovery in a thermally regenerative ammonia battery (TRAB) by using elevated temperatures. ChemSusChem. 8:1043-1048. [Supporting information]
Zhang, F., J. Liu, W. Yang, and B.E. Logan. 2015. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy Env. Sci. 8(1):343-3249. [Supporting information]
Zhang, X., W. He, L. Ren, J. Stager, P.D. Evans, and B.E. Logan. 2015. COD removal characteristics of air-cathode microbial fuel cells. Biores. Technol. 176-23-31. [Supporting information.]
Zhu, X., W. He, and B.E. Logan. 2015. Influence of solution concentration and composition on the performance of reverse electrodialsysis cells. J. Membrane Sci. 494:154–160
Zhu, X., W. He, and B.E. Logan. 2015. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. J. Membrane Sci. 486:215-221.
Zhu, X., M. Siegert, M.D. Yates, and B.E. Logan. 2014. Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems. Appl. Environ. Microbiol. 81(11):3863-3868.
2014
Ahn, Y., M.C. Hatzell, F. Zhang, and B.E. Logan. 2014. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. J. Power Sources. 249:440-445.[Supporting information]
Ahn, Y., I. Ivanov, T.C. Nagaiah, A. Bordoloid and B.E. Logan. 2014. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells. J. Power Sources. 269:212-215.
Ahn, Y., F. Zhang and B.E. Logan. 2014. Air humidity and water pressure affects the performance of air-cathode microbial fuel cell cathodes. J. Power Sources. 247:655-659.
Cusick, R.D., M. Ullery, B.A. Dempsey, and B.E. Logan. 2014. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Research. 54: 297-306. [Supporting information]
Geise, G.M., H.J. Cassady, D.R. Paul, B.E. Logan, and M.A. Hickner. 2014.Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. 16(39):21673-21681.
Geise, G.M., A.J. Curtis, M.C. Hatzell, M.A. Hickner, and B.E. Logan. 2014. Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environ. Sci. Technol. Lett. 1(1):36-39. [Supporting information]
Hatzell, M.C., R.D. Cusick, and B.E. Logan. 2014. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents. Energy Env. Sci. 7(3):1159-1165. [Supporting information]
Hatzell, M.C., K.B. Hatzell, and B.E. Logan. 2014. Using flow electrodes in multiple reactors in series for continuous energy generation from capacitive mixing. Environ. Sci. Technol. Lett. 1(12):474-478.[Supporting information]
Hatzell, M.C., I. Ivanov, R.D. Cusick, X. Zhu, and B.E. Logan. 2014. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Phys. Chem. Chem. Phys. 16(4):1632–1638. [Supporting information]
Hatzell, M.C., M. Raju, V.J. Watson, A.G. Stack, A.C.T. van Duin, and B.E. Logan. 2014. The effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion. Environ. Sci, Technol. 48(23):14041-14048. [Supportring information]
Hatzell, M.C., X. Zhu, and B.E. Logan. 2014. Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system. ACS Sustain. Chem. Engin. 2(9):2211-2216. [Supporting information]
Hoskins, D.L., X. Zhang, M.A. Hickner, and B.E. Logan. 2014. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities. Biores. Technol.. 172:156-161.
Hou, H., X. Chen, J. Liu, X. Zhu, G.C. Bazan, and B.E. Logan. 2014. Repression of hydrogen uptake by using conjugated oligoelectrolytes in microbial electrolysis cells. Int. J. Hydrogen Energy. 39:19407-19415.[Supporting information]
Katuri, K.P., C.M. Werner, R.J. Jimenez-Sandoval, W. Chen, S. Jeaon, B.E. Logan, Z. Lai, G.L. Amy, and P.E. Saikaly. 2014. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ. Sci. Technol. 48(21):12833-12841.[Supporting information]
Lanas, V.A., Y. Ahn, and B.E. Logan. 2014. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J. Power Sources. 247:228-234. [Supporting information]
Liu, J., F. Zhang, W. He, W. Yang, Y. Feng and B.E. Logan. 2014. A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production. J. Power Sources. 271:530-533.
Liu, J., G. Geise, X. Liu, H. Hou, F. Zhang, W. He, Y. Feng, X. Huang, M.A. Hickner, and B.E. Logan. 2014. Patterned ion exchange membranes prepared by a casting method to improve power production in microbial reverse-electrodialysis cells. J. Power Sources. 271:437-443. [Supporting Information]
Liu, J., F. Zhang, W. He, X. Zhang, Y. Feng, and B.E. Logan. 2014. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. J. Power Sources. 261:278–284. [Supporting information].
Lohner, S.T., J. Deutzmann, B.E. Logan, J. Leigh, and A. Spormann. 2014. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 8:1673–1681. [Supporting Information]
Luo, X., F. Zhang, J. Liu, X. Zhang, X. Huang, and B.E. Logan. 2014. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMC) using thermolytic solutions. Environ. Sci. Technol. 48(15):8911–8918. [Supporting information.]
Mink, J.E, R. Qaisi, B.E. Logan, and M.M. Hussain. 2014. Energy harvesting from organic matter in micro-sized microbial fuel cells. NPG Asia Mater. 6:e89.
Nam, J.-Y., M.D. Yates, Z. Zaybak, and B.E. Logan. 2014. Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater. Biores. Technol. 171:182-186.
Ren, L., Y. Ahn, H. Hou, F. Zhang, and B.E. Logan. 2014. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions. J. Power Sources. 257:454-460. [Supporting information]
Ren, L., Y. Ahn, and B.E. Logan. 2014. Domestic wastewater treatment with a two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system. Environ. Sci. Technol. 48(7):4199–4206. [Supporting information]
Ren, L. X. Zhang, W. He, and B.E. Logan. 2014. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate. Biotechnol. Bioeng. 111(11):2163-2169. [Supporting information]
Shehab, N. G.L. Amy, B.E. Logan, and P.E. Saikaly. 2014. Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC). J. Membrane Sci. 469: 364–370.
Siegert, M., M.D. Yates, D.F. Call, and B.E. Logan. 2014. Comparison of non-precious metal cathode materials for methane production by electromethanogenesis. ACS Sus. Chem. Eng. 2(4):910-917. [Supporting information]
Sun, D., D.F. Call, A. Wang and B.E. Logan. 2014. Geobacter sp. SD-1with enhanced electrochemical activity in high salt concentration solutions. Environ. Microbiol. Reports. 6(6): 723–729.[Supporting information]
Sun, D., A. Wang, S. Cheng. M.D. Yates, and B.E. Logan. 2014. Geobacter anodireducens sp. nov., a novel exoelectrogenic microbe in bioelectrochemical systems. Int. J. System. Evol. Microbiol. 64:3485-3491.
Ullery, M.L. and B.E. Logan. 2014. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells. Biores. Technol. 170:530-537. [Supporting information]
Yang, W. W. He, F. Zhang, M.A. Hickner, and B.E. Logan. 2014. Single-step fabrication using a phase inversion method of poly(vinylidene fluoride) (PVDF) activated carbon air cathodes for microbial fuel cells. Environ. Sci. Technol. Lett. 1(10):416-420. [Supporting information]
Yang, W., F. Zhang, W. He, J. Liu, M.A. Hickner, and B.E. Logan. 2014. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance cathode performance in microbial fuel cells. J. Power Sources.. 269:379-384. [Supporting information]
Yates, M.D., R.D. Cusick, and B.E. Logan. 2014. Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure. Biotechnol. Bioeng. 111(11):2349-2354. [Supporting information]
Yates, M.D. and B.E. Logan. 2014. Biotemplated palladium catalysts can be stabilized on different support materials. ChemElectroChem. 1(11):1867-1873.[Supporting information.]
Yates, M.D., M. Siegert and B.E. Logan. 2014. Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes. Int. J. Hydrogen Energy. 39:16841-16851. [Supporting information]
Zhang, F., Y. Ahn and B.E. Logan. 2014 Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Biores. Technol. 152:46–52. [Supporting information]
Zhang, F., J. Liu, I. Ivanov, M.C. Hatzell, W. Yang, Y. Ahn, and B.E. Logan. 2014. Reference and counter electrode positions affect electrochemical characterization of bioanodes in microbial electrochemical systems. Biotechnol. Bioeng. 111(10):1931-1939. [Supporting information.]
Zhang, X., D. Pant, F. Zhang, J. Liu, and B.E. Logan. 2014. Long-term performance of chemically and physically modified activated carbons in microbial fuel cell air-cathodes. ChemElectroChem. 1(11):1859-1866.[Supporting information.]
Zhang, X., X. Xia, I. Ivanov, X. Huang, and B.E. Logan. 2014. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environ. Sci. Technol. 48(3):2075–2081. [Supporting information]
Zhu, X. and B.E. Logan. 2014. Copper anode corrosion affects power generation in microbial fuel cells. J. Chem. Technol. Biotechnol. 89: 471–474.
Zhu, X. and B.E. Logan. 2014. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. Biores. Technol. 159:24–29. [Supporting information]
Zhu, X., M.C. Hatzell, and B.E. Logan. 2014. Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2 sequestration. Environ. Sci. Technol. Lett. 1(4):231−235.
Zhu, X., W. Yang, M.C. Hatzell and B.E. Logan. 2014. Energy recovery from solutions with different salinities based on swelling and contraction of hydrogels. Environ. Sci. Technol. 48(12):7157-7163. [Supporting Information]
Zhu, X., M.D. Yates, M.C. Hatzell, H.A. Rao, P.E. Saikaly, and B.E. Logan. 2014. Reply to “Strain level variation in biofilms selected at different anode potentials: a response to Zhu et al.”. Environ. Sci. Technol. 48(24): 14853–14854.
Zhu, X., M.D. Yates, M.C. Hatzell, H.A. Rao, P.E. Saikaly, and B.E. Logan. 2014.Microbial community composition is unaffected by anode potential. Environ. Sci. Technol. 48(2): 1352–1358. [Supporting information]
2013
Ahn, Y. and B.E. Logan. 2013. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design. Appl. Microbiol. Biotechnol. 97:409-416.
Ahn, Y. and B.E. Logan. 2013. Altering anode thickness to improve production in microbial fuel cells with different electrode distances. Energy&Fuels 27(1):271-276.
Ahn, Y. and B.E. Logan. 2013. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells. Biores. Technol. 132:436–439. [Supporting information]
Chen, G, F. Zhang, B.E. Logan and M.A. Hickner. 2013. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells. Electrochem. Commun. 34:150-152.
Cusick, R.D., M.C. Hatzell, F. Zhang and B.E. Logan. 2013. Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse-electrodialysis cells. Environ. Sci. Technol. 47(24): 14518-14524. [Supporting information]
Davis, R.J., Y. Kim, and B.E. Logan. 2013. Increasing desalination by mitigating anolyte pH imbalance using catholyte effluent addition in a multi-anode, bench scale microbial desalination cell. ACS Sustain. Chem. Engin. 1(9):1200-1206.[Supporting information]
Geise, G.M., M.A. Hickner, and B.E. Logan. 2013. Ammonium bicarbonate transport in anion exchange membranes for salinity gradient energy. ACS Macro Lett. 2(9):814–817. [Supporting information]
Geisse, G.M., M.A. Hickner and B.E. Logan. 2013. Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl. Mat. Inter. 5(20):10294–10301.
Hatzell, M.C., Y. Kim and B.E. Logan. 2013. Increasing performance of MFC/MEC coupled systems with MFCs aligned in parallel and energy storage capacitors. J. Power Sources. 229:198-202.
Hatzell, M.C., and B.E. Logan. 2013. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack. J. Mem. Sci. 446:449-455. [Supporting information]
Ivanov, I., L. Ren, M. Siegert, and B.E. Logan. 2013. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. Int. J. Hydrogen Energy. 38(30):13135-13142.
Kim, Y. and B.E. Logan. 2013. Microbial desalination cells for energy production and desalination. Desal. 308:122–130
Kim, Y. and B.E. Logan. 2013. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desal. 308:115–121.
Lanas Medina, V.A. and B.E. Logan. 2013. Evaluation of multi-brush anode systems in microbial fuel cells. Biores. Technol. 148:379–385. [Supporting information]
Luo, X., J.-Y. Nam, F. Zhang, X. Zhang, Peng Liang, X. Huang, and B.E. Logan. 2013. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Biores. Technol. 140:399–405. [Supporting information]
Luo, Y., F. Zhang, B. Wei, G. Liu, R. Zhang, and B.E. Logan. 2013. The use of cloth fabric diffusion layer for scalable microbial fuel cells. Biochem. Eng. J. 73:49-52.
Maleb, L., K. Katuri, K., Logan, B.E. Logan, H. Maab, S. Nunes, and P. Saikaly. 2013. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environ. Sci. Technol. 47(20):11821−11828. [Supporting information]
Qu, Y., Y. Feng, J. Liu, W. He, X. Shi, Q. Yang, J. Lv, and B.E. Logan. 2013. Salt removal using multiple microbial desalination cells under continuous flow conditions. Desal. 317:17–22. [Supporting information]
Ren, L., M. Siegert, I. Ivanov, and B.E. Logan. 2013. Treatability studies on different refinery wastewaters using high-throughput microbial electrolysis (MEC) reactors. Biores. Technol. 136: 322-328. [Supporting information]
Ribot-Llobet, E., J-Y. Nam, J.C. Tokash, A. Guisasola, and B.E. Logan. 2013. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. Int. J. Hydrogen Energy 38:2951-2956.
Shehab, N., D. Li, G. Amy, B.E. Logan, and P.E. Saikaly. 2013. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl. Microbiol. Biotechnol. 97(22): 9885-9895.
Tenca, A., R.D. Cusick, A. Schievano, R. Oberti, and B.E. Logan. 2013. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int. J. Hydrogen Energy. 38(4):1859-1865.
Watson, V.J., C.N. Delgado, and B.E. Logan. 2013. Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance. Environ. Sci. Technol. 47(12):6704−6710.[Supporting information]
Watson, V.J., C.N. Delgado, and B.E. Logan. 2013. Improvement in oxygen reduction catalysis in neutral solutions using ammonia treated activated carbons and performance in microbial fuel cells. J. Power Sources. 242:756-761.[Supporting information]
Wei, B., J.C. Tokash, F. Zhang, Y. Kim, and B.E. Logan. 2013. Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochim. Acta. 89:45–51.
Werner, C.M., B.E. Logan, P.E. Saikaly, and G.L. Amy. 2013. Wastewater treatment, energy recovery and desalination using an air-cathode microbial osmotic fuel cell. J. Membrane Sci. 428:116-122.
Xia, X., J.C. Tokash, F. Zhang, P. Liang, X. Huang, and B.E. Logan. 2013. Oxygen reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ. Sci. Technol. 47(4): 2085–2091.
Xia, X., F. Zhang, X. Zhang, P. Liang, X. Huang, and B.E. Logan. 2013. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells. ACS Appl. Mat. Inter. 5(16):7862–7866. [Supporting information]
Yang, F., L. Ren, Y. Pu, and B.E. Logan. 2013. Electricity generation from fermentation solution of primary sludge using single-chambered air-cathode microbial fuel cells. Biores. Technol. 128:784–787.
Yates, M.D., R.D. Cusick, and B.E. Logan. 2013. Extracellular palladium reduction by Geobacter sulfurreducens. ACS Sustain. Chem. Eng. 1(9):11165-1171.[Supporting information] [Reply to comment]
Yates, M.D., R.D. Cusick, and B.E. Logan. 2013. Response to “Comment on extracellular palladium nanoparticle production using Geobacter sulfurreducens” by Pat-Espadas, A. M.; Razo-Flores, E.; Rangel-Mendez, J. R.; Cervantes, F. J. ACS Sustain. Chem. Eng. 1:1346−1347.
Zaybak, Z., J.M. Pisciotta, J.C. Tokash, and B.E. Logan. 2013. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J. Biotechnol. 168:478– 485.[Supporting information]
Zhang, F., X. Xia, Y. Luo, D. Sun, D.F. Call, and B.E. Logan. 2013. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Biores. Technol. 133:74–81. [Supporting information]
Zhang, X., J. Shi, P. Liang, J. Wei, X. Huang, C. Zhang, and B.E. Logan. 2013. Power generation by packed-bed air-cathode microbial fuel cells. Biores. Technol.142:109–114. [Supporting information]
Zhu, X., M.C. Hatzell, R.D. Cusick, and B.E. Logan. 2013. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochem. Commun. 31:52–55.
Zhu, X. and B.E. Logan. 2013. Using single-chamber microbial fuel cells as renewable power sources for electro-Fenton treatment of organic pollutants. J. Haz. Mat. 252–253:198–203. [Supporting information]
Zhu, X., J.C. Tokash, Y. Hong, and B.E. Logan. 2013. Influence of anode potentials on power overshoot in microbial fuel cells. Bioelectrochem. 90:30-35.
2012
Logan, B.E. and K. Rabaey. 2012. Conversion of wastes into bioelectricity and chemicals using microbial electrochemical technologies. Science, 337:686-690.
Logan, B.E. and M. Elimelech. 2012. Membrane-based processes for sustainable power generation using water and wastewater. Nature. 488:313-319.
Logan, B.E. 2012. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem. I5(6):988- 994.
Ahn, Y. and B.E. Logan. 2012. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Appl. Microbiol. Biotechnol. 93(5):2241-2248.
Chen, G., B. Wei, B.E. Logan and M.A. Hickner. 2012. Cationic fluorinated polymer binders for microbial fuel cell cathodes. RSC Advances. 2, 5856-5862. [supporting information]
Chen, G., B. Wei, Y. Luo, B.E. Logan, and M.A. Hickner. 2012. Polymer separators for high power, high efficiency microbial fuel cells. ACS Appl. Mat. Interfaces. 4(12):6454–6457. [supporting information]
Cusick, R.D., Y. Kim, and B.E. Logan. 2012. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science. 335:1474-1477. [Supporting information]
Cusick, R.D. and B.E. Logan. 2012. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Biores. Technol. 107:110-115. [supporting information]
Huang, L., X. Chai, X. Quan, B.E. Logan, and G. Cheng. 2012. Mineralization of pentachlorophenol in biocathode microbial fuel cells. Biores. Technol. 111:167-174.
Huang, L, L. Gan, N. Wang, X. Quan, B.E. Logan, and G. Chen. 2012.Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnol. Bioeng. 109(9):2211-1221.
Ishii, S., B.E. Logan, and Y. Sekiguchi. 2012. Facilitation of electrode reducing rate during the enrichment process in an air-cathode microbial fuel cell. Appl. Microbiol. Biotechnol. 94(4):1087-1094.[supporting information]
Lu, L., N. Ren, D. Xing, and B.E. Logan. 2012. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells: Pyrosequencing and electrochemical characterization. Biores. Technol. 124:68-76.
Mink, J.E., J.P. Rojas, B.E. Logan, and M.M. Hussain. 2012. Vertically grown multi-walled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell. Nanoletters. 12(2):791-795. [supporting information]
Nam, J.-Y., R.D. Cusick, Y. Kim, and B.E. Logan. 2012. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution. Environ. Sci. Technol. 46(9): 5240-5246. [supporting information]
Nam, J-Y., and B.E. Logan. 2012. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells. Int. J. Hydrogen Energy.37(24):18622-18628
Pisciotta, J.M., Z. Zaybak, D.F. Call, J.-Y. Nam, and B.E. Logan. 2012. Enrichment of microbial electrolysis cell (MEC) biocathodes from sediment microbial fuel cells (sMFC) bioanodes. Appl. Environ. Microbiol. 78(15):5212-5219.
Qu, Y., Y. Feng, X. Wang, J. Liu, J. Lu, W. He and B.E. Logan. 2012. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Biores. Technol. 106:89-94.
Qu, Y., Y. Feng, X. Wang, and B.E. Logan. 2012. Using a co-culture to increase current production by Geobacter sulfurreducens. Appl. Environ. Microbiol. 78(9): 3484-3487.
Ren, L., J. Tokash, J.M. Regan and B.E. Logan. 2012. Current generation in microbial electrolysis cells with addition of amorphous ferric hydroxide, Tween 80, or DNA. Int. J. Hydrogen Energy. 37:16943-16950.
Sun, D. D.F. Call, P.D. Kiely, A. Wang, and B.E. Logan. 2012. Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnol. Bioengin. 109(2): 405–414.[supporting information]
Wagner, R.C., S. Porter-Gill, and B.E. Logan. 2012. Immobilization of anode-attached microbes in a microbial fuel cell. AMB Express. 2(2):1-6.
Wei, B., J.C. Tokash, G. Chen, M.A. Hickner and B.E. Logan. 2012. Development of low-cost activated carbon cathodes for use in air-cathode microbial fuel cells. RSC Advances. 2(33):12751-12758.
Yang, Q., Y. Feng, and B.E. Logan. 2012. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells. Biores. Technol. 110:273-277.
Yates, M.D., P.D. Kiely, D.F. Call, H. Rismani-Yadzi, K. Bibby, J. Peccia J.M. Regan, and B.E. Logan. 2011. Convergent development of bacterial communities in microbial fuel cells. J. ISME. 6(11):2002-2013.
Zhang, F., G. Chen, M.A. Hickner, and B.E. Logan. 2012. Novel anti-flooding cathodes constructed using poly(dimethylsiloxane) (PDMS) binder for microbial fuel cells. J. Power Sources. 218:100-105.
Zhu, X., M.D. Yates, and B.E. Logan. 2012. Set potential regulation reveals additional oxidation enzyme peaks of Geobacter sulfurreducens anodic biofilms. Electrochem. Commun. 22:116-119.
2011
Ambler, J.R. and B.E. Logan. 2011. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. Int. J. Hydrogen Energy. 36(1):160-166. [supporting information]
Angenent, L. M. Rosenbaum, R. Rozendal, K. Rabaey, B. E. Logan, and U. Schröder. 2011. Comments on “Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell” by Samrot et al. Int. J. Hydrogen Energy36(15): 9396-9397.
Call, D.F., and B.E. Logan. 2011. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosen. Bioelectron. 26(11): 4526-4531.
Call, D.F. and B.E. Logan. 2011. Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens. Appl. Environ. Microbiol. 77(24): 8791–8794.
Cheng, S., J.-H. Jang, B.A. Dempsey, and B.E. Logan. 2011. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Wat. Res. 45(1):303-307.
Cheng, S., P. Kiely, and B.E. Logan. 2011. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MFC improves power generation in air-cathode MFCs. Biores. Technol.102(1):367-371.
Cheng, S. and B.E. Logan. 2011. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Biores. Technol. 102(4): 3571–3574.
Cheng, S., and B.E. Logan. 2011. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Biores. Technol. 102(6): 4468-4473.
Cheng, S., D. Xing, and B.E. Logan. 2011. Electricity generation of single-chamber microbial fuel cells at low temperature. Biosen. Bioelectron. 26(5): 1913–1917.
Cusick, R.D., B. Bryan, D.S. Parker, M. Merrill, M. Mehanna, P.D. Kiely, G. Liu, and B.E. Logan. 2011. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Applied Microbiol. Biotechnol. 89(6): 2053–2063. [supporting information]
Hays, S., F. Zhang, and B.E. Logan. 2011. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J. Power Sources. 196(20): 8293– 8300.
Hong, Y., D.F. Call, C.M. Werner, and B.E. Logan. 2011. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosen. Bioelectron. 28(1):71-76. [supporting information]
Huang, L., L. Gan, Q. Zhao, B.E. Logan, H. Lu, and G. Chen. 2011. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Biores. Technol. 102(19):8762-8768.
Huang, L., X, Chai, G. Chen, and B.E. Logan. 2011. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ. Sci. Technol. 45(11): 5025–5031.
Hutchinson, A., J. Tokash, and B.E. Logan. 2011. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J. Power Sources. 196(22):9213– 9219.
Kiely, P.D., G.K. Rader, J.M. Regan, and B.E. Logan. 2011. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Biores. Technol.102(1):361-366.
Kiely, P.D., R. Cusick, D.F. Call, P.A. Selembo, J.M. Regan, and B.E. Logan. 2011. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Biores. Technol. 102(1):388-394.
Kiely, P.D., J.M. Regan and B.E. Logan. 2011. The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Current Op. Biotechnol. 22(3):378-385
Kim, Y., M.C. Hatzell, A.J. Hutchinson, and B.E. Logan. 2011. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy Env. Sci. 4(11):4662-4667.
Kim, Y. and B.E. Logan. 2011. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proc. Nat. Acad. Sci. 108(39):16176-16181.
Kim, Y. and B.E. Logan. 2011. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environ. Sci. Technol. 45(13):5834–5839.
Kim, Y. and B.E. Logan. 2011. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ. Sci. Technol. 45(13):5840–5845.
La Mantia, F., M. Pasta, H.D. Deshazer, B.E. Logan, and Y. Cui. 2011. Batteries for efficient energy extraction from a salinity difference. Nanoletters, 11(4):1810–1813.
Liu, G., M.D. Yates, S. Cheng, D.F. Call, D Sun, and B.E. Logan. 2011.Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Biores. Technol. 103(15)7301-7306. [supporting information]
Luo, Y., F. Zhang, B. Wei, G. Liu, R. Zhang, and B.E. Logan. 2011. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. J. Power Sources. 196(22):9317– 9321.
Nam, J.Y., and B.E. Logan. 2011. Enhanced hydrogen generation using a highly saline catholyte in a two chamber microbial electrolysis cell. Int. J. Hydrogen Energy. 36(23): 15105-15110.
Nam, J.-Y. J.C. Tokash, and B.E. Logan. 2011. Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int. J. Hydrogen Energy. 36(17):10550-10556.
Saito, T., M. Mehanna, X. Wang, R. Cusick, Y. Feng, M.A. Hickner, and B.E. Logan. 2011. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Biores. Technol. 102(1):395-398. [supporting information]
Saito, T., T.H. Roberts, T.E. Long, B.E. Logan, and M.A. Hickner. 2011. Neutral hydrophilic cathode catalyst binders for microbial fuel cells. Energy Env. Sci. 4(3):928-934.
Tokash, J.C. and B.E. Logan. 2010. Electrochemical evaluation of a molybdenum disulfide catalyst for the hydrogen evolution reaction under solution conditions applicable to microbial electrolysis cells. Int. J. Hydrogen Energy. 36(16): 9439-9445.
Wang, X., S. Cheng, X. Zhang, X.-Y. Li, and B.E. Logan. 2011. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs). Int. J. Hydrogen Energy. 36(21):13900-13906.
Wang, A., D. Sun, G. Cao, N. Ren, W. Wu, and B.E. Logan. 2011. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Biores. Technol. 102(5): 4137-4143.
Watson, V.J. and B.E. Logan. 2011. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochem. Commun. 13(1):54-56.
Watson, V.J., T. Saito, M.A. Hickner, and B.E. Logan. 2011. Polymer coatings as separator layers for microbial fuel cell cathodes. J. Power Sources. 196(6):3015-3025.
Zhang, F., M.D. Merrill, J.C. Tokash, T. Saito, S. Cheng, M.A. Hickner, and B.E. Logan. 2011. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors”. J. Power Sources. 196(3):1097–1102. [Supporting Information]
Zhang, F., D. Pant, and B.E. Logan. 2011. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosen. Bioelec. 30(1):49-55. [Supporting Information]
Zhang, X, S. Cheng, P. Liang, X. Huang, and B.E. Logan. 2011. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Biores. Technol. 102(1):372-375. [supporting information]
Zhang, X., P. Liang, X. Huang, H. Sun, X. Chen, and B.E. Logan. 2011. Air-cathode structure optimization in separator-coupled microbial fuel cells. Biosen. Bioelectron. 30(1):267-271.
Zuo, Y. and B.E. Logan. 2011. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors. Wat. Sci. Technol. 64(11):2253-2258.
2010
Logan, B.E. 2010. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85(6):1665-1671.
Cusick, R.D., P.D. Kiely, and B.E. Logan. 2010. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int. J. Hydrogen Energy. 35(17):8855-8861
Deng, Q., X. Li, J.E. Zuo, B.E. Logan, and A. Ling. 2010. Power generation using an activated carbon fiber felt (ACFF) cathode in an upflow microbial fuel cell. J. Power Sources. 195(4): 1130-1135.
Feng, Y., Yang, Q., Wang, X, and B.E. Logan. 2010. Treatment of graphite fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources. 195(7):1841–1844.
Feng, Y., Y.-H. Cui, J. Liu, and B.E. Logan. 2010. Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode. J. Haz. Mat. 178(1-3):29-34.
Kiely, P.D., D.F. Call, M.D. Yates, J.R. Regan, and B.E. Logan. 2010. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power producing bacteria than abundant genera. Appl. Microbiol. Biotechnol. 88(1):371–380.
Liu, W., A. Wang, S. Cheng, B.E. Logan, H. Yu, Y. Deng, J.D. Van Nostrand, L. Wu, Z. He, and J. Zhou. 2010. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational models. Environ. Sci. Technol. 44(19):7729-7735.
Lu, L., N. Ren, T. Xie, D. Xing, and B.E. Logan. 2010. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosen. Bioelectron. 25(12):2690-2695.
Mehanna, M., P.D. Kiely, D.F. Call, and B.E. Logan. 2010. A microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ. Sci. Technol. 44(24):9578–9583.
Mehanna, M., T. Saito, Y. Jingling, M.A. Hickner, X. Cao, X. Huang, B.E. Logan. 2010. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci. 3(8):1114 – 1120.
Nam, J-Y, H-W Kim, K-H Lim, H-S Shin, and B.E. Logan. 2010. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosen. Bioelec. 25(5): 1155–1159.
Rader, G.K. and B.E. Logan. 2010. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int. J. Hydrogen Energy. 35(17): 8848-8854.
Rezaei, F., T.L. Richard, and B.E. Logan. 2010. Letter to the Editor: Comment on “Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell” by Samrot et al. Int. J. Hydrogen Energy. 35(19):10635. [Reply by authors]
Saito, T., M.D. Merrill, V.J. Watson, B.E. Logan, and M. A. Hickner. 2010.Investigation of ionic polymer cathode binders for microbial fuel cells. Electrochim. Acta. 55(9):3398-3403.
Selembo, P.A., M.D. Merrill, and B.E. Logan. 2010. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy. 35(2):428-437.
Wagner, R.C., D.F. Call, and B.E. Logan. 2010. Optimal set anode potentials vary in bioelectrochemical systems. Environ. Sci. Technol. 44(16): 6036–6041.
Wang, A., D. Sun, N. Ren, C. Liu, W. Liu, B.E. Logan, and W Wu. 2010. A rapid selection strategy for anodophilic functional consortia in microbial fuel cells and microbial electrolysis cells. Biores. Technol. 101(14):5733-5735.
Watson, V.J., and B.E. Logan. 2010. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol. Bioengin. 105(3):489-498.
Xing, D., S. Cheng, J.M. Regan, and B.E. Logan. 2010. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution-to-extinction of the microbial community. Appl. Microbiol. Biotechnol. 85(5)1575-1587.
Zhang, F. T. Saito, S. Cheng, M.A. Hickner, and B.E. Logan. 2010. Microbial fuel cells cathodes constructed from stainless steel mesh that use poly(dimethylsiloxane) diffusion layers. Environ. Sci. Technol. 44(4):1490-1495.
Zhang, X., S. Cheng, X. Huang and B.E. Logan. 2010. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosen. Bioelectron. 25(7):1553-1858.
Zhang, X., S. Cheng, X. Huang, and B.E. Logan. 2010. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ. Sci. 3(5):659-664.
Zhang, Y., M.D. Merrill, and B.E. Logan. 2010. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. Int. J. Hydrogen Energy. 35(21):12020-12028. [Supporting information]
2009
Logan, B.E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol., 7(5):375-381.
Ahn, Y. and B.E. Logan. 2009. Domestic wastewater treatment using microbial fuel cells and electrical energy production. Biores. Technol. 101(2):469-475.
Call, D.F., R. Wagner, and B.E. Logan. 2009. Hydrogen production by Geobacterspecies and a mixed consortium in a microbial electrolysis cell. Appl. Environ. Microbiol. 75(24):7579-7587.
Call, D., M. Merrill, and B.E. Logan. 2009. High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells (MECs). Environ. Sci. Technol. 43(6):2179-2183.
Cao, X., X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, and B.E. Logan. 2009. A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43(18):7148–7152. [ES&T newstory]
Cheng, S., D. Xing, D. Call, and B.E. Logan. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43(10):3953-3958. [ES&T news]
Selembo, P.A., M.D. Merrill, and B.E. Logan. 2009. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources. 190(2):271–278.
Merrill, M.D., and B.E. Logan. 2009. Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. J. Power Sources. 191(2):203-208.
Yu, E.H., S. Cheng, K. Scott, R. Chetty, B.E. Logan. 2009. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. J. Appl. Electrochem. 39(6):705–711.
Huang, L., S. Cheng, F. Rezaei, and B.E. Logan. 2009. Reducing organic loads in industrial effluents using microbial fuel cells. Environ. Technol. 30(5):499-504.
Lu, L., N. Ren, D. Xing, and B.E. Logan. 2009. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosen. Bioelec. 24(10):3055-3060.
Wang, A., W. Liu, S. Cheng, D. Xing, J. Zhou, and B.E. Logan. 2009. Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int. J. Hydrogen Energy. 34(9):3653-3658.
Rezaei, F., D. Xing, R. Wagner, J.M. Regan, T.L. Richard, and B.E. Logan. 2009. Simultaneous cellulose degradation and electricity production by Enterobactercloacae in an MFC. Appl. Environ. Microbiol. 75(11):3673-3678.
Rezaei, F., T.L. Richard, and B.E. Logan. 2009. Analysis of chitin particle size on maximum power generation, power longevity, and coulombic efficiency in solid-substrate microbial fuel cells. J. Power Sources. 192(2):304-309.
Cheng, S. and B.E. Logan. 2009. Erratum for “Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Water Sci. Technol. 2008, 58(4):853-857″, Water Sci. Technol. 59(10):2081.
Selembo, P.A., J.M. Perez, W.A. Lloyd, and B.E. Logan. 2009. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrogen Energy. 34(13):5373-5381.
Lalaurette, E., S. Thammannagowda, A. Mohagheghi, P.-C. Maness, and B.E. Logan. 2009. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy. 34(15):6201-6210.
Oh, S-E., J.-R. Kim, J.-H. Joo, and B.E. Logan. 2009. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci. Technol. 60(5):1311-1317.
Oh, S.-E., Y. Zuo, M.J. Guiltinen, B.E. Logan, and J.M. Regan. 2009. Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. Int. J. Hydrogen Energy. 34(23): 9347-9353.
Velásquez-Orta, S.B., T.P. Curtis, and B.E. Logan. 2009. Energy from algae using microbial fuel cells. Biotechnol. Bioengin. 103(6):1068-1076.
Wang, X., Y. Feng, H. Wang, Y. Qu, Y. Yu, N. Ren, N. Li, E. Wang, H. Lee, and B.E. Logan. 2009 Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ. Sci. Technol. 43(15)6088-6093.
Wang, X., S. Cheng, Y. Feng, M.D. Merrill, T. Saito, and B.E. Logan. 2009. The use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 43(17):6870-6874.
Wagner, R.C., J.M. Regan, S.-E. Oh, Y. Zuo, and B.E. Logan. 2009. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Wat. Res. 43(4):1480-1488.
Xing, D., S. Cheng, J.M. Regan and B.E. Logan. 2009. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelec. 25(1):105-111.
Zhang, F., S. Cheng , D. Pant, G. Van Bogaert, and B.E. Logan. 2009. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 11(11):2177-2179.
Zhang, X., S. Chen, X. Wang, X. Huang, and B.E. Logan. 2009. Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol. 43(21):8456-8461.
Selembo, P.A., J.M. Perez, W.A. Lloyd, and B.E. Logan. 2009. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol. Bioeng. 104(6):1098-1106.
2008
Logan, B.E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol., 7(5):375-381.
Ahn, Y. and B.E. Logan. 2009. Domestic wastewater treatment using microbial fuel cells and electrical energy production. Biores. Technol. 101(2):469-475.
Call, D.F., R. Wagner, and B.E. Logan. 2009. Hydrogen production by Geobacterspecies and a mixed consortium in a microbial electrolysis cell. Appl. Environ. Microbiol. 75(24):7579-7587.
Call, D., M. Merrill, and B.E. Logan. 2009. High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells (MECs). Environ. Sci. Technol. 43(6):2179-2183.
Cao, X., X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, and B.E. Logan. 2009. A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43(18):7148–7152. [ES&T newstory]
Cheng, S., D. Xing, D. Call, and B.E. Logan. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43(10):3953-3958. [ES&T news]
Selembo, P.A., M.D. Merrill, and B.E. Logan. 2009. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources. 190(2):271–278.
Merrill, M.D., and B.E. Logan. 2009. Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. J. Power Sources. 191(2):203-208.
Yu, E.H., S. Cheng, K. Scott, R. Chetty, B.E. Logan. 2009. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. J. Appl. Electrochem. 39(6):705–711.
Huang, L., S. Cheng, F. Rezaei, and B.E. Logan. 2009. Reducing organic loads in industrial effluents using microbial fuel cells. Environ. Technol. 30(5):499-504.
Lu, L., N. Ren, D. Xing, and B.E. Logan. 2009. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosen. Bioelec. 24(10):3055-3060.
Wang, A., W. Liu, S. Cheng, D. Xing, J. Zhou, and B.E. Logan. 2009. Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int. J. Hydrogen Energy. 34(9):3653-3658.
Rezaei, F., D. Xing, R. Wagner, J.M. Regan, T.L. Richard, and B.E. Logan. 2009. Simultaneous cellulose degradation and electricity production by Enterobactercloacae in an MFC. Appl. Environ. Microbiol. 75(11):3673-3678.
Rezaei, F., T.L. Richard, and B.E. Logan. 2009. Analysis of chitin particle size on maximum power generation, power longevity, and coulombic efficiency in solid-substrate microbial fuel cells. J. Power Sources. 192(2):304-309.
Cheng, S. and B.E. Logan. 2009. Erratum for “Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Water Sci. Technol. 2008, 58(4):853-857″, Water Sci. Technol. 59(10):2081.
Selembo, P.A., J.M. Perez, W.A. Lloyd, and B.E. Logan. 2009. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrogen Energy. 34(13):5373-5381.
Lalaurette, E., S. Thammannagowda, A. Mohagheghi, P.-C. Maness, and B.E. Logan. 2009. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy. 34(15):6201-6210.
Oh, S-E., J.-R. Kim, J.-H. Joo, and B.E. Logan. 2009. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci. Technol. 60(5):1311-1317.
Oh, S.-E., Y. Zuo, M.J. Guiltinen, B.E. Logan, and J.M. Regan. 2009. Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. Int. J. Hydrogen Energy. 34(23): 9347-9353.
Velásquez-Orta, S.B., T.P. Curtis, and B.E. Logan. 2009. Energy from algae using microbial fuel cells. Biotechnol. Bioengin. 103(6):1068-1076.
Wang, X., Y. Feng, H. Wang, Y. Qu, Y. Yu, N. Ren, N. Li, E. Wang, H. Lee, and B.E. Logan. 2009 Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ. Sci. Technol. 43(15)6088-6093.
Wang, X., S. Cheng, Y. Feng, M.D. Merrill, T. Saito, and B.E. Logan. 2009. The use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 43(17):6870-6874.
Wagner, R.C., J.M. Regan, S.-E. Oh, Y. Zuo, and B.E. Logan. 2009. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Wat. Res. 43(4):1480-1488.
Xing, D., S. Cheng, J.M. Regan and B.E. Logan. 2009. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelec. 25(1):105-111.
Zhang, F., S. Cheng , D. Pant, G. Van Bogaert, and B.E. Logan. 2009. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 11(11):2177-2179.
Zhang, X., S. Chen, X. Wang, X. Huang, and B.E. Logan. 2009. Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol. 43(21):8456-8461.
Selembo, P.A., J.M. Perez, W.A. Lloyd, and B.E. Logan. 2009. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol. Bioeng. 104(6):1098-1106.
2007
Logan, B.E., S. Cheng, V. Watson, and G. Estadt. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol., 41(9):3341-3346.
Cheng, S. and B.E. Logan. 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Elec. Comm. 9, 492-496. [A “most cited” article in this journal, 2005-2009; 11-19-10]
Cheng, S., and B.E. Logan. 2007. Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS, 104(47): 18871–18873. [#12 most accessed paper in PNAS, Nov. 2007]
Cheng, S., B.A. Dempsey, and Bruce E. Logan. 2007. Electricity beneration from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ. Sci. Technol. 41(23):8149-8153.
Ditzig, J., H. Liu and B.E. Logan. 2007. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Internat. J. Hydrogen Energy. 32(13), 2296-2304.
Kim, J. R., S.-E. Oh, S. Cheng, and B.E. Logan. 2007. Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41(3):1004-1009.
Kim, J.R., S.H. Jung, B.E. Logan, and J. Regan. 2007. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technol. 98(13): 2568-2577.
Oh, S.-E., and B.E. Logan. 2007. Voltage reversal during microbial fuel cell stack operation. J. Power Sources 167(1):11-17.
Rezaei, F., T.L. Richard, R. Brennan, and B.E. Logan. 2007. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ. Sci. Technol. 41(11):4053-4058.
Ren, Z., T. Ward, B.E. Logan, and J.M. Regan. 2007. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J. Applied Microbiol. 103(6): 2258–2266.
Salerno, M.B., X. Li and B.E. Logan. 2007. Adhesion characteristics of two Burkholderia cepacia strains examined using colloid probe microscopy and gradient force analysis. Colloids Surf. B. 59(1):46-51.
Yu, E.H., S. Cheng, K. Scott, and B.E. Logan. 2007. Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sources, 171(2)275-281.
Zuo, Y., S. Cheng, D. Call and B.E. Logan. 2007. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ. Sci. Technol. 41(9):3347-3353.
2006
Logan, B.E. 2006. Invited editorial: Energy diversity brings stability. Environ. Sci. Technol 40(17):5161.
Logan, B.E. and J.M. Regan. 2006. Feature article: Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 40(17):5172-5180.
Logan, B.E. and J.M. Regan. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14(12):512-5118.
Logan, B.E., P. Aelterman, B. Hamelers, R. Rozendal, U. Schröeder, J. Keller, S. Freguiac, W. Verstraete, K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40(17):5181-5192. [#6 accessed paper for ES&T for 2006; #1 for for July – September 2006“Hot paper” in Chemistry, defined as one of 200 papers receiving the most citations in a 2 month period; 11-07; and 2-08]
Cheng, S., H. Liu and B.E. Logan. 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40(1):364-369. [“Hot paper” in Chemistry, defined as one of 200 papers receiving the most citations in a 2 month period; 2-22-07]
Cheng, S, H. Liu and B.E. Logan. 2006. Increased power generation in acContinuous fow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40(7):2426-2432.
Cheng, S., H. Liu and B.E. Logan. 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Comm. 8:489-494. (Among the 25 most cited articles in this journal between 2005-2009)
Gorby, Y. A., S. Yanina, J.S. McLean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge, I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill, L. Shi, D.A Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B.E. Logan, K.H. Nealson, J.K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103(30):11358-11363. [Errata; 2009, 106(23):9395]
Heilmann, J. and B.E. Logan. 2006. Production of electricity from proteins using a microbial fuel cell. Water Environ. Res. 78(5):1716-1721.
Kwon, K.D., V. Vadillo-Rodriguez, B.E. Logan, and J.D. Kubicki. 2006. Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies. Geochim. et Cosmochim. 70:3803-3819.
Oh, S. and B.E. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 70(2):162-169.
Paramonova, E., E.L. Zerfoss, and B.E. Logan. 2006. Measurement of biocolloid collision efficiencies for granular activated carbon by use of a two-layer filtration model. Appl. Environ. Microbiol. 72(8):5190-5196.
Salerno, M.B., W. Park, Y. Zuo, and B.E. Logan. 2006. Inhibition of biohydrogen production by ammonia Wat. Res. 40(6):1167-1172.
Salerno, M.B., M. Flamm, B.E. Logan, D. Velegol. 2006. Transport of rodlike colloids through packed beds. Environ. Sci. Technol. 40(20):6336-6340
Vadillo-Rodriguez, V. and B.E. Logan. 2006. Localized attraction correlates with bacterial adhesion to glass and metal oxide substrata. Environ. Sci. Technol., 40(9):2983-2988.
Xu, L.-C., and B.E. Logan. 2006. Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy. Coll. Surf. B Biointerf. 48(1):84-94.
Xu, L.-C., and B.E. Logan. 2006. Interaction forces measured using AFM between colloids and surfaces coated with both dextran and protein. Langmuir, 22(10):4720-4727.
Zhang, H., M.A. Bruns, and B.E. Logan. 2006. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Wat. Res. 40(4):728-734.
Zuo, Y., P.-C. Maness, and B.E. Logan. 2006. Electricity production from steam-exploded corn stover biomass. Energy & Fuels 20(4):1716-1721.
2005
Logan, B.E. 2005. Editorial- Generating electricity from wastewater treatment. Wat. Environ. Res. 77(3):209.
Logan, B.E. 2005. Simultaneous wastewater treatment and biological electricity generation. Wat. Sci. Technol. 52(1-2):31-37.
Logan, B.E., C. Murano, K. Scott, N.D. Gray and I.M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Wat Res., 39(5):942-952.
Li, B. and B.E. Logan. 2005. The impact of ultraviolet light on bacterial adhesion to glass and metal oxide–coated surface. Coll. Surf. B: Biointerf. 41:153-161.
Liu, H., S. Cheng, and B.E. Logan. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39(14):5488-5493.
Liu, H., S. Cheng, and B.E. Logan. 2005. Production of electricity from acetate or butyrate using a single chamber microbial fuel cell. Environ. Sci. Technol., 39(2):658-662.
Liu, H., S. Grot and B.E. Logan. 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol., 39(11):4317-4320. {See also: ES&T news story p. 235A} [#10 most accessed paper for ES&T for 2005; #13 in 2006]
Kim, J.-R., B. Min and B.E. Logan. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68(1):23-30.
Min, B., S. Cheng, and B.E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Wat. Res. 39(5):942-952.
Min, B., J.-R. Kim, S.-E. Oh, J.M. Regan, and B.E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Wat. Res., 39(20):4961-4968.
Oh, S.-E. and B.E. Logan. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Wat. Res. 39(19):4673-4682.
Park, W, S.H. Hyun, B.E. Logan, and I.S. Kim. 2005. Removal of headspace CO2 increases biological hydrogen production. Environ. Sci. Technol., 39(12):4416-4420.
Salerno, M.B, Rothsteina, S., Nwachukwua, C., Shelbia, H., Velegol. D. and B.E. Logan. 2005. Differences between chemisorbed and physisorbed biomolecules on particle deposition to hydrophobic surfaces. Environ. Sci. Technol.39(17):6371-6377
Steinberg, L., J. Trimble, and B.E. Logan. 2005. Enzymes responsible for chlorate reduction by Pseudomonas sp. are different from those used for perchlorate reduction by Azospira sp. FEMS Microb. Lett. 247:153-159.
Van Ginkel, S.W. and B.E. Logan. 2005. Increased biological hydrogen production with reduced organic loading. Wat. Res. 39(16):3819-3826.
Van Ginkel, S.W. and B.E. Logan. 2005. Inhibition of biohydrogen production by undissociated acetic and butyric Acids. Environ. Sci. Technol. 39(23):9351-9356.
Van Ginkel, S.W., S.-E. Oh, and B.E. Logan. 2005. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy. 39(16):3819-3826.
Xu, L.-C., and B.E. Logan. 2005. Interaction forces between colloids and protein-coated surfaces measured using an atomic force microscope. Environ. Sci. Technol. 39(10):3592-3600.
Xu, L.-C., V. Vadillo-Rodriguez, and B.E. Logan. 2005. Residence time, loading force, pH and ionic strength affect adhesion forces between colloids and biopolymer-coated surfaces. Langmuir, 21(16):7491-7500.
Zhang, H, B.E. Logan, J.M. Regan, L.A. Achenbach, and M.A. Bruns. 2005. Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot-scale perchlorate-reducing bioreactor. Microb. Ecol. 49(3):388-398.
2004
Logan, B.E. 2004. Extracting hydrogen and energy from renewable resources (Feature article). Environ. Sci. Technol., 38(9):160A-167A.
Iyer, P., M.A. Bruns, H. Zhang, S. Van Ginkel, and B.E. Logan. 2004. H2-Producing bacterial communities from a heat-treated soil inoculum. Appl. Microbiol. Biotechnol. 66:166-173.
Li, B. and B.E. Logan. 2004. Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf. B Biointerf. 36:81-90.
Li, X. and B.E. Logan. 2004. Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy. Langmuir, 20(20):8817-8822
Liu, H. and B.E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38(14):4040-4046.
Liu, H., R. Ramnarayanan and B.E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285.
Min, B. and B.E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38(21), 5809-5814.
Min, B., P.J. Evans, A. Chu, and B.E. Logan. 2004. Perchlorate removal in sand and plastic media bioreactors. Wat. Res., 38(1):47-60.
Min, B., D. Kohler, and B.E. Logan. 2004. A simplified headspace biochemical oxygen demand test protocol based on oxygen measurements using a fiber optic probe. Water Environ. Res., 76(1):39-47.
Oh, S.-E., P. Iyer, M.A. Bruns, and B.E. Logan. 2004. Biological hydrogen production using a membrane bioreactor. Biotechnol. Bioengin. 87(1)119-127.
Oh, S.-E., B. Min, and B.E. Logan. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38(18):4900-4904.
Salerno, M.B., B.E. Logan, and D. Velegol. 2004. Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces. Langmuir, 20:10625-10629.
Song, Y. and B.E. Logan. 2004. Inhibition of aerobic respiration and dissimilatory perchlorate reduction using cyanide. FEMS Microbiol. Lett. 239:229-234.
Song, Y. and B.E. Logan. 2004. Effect of O2 exposure on perchlorate reduction by Dechlorosoma sp. KJ. Wat. Res., 38(6):1626-1632.
Velegol. S.B. and B.E. Logan. 2004. Correction to: “Contributions of bacterial surface polymers, electrostatics and cell elasticity to the shape of AFM force curves”. Langmuir, 20:3820.
Xu, J., Trimble, J.J., Steinberg, L. and Logan, B.E. 2004. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Wat Res., 38(3):673-680.
Zhang, J.J., X.-Y. Li, and B.E. Logan. 2004. Physical and hydrodynamic properties of flocs produced during biological hydrogen production. Biotechnol. Bioengin. 88(7):854-860.
2003
Burks, G.A. S.B. Velegol, E. Paramanova, B.E. Lindenmuth, J.D. Feick, and B.E. Logan. 2003. Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition. Langmuir, 19(6):2366-2371.
Oh, S.-E., S. Van Ginkel, and B.E. Logan. 2003. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol., 37(22):5186-5190.
Velegol, S.B., S. Pardi, X. Li, D. Velegol, and B.E. Logan. 2003. AFM imaging artifacts due to bacterial cell height and AFM tip geometry. Langmuir. 19, 851-857.
Xu, J., Y. Song, B. Min, L. Steinberg, and B.E. Logan. 2003. Microbial degradation of perchlorate: Principles and applications. Environ. Engin. Sci, 20(5): 405-422.
Xu, J. and B.E. Logan. 2003. Measurement of chlorite dismutase activities in perchlorate respiring bacteria. J. Micro. Methods 54:239-247.
2002
Logan, B.E. and D. LaPoint. 2002. Treatment of perchlorate- and nitrate-contaminated groundwater in an autotrophic, gas phase, packed–bed bioreactor. Wat. Res. 36(14):3647-3653.
Logan, B.E., S.-E. Oh, I.S. Kim, and S. Van Ginkel. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36(11):2530-2535.
Logan, B.E. and J. Wu. 2002. Enhanced toluene degradation under chlorate-reducing conditions by Bioaugmentation of Sand Columns with Chlorate- and Toluene-Degrading Enrichments. Bioremed. J., 6(2):87-95.
Li, X-Y. and B.E. Logan. 2002. Reply to the comment by L. Gmachowski on “Permeability of fractal aggregates”. Wat. Res. 36(13):3415-3416.
Shellenberger, K. and B.E. Logan 2002. Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ. Sci. Technol. 36(2):184-189.
Velegol. S.B. and B.E. Logan. 2002. Contributions of Bacterial Surface Polymers, Electrostatics and Cell Elasticity to the Shape of AFM Force Curves. Langmuir, 18:3454-3458.
Zhang H., M.A. Bruns, and B.E. Logan. 2002. Perchlorate reduction by a novel chemolithoautotrophic hydrogen-oxidizing bacterium. Environ. Microbiol., 4(10):570-576.
2001
Logan, B.E. 2001. Assessing the outlook for perchlorate remediation. Environ. Sci. Technol. 35(23): 482A-487A. [Color, 13 mB]
Logan, B.E. 2001. Analysis of overall perchlorate removal rates in packed-bed bioreactors. J. Environ. Engng. 127(5):469-471.
Logan, B.E. 2001. Discussion of “Oxygen mass-transfer coefficients for different sample containers used in the headspace biochemical oxygen demand test.” Water Environ. Res. 73(4):508.
Logan, B.E. and D. Kohler. 2001. Oxygen mass transfer coefficients for different sample containers used in the headspace biochemical oxygen demand test. Water Environ. Res. 73(1):58-62.
Logan, B.E., J. Wu and R.F. Unz. 2001. Biological perchlorate reduction in high-salinity solutions. Wat. Res. 35(12):3034-3038.
Logan, B.E., H. Zhang, P. Mulvaney, M.G. Milner, I.M. Head, and R.F. Unz. 2001.Kinetics of perchlorate- and chlorate- respiring bacteria. Appl. Environ. Microbiol. 67(6): 2499-2506.
Li, X-Y. and B.E. Logan. 2001. Permeability of fractal aggregates. Wat. Res. 35(14):3373-3380.
Kim, K. and B.E. Logan. 2001. Microbial reduction of perchlorate in pure and mixed culture packed-bed bioreactors. Wat. Res. 35(13): 3071-3076.
Wu, J., R. Unz, H. Zhang and B.E. Logan. 2001. Persistence of perchlorate and the relative numbers of perchlorate- and chlorate-respiring microorganisms in natural waters, soils and wastewater. Bioremed. J. 5(2):119-130.
2000
Logan, B.E. and G. Wagenseller. 2000. Molecular size distributions of dissolved organic matter in wastewater transformed by treatment in a full-scale trickling filter. Water Environ. Res. 72(3):277-281.
Camesano, T.A. and B.E. Logan. 2000. Probing bacterial electrosteric interactions using atomic force microscopy. Environ. Sci. Technol. 34(16):3354-3362.
Camesano, T.A. M.J. Natan, and B.E. Logan. 2000. Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. Langmuir 16(10):4563-4572.
Kim, K. and B.E. Logan. 2000. Fixed-bed bioreactor treating perchlorate-contaminated waters. Environ. Engin. & Sci. 17(5):257-265.
Miller, J.P. and B.E. Logan. 2000. Sustained perchlorate degradation in an autotrophic, gas-phase, packed-bed bioreactor. Environ. Sci. Technol. 34(14):3018-3022.
Rogers, B. and B.E. Logan. 2000. Bacterial transport in NAPL-contaminated porous media. J. Environ. Engrg. 126(7): 657-666.
Unice, K.M., and B.E. Logan. 2000. Insignificant role of hydrodynamic dispersion on bacterial transport. J. Environ. Engin. 126(6): 491-500.
1999
Logan, B.E., T.A. Camesano, A.A. DeSantis, K.M. Unice, and J.C. Baygents. 1999. Comment on “A method for calculating bacterial deposition coefficients using the fraction of bacteria recovered from laboratory columns” by Bolster et al. Environ. Sci. Technol. 33(8):1316-1317.
Camesano, T.A., K.M. Unice and B.E. Logan. 1999. Blocking and ripening of colloids in porous media and their implications for bacterial transport. Colloids Surf. A. Physicochem. Engin. Aspects. 160(3):291-307.
Fang, Y. and B.E. Logan. 1999. Bacterial transport in gas-sparged porous medium. J. Environ. Engng. 125(7):668-673.
Jewett, D.G., B.E. Logan, R.G. Arnold, and R.C. Bales. 1999. Transport of Pseudomonas fluorescens strain P17 through quartz sand columns as a function of water content. J. Contam. Hydrol.36(1-2):73-89.
Li, Q. and B.E. Logan. 1999. Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Wat. Res., 33(4):1090-1100.
Serra, T. and B.E. Logan. 1999. Collision frequencies of fractal bacterial aggregates with small particles in a sheared fluid. Environ. Sci. Technol. 33(13):2247-2251.
1998
Logan, B.E. 1998. A review of chlorate- and perchlorate-respiring microorganisms. Bioremediation J. 2(2):69-79.
Logan, B.E., A.R. Bliven, S.R. Olsen, and R. Patnaik. 1998. Growth kinetics of mixed cultures under chlorate-reducing conditions. J. Env. Engrg., 124(10):1008-1011.
Logan, B.E., and B.E. Rittmann. 1998. Finding solutions for tough environmental problems. Environ. Sci. Technol., 32(21):502A-505A.
Camesano, T.A. and B.E. Logan. 1998. Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media. Environ. Sci. Technol., 32(11):1699-1708.
Confer, D.R. and B.E. Logan. 1998. A conceptual model describing macromolecule degradation by suspended cultures and biofilms. Water Sci. Technol. 37 (4-5):231-234.
Confer, D.R., and B.E. Logan. 1998. Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures. Wat. Res., 32(1):31-38.
Grossart, H.-P., M. Simon, and B.E. Logan. 1998. Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, plankton and zooplankton. Limnol. Oceanogr. 42(8):1651-1672.
Li, X. U. Passow, and B.E. Logan. 1998. Fractal dimensions of small (15 to 200 µm) particles in Eastern Pacific coastal waters. Deep-Sea Res. I, 45(1):115-131.
1997
Logan, B.E. 1997. Reply to comment by Iranpour and Shao on “A gas chromatographic based headspace biochemical oxygen demand test.” Water Env. Res., 69(6):1179-1180.
Logan, B.E., D.G. Jewett, R.G. Arnold, E. Bouwer and C.R. O’Melia. 1997. Reply to Comment by S. Qi on “Clarification of clean-bed filtration models.” J. Environ. Eng., 123(7):730-731.
Logan, B.E. and R. Patnaik. 1997. A gas chromatographic-based headspace biochemical oxygen demand test. Water Env. Res., 69(2):206-214.
Confer, D.R. and B.E. Logan. 1997. Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I: Bovine serum albumin. Wat. Res., 31(9):2127-2136.
Confer, D.R. and B.E. Logan. 1997. Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures II: Dextran and dextrin. Wat. Res., 31(9):2127-2145.
Jackson, G.A., R. Maffione, D.K. Costello, A.L. Alldredge, B.E. Logan, and H.G. Dam. 1997. Particle size spectra between 1 µm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res.I, 44(11):1739-1767.
Li, X. and B.E. Logan. 1997. Collision frequencies of fractal aggregates with small particles by differential sedimentation. Environ. Sci. Technol., 31(4):1229-1236.
Li, X. and B.E. Logan. 1997. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid. Environ. Sci. Technol., 31(4):1237-1242.
1996
Logan, B.E. 1996. Discussion of “Oxygen utilization of trickling filter biofilms” by Hinton and Stensel. J. Environ. Engng., 122(4):333-336.
Aiken, B.S. and B.E. Logan. 1996. Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media. Biodegradation, 7(3):175-182.
Jiang, Q. and B.E. Logan. 1996. Fractal dimensions of aggregates from shear devices. J. AWWA. 88(2):100-113.
Johnson, C.P., X. Li and B.E. Logan. 1996. Settling velocities of fractal aggregates. Environ. Sci. Technol., 30(6):1911-1919.
Johnson, W.P. and B.E. Logan. 1996. Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Wat. Res., 30(4):923-931.
Logan, B.E. 1996. Guest Editorial: “Environmental engineering education.” J. Environ. Engng., 122(3).
Johnson, W.P., M.J. Martin, M.J. Gross, and B.E. Logan. 1996. Facilitation of bacterial transport through porous media by changes in solution and surface properties. Colloids Surf. A 107:263-271.
Martin, M.J., B.E. Logan, W.P. Johnson, D.J. Jewett, and R.G. Arnold. 1996. Scaling bacterial filtration rates in different sized porous media. J. Environ. Engng., 122(5):407-415.
1995
Logan, B.E. 1995. Comment on “Investigation of a sequential filtration technique for particle fractionation” by Droppo et al, Environ. Sci. Technol., 29(8):2166-2167.
Logan, B.E. 1995. Reply to the Discussion of A.B. Gupta and A.S. Agnihotri on “The HBOD test: a new method for determining biochemical oxygen demand.”Water Environ. Res., 67(3):377-379.
Logan, B.E. 1995. Reply to Discussion of S.W. Hinton and H.D. Stensel on “Oxygen transfer in trickling filters”. J. Environ. Engin., 121(5):423-426.
Logan, B.E. 1995. Review of “Chemical fate and transport in the environment” by H.F. Hemond and E.J. Hester. Limnol. Oceanogr., 40(8):1534-1535.
Logan, B.E., D.G. Jewett, R.G. Arnold, E. Bouwer and C.R. O’Melia. 1995.Clarification of clean-bed filtration models. J. Environ. Eng. 121(12): 869-873.
Logan, B.E. and J.R. Kilps. 1995. Fractal dimensions of aggregates formed in different fluid mechanical environments. Water Res. 29(2):443-453.
Logan, B.E., U. Passow, A.L. Alldredge, H.-P. Grossart, and M. Simon. 1995. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Res. II, 42(1):203-214.
Alleman, B.C., B.E. Logan, G.L. Amy and R.L. Gilbertson. 1995. Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Wat. Res. 29(1):61-67.
Confer, D.R., B.E. Logan, B.S. Aiken, and D.L. Kirchman. 1995. Measurement of dissolved free and combined amino acids in unconcentrated wastewaters using high performance liquid chromatography. Wat. Environ. Res. 67(1)118-125.
Gross, M.J. and B.E. Logan. 1995. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Appl. Environ. Microbiol., 61(5):1750-1756.
Gross, M.J., O. Albinger, D.G. Jewett, B.E. Logan, R.C. Bales, and R.G. Arnold. 1995. Measurement of bacterial collision efficiencies in porous media. Wat. Res., 29(4):1151-1158.
Jackson, G.A., B.E. Logan, A.L. Alldredge, and H. Dam. 1995. Combining particle size spectra from a mesocosm experiment measured using photographic and aperture impedance (Coulter and Elzone) techniques. Deep-Sea Res. II, 42(1):139-157.
Jewett, D.G., T.A. Hilbert, B.E. Logan, R.G. Arnold, R.C. Bales. 1995. Bacterial transport in columns and filters: Influence of ionic strength and pH on collision efficiency. Wat. Res., 29(7):1673-1680.
Johnson, W.P., K.A. Blue, B.E. Logan and R.G. Arnold. 1995. Modeling bacterial detachment during transport through porous media as a resident-time-dependent process. Wat. Resour. Res., 31(11):2649-2658.
Li, X. and B.E. Logan. 1995. Size distributions and fractal properties of particles during a simulated phytoplankton bloom in a mesocosm. Deep-Sea Res. II, 42(1):125-138.
1994
Logan, B.E., B.C. Alleman, G.L. Amy and R.L. Gilbertson 1994. Adsorption and removal of Pentachlorophenol by white rot fungi in batch culture. Wat. Res. 28(7):1533-1538.
Logan, B.E., H.-P. Grossart, and M. Simon. 1994. Direct observation of phytoplankton, TEP and aggregates on polycarbonate filters using brightfield microscopy. J Plankton Res., 16(12):1811-1815.
Logan, B.E., U. Passow and A.L. Alldredge. 1994. Variable retention of diatoms on screens during size separations. Limnol. Oceanogr. 39(2):390-395.
Albinger, O., B.K. Biesemeyer, R.G. Arnold and B.E. Logan. 1994. Effect of bacterial heterogeneity on adhesion to uniform collectors by monoclonal populations. FEMS Microbiol. Lett., 124:321-326.
Haldane, G.M., and B.E. Logan. 1994. Molecular size distributions of a macromolecular polysaccharide (dextran) during its biodegradation in batch and continuous cultures. Wat. Res. 28(9):1873-1878.
Kilps, J.R., B.E. Logan, and A.L. Alldredge. 1994. Fractal dimensions of marine snow determined from image analysis of in situ photographs. Deep-Sea Res. 41(8):1159-1169.
Passow, U., A.L. Alldredge, and B.E. Logan. 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Res. 41(2):335-357.
1993
Alldredge, A.L., Passow, U, and B.E. Logan. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. 40(6):1131-1140.
Alleman, B.C., B.E. Logan, and R.L. Gilbertson. 1993. A rapid method to screen fungi for resistance to toxic chemicals. Biodegradation. 4:125-129.
Logan, B.E. 1993. Oxygen transfer in trickling filters. J. Environ. Engin. 119(6):1059-1076.
Logan, B.E. 1993. Theoretical analysis of size distributions determined with screens and filters. Limnol. Oceanogr. 38(2):372-381.
Logan, B.E. and R.C. Fleury. 1993. Multiphasic kinetics can be an artifact of the assumption of saturable kinetics for microorganisms. Mar. Ecol. Prog. Ser. 102:115-124.
Logan, B.E., T.A. Hilbert, R.G. Arnold. 1993. Removal of bacteria in laboratory filters: Models and Experiments. Wat. Res. 27(6):955-962.
Jewett, D.G., R.C. Bales, B.E. Logan, and R.G. Arnold. 1993. Comment on “Application of Clean-Bed Filtration Theory to Bacterial Deposition in Porous Media” Environ. Sci. Technol. 27(5):984-985.
Logan, B.E. and G.A. Wagenseller. 1993. The HBOD test: a new method for determining biochemical oxygen demand. Water Environ. Res. 65(7):862-868.
1992
Alleman, B.C., B.E. Logan, and R.L. Gilbertson. 1992. Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Appl. Environ. Microbiol., 58(12):4048-4050.
1991
Confer, D.R. and B.E. Logan. 1991. Increased bacterial uptake of macromolecular substrates with fluid shear. Appl. Environ. Microbiol., 57(11)3093-3100.
Jiang, Q. and B.E. Logan. 1991. Fractal dimensions of aggregates determined from steady-state size distributions. Environ. Sci. Technol., 25(12), 2031-2038.
Logan, B.E. and D.K. Kirchman. 1991. Uptake of dissolved organics by marine bacteria as a function of fluid motion. Mar. Biol., 111(1):175-181.
Logan, B.E. and D.B. Wilkinson. 1991. Fractal dimensions and porosities of Zoogloea ramigera and Saccharomyces cerevisae aggregates. Biotechnol. Bioengin., 38(4):389-396.
1990
Logan, B.E. and J.W. Dettmer. 1990. Increased mass transfer to microorganisms with fluid motion. Biotechnol. Bioengin., 35(11):1135 -1144.
Logan, B.E. and Q. Jiang. 1990. Molecular size distributions of dissolved organic matter. J. Envir. Engin. 116(6):1046-1062.
Logan, B.E. and D.S. Parker. 1990. Discussion of: “Nitrification performance of a pilot-scale trickling filter” by H.A. Gullicks and J.L. Cleasby Res. J. Water Pollut. Control Fed., 62(7):933-936.
Logan, B.E. and D.B. Wilkinson. 1990. Fractal geometry of marine snow and other biological aggregates. Limnol. Oceanogr., 35(1):130-136.
1989
Logan, B.E. and A.L. Alldredge. 1989. Potential for increased nutrient uptake by flocculating diatoms. Mar. Biol. 101(4):443-450.
Logan, B.E., S.W. Hermanowicz and D.S. Parker. 1989. Reply to Discussion of S.W. Hinton and H.D. Stensel on “A fundamental model for trickling filter process design”. J. Water Pollut. Control Fed., 61(3):363-366.
Logan, B.E., A. Steele, and R.G. Arnold. 1989. Computer simulation of DDT distribution in Palos Verdes Shelf sediments. J. Env. Eng. Div., ASCE, 115(1):221-238.
1988
Logan, B.E. and J.R. Hunt. 1988. Bioflocculation as a microbial response to substrate limitations. Biotechnol. Bioeng., 31:91-101.
1987
Logan, B.E. and S.W. Hermanowicz. 1987. Application of the penetration theory to oxygen transfer to biofilms. Biotechnol. Bioeng., 29(6):762-766.
Logan, B.E., S.W. Hermanowicz and D.S. Parker. 1987. A fundamental model for trickling filter process design. J. Water Pollut. Control Fed., 59(12):1029-1042.
Logan, B.E., S.W. Hermanowicz and D.S. Parker. 1987. Engineering implications of a new trickling filter model. J. Water Pollut. Control Fed., 59(12):1017-1028.
Logan, B.E. and J.R. Hunt. 1987. Advantages of microbial growth in permeable aggregates in marine systems. Limnol. Oceanogr., 32(5):1034-1048.
1980
Kleinstreuer, C. and B.E. Logan. 1980. A mathematical model simulating fish losses near power plants using rotenone data. Water Res., 14(3):1047-1054.
Kleinstreuer, C. and B.E. Logan. 1980. Generalized computer simulation mode for the impact assessment of industrial water use on fish populations. Prog. Water Tech., 13:363-390.